Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic regulation in RCC: opportunities for therapeutic intervention?

Abstract

Renal cell carcinoma (RCC) is a constellation of malignancies of different histological subtypes arising from the renal parenchyma. The clear cell histological subtype (ccRCC) accounts for around 75% of RCCs and is characterized by distinct genetic abnormalities, of which the loss of function of the von Hippel–Lindau (VHL) tumor suppressor gene is the most common. Inactivation of other tumor suppressor genes such as SETD2, KDM6A, KDM5C and PBRM1 has been reported in ccRCC—notably, the proteins encoded by these genes are involved in histone and chromatin regulation. Furthermore, the PBRM1 and SETD2 genes are located on the short arm of chromosome 3 near the VHL locus. Chromatin and histones modify gene expression and, as a consequence, their function is tightly regulated. Data from RNA interference (RNAi) assays suggest that loss of function of PBRM1 drives proliferation and growth of ccRCC, but the clinical relevance of this is unclear and restoring the function of these genes for therapeutic purposes is likely to be challenging. An improved understanding of histone and chromatin regulation in RCC biology and the consequences of intratumor heterogeneity might identify novel targets in RCC and present alternative therapeutic opportunities.

Key Points

  • Clear cell renal cell carcinoma (ccRCC) accounts for about 75% of all RCCs

  • Newly reported mutations of tumor suppressor genes SETD2, KDM6A and KDM5C, which encode proteins involved in histone modification, have been shown to occur in ccRCC

  • Chromosomal locus 3p21, where VHL, BAP1, SETD2 and PBRM1 reside, highlights a hot spot for mutations of genes involved in ccRCC

  • Newly identified somatic mutations in histone modifying enzymes suggest that chromatin and histone modifications might have important roles in the pathogenesis of ccRCC

  • A better understanding of the roles of histone modification provides a potential therapeutic target in ccRCC

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of chromatin.
Figure 2: Map of histone methylation and acetylation in renal cell carcinoma.
Figure 3: Deletions and mutations of VHL, PBRM1, BAP1 and SETD2 genes on chromosomal locus 3p.

Similar content being viewed by others

References

  1. Jemal, A. et al. Global cancer statistics, 2010. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  2. Mathew, A., Devesa, S. S., Fraumeni, J. F. Jr & Chow, W. H. Global increases in kidney cancer incidence, 1973–1992. Eur. J. Cancer Prev. 11, 171–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Sun, M. et al. Age-adjusted incidence, mortality, and survival rates of stage-specific renal cell carcinoma in North America: a trend analysis. Eur. Urol. 59, 135–141 (2011).

    Article  PubMed  Google Scholar 

  4. Lam, J. S., Leppert, J. T., Belldegrun, A. S. & Figlin, R. A. Novel approaches in the therapy of metastatic renal cell carcinoma. World J. Urol. 23, 202–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Fisher R. A. et al. Observation prior to systemic therapy in patients with metastatic renal cell carcinoma in the kinase inhibitor era. J. Clin. Oncol. 29, e241–e242 (2011).

    Article  PubMed  Google Scholar 

  6. Lopez-Beltran, A., Scarpelli, M., Montironi, R. & Kirkali, Z. 2004 WHO classification of the renal tumors of the adults. Eur. Urol. 49, 798–805 (2006).

    Article  PubMed  Google Scholar 

  7. Storkel, S. et al. Classification of renal cell carcinoma: Workgroup No. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer 80, 987–989 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Renshaw, A. A. Subclassification of renal cell neoplasms: an update for the practising pathologist. Histopathology 41, 283–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, W. Y. & Kaelin, W. G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 22, 4991–5004 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Alam, N. A. et al. Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum. Mol. Genet. 12, 1241–1252 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Alam, N. A. et al. Missense mutations in fumarate hydratase in multiple cutaneous and uterine leiomyomatosis and renal cell cancer. J. Mol. Diagn. 7, 437–443 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Hong, S. B. et al. Tumor suppressor FLCN inhibits tumorigenesis of a FLCN-null renal cancer cell line and regulates expression of key molecules in TGF-beta signaling. Mol. Cancer 9, 160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Toro, J. R. Birt-Hogg-Dubé syndrome. In GeneReviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (2008).

    Google Scholar 

  17. Schmidt, L. S. et al. Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt-Hogg-Dubé syndrome. Am. J. Hum. Genet. 76, 1023–1033 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khoo, S. K. et al. Inactivation of BHD in sporadic renal tumors. Cancer Res. 63, 4583–4587 (2003).

    CAS  PubMed  Google Scholar 

  19. Argani, P. et al. Xp11 translocation renal cell carcinoma in adults: expanded clinical, pathologic, and genetic spectrum. Am. J. Surg. Pathol. 31, 1149–1160 (2007).

    Article  PubMed  Google Scholar 

  20. Ross, H. & Argani, P. Xp11 translocation renal cell carcinoma. Pathology 42, 369–373 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41, 521–523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hurst, F. P. et al. Incidence, predictors and associated outcomes of renal cell carcinoma in long-term dialysis patients. Urology 77, 1271–1276 (2011).

    Article  PubMed  Google Scholar 

  23. Strumberg, D. Efficacy of sunitinib and sorafenib in non-clear cell renal cell carcinoma: results from expanded access studies. J. Clin. Oncol. 26, 3469–3471 (2008).

    Article  PubMed  Google Scholar 

  24. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134, (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Sternberg, C. N. et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J. Clin. Oncol. 28, 1061–1068 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Coppin, C. et al. Immunotherapy for advanced renal cell cancer. Cochrane Database of Systematic Reviews, Issue 1. Art No.: CD001425. http://dx.doi.org/10.1002/14651858.CD001425.pub2 (2005).

    Google Scholar 

  27. Yagoda, A., Petrylak, D. & Thompson, S. Cytotoxic chemotherapy for advanced renal cell carcinoma. Urol. Clin. North Am. 20, 303–321 (1993).

    CAS  PubMed  Google Scholar 

  28. Rini, B. I. Metastatic renal cell carcinoma: many treatment options, one patient. J. Clin. Oncol. 27, 3225–3234 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Horiuchi, A. et al. Hypoxia-induced changes in the expression of VEGF, HIF-1 alpha and cell cycle-related molecules in ovarian cancer cells. Anticancer Res. 22, 2697–2702 (2002).

    CAS  PubMed  Google Scholar 

  30. Harada, H. et al. The Akt/mTOR pathway assures the synthesis of HIF-1alpha protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. J. Biol. Chem. 284, 5332–5342 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Rini, B. I., Campbell, S. C. & Escudier, B. Renal cell carcinoma. Lancet 373, 1119–1132 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Motzer, R. J. et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Cancer 116, 4256–4265 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Swanton, C. et al. Predictive biomarker discovery through the parallel integration of clinical trial and functional genomics datasets. Genome Med. 2, 53 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muhlbauer, B. et al. Magnesium-L-aspartate-HCl and magnesium-oxide: bioavailability in healthy volunteers. Eur. J. Clin. Pharmacol. 40, 437–438 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Geiman, T. M. & Robertson, K. D. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J. Cell Biochem. 87, 117–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Doerfler, W. et al. Eukaryotic DNA methylation: facts and problems. FEBS Lett. 268, 329–333 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Nojima, D. et al. CpG methylation of promoter region inactivates E-cadherin gene in renal cell carcinoma. Mol. Carcinog. 32, 19–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Morris, M. R. et al. Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 29, 2104–2117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cooper, G. M. The Cell (Boston University, Sunderland: Sinauer Associates, 2000).

    Google Scholar 

  42. Paranjape, S. M., Kamakaka, R. T. & Kadonaga, J. T. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63, 265–297 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Horn, P. J. & Peterson, C. L. Molecular biology. Chromatin higher order folding—wrapping up transcription. Science 297, 1824–1827 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Kurdistani, S. K. Histone modifications in cancer biology and prognosis. Prog. Drug Res. 67, 91–106 (2011).

    CAS  PubMed  Google Scholar 

  46. Sims, R. J. 3rd, Nishioka, K. & Reinberg, D. Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629–639 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Bartova, E., Krejci, J., Harnicarova, A., Galiova, G. & Kozubek, S. Histone modifications and nuclear architecture: a review. J. Histochem. Cytochem. 56, 711–721 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bannister, A. J., Schneider, R. & Kouzarides, T. Histone methylation: dynamic or static? Cell 109, 801–806 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Di Lorenzo, A. & Bedford, M. T. Histone arginine methylation. FEBS Lett. 585, 2024–2031 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Lee, D. Y., Teyssier, C., Strahl, B. D. & Stallcup, M. R. Role of protein methylation in regulation of transcription. Endocr. Rev. 26, 147–170 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Berger, S. L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Ruthenburg, A. J., Allis, C. D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Klose, R. J. & Zhang, Y. Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol. 8, 307–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Hess, J. L. MLL: a histone methyltransferase disrupted in leukemia. Trends Mol. Med. 10, 500–507 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Barrett, A. et al. Breast cancer associated transcriptional repressor PLU-1/JARID1B interacts directly with histone deacetylases. Int. J. Cancer 121, 265–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Xiang, Y. et al. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc. Natl Acad. Sci. USA 104, 19226–19231 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simon, J. A. & Lange, C. A. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res. 647, 21–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Wagener, N. et al. The enhancer of zeste homolog 2 gene contributes to cell proliferation and apoptosis resistance in renal cell carcinoma cells. Int. J. Cancer 123, 1545–1550 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Ougolkov, A. V., Bilim, V. N. & Billadeau, D. D. Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2. Clin. Cancer Res. 14, 6790–6796 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chase, A. & Cross, N. C. Aberrations of EZH2 in cancer. Clin. Cancer Res. 17, 2613–2618 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Beyer, S., Kristensen, M. M., Jensen, K. S., Johansen, J. V. & Staller, P. The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J. Biol. Chem. 283, 36542–36552 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Martinez-Garcia, E. & Licht, J. D. Deregulation of H3K27 methylation in cancer. Nat. Genet. 42, 100–101 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Bannister, A. J. et al. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J. Biol. Chem. 280, 17732–17736 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Huang, J. et al. G9a and Glp methylate lysine 373 in the tumor suppressor p53. J. Biol. Chem. 285, 9636–9641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yamane, K. et al. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol. Cell 25, 801–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Reisman, D., Glaros, S. & Thompson, E. A. The SWI/SNF complex and cancer. Oncogene 28, 1653–1668 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Xia, W. et al. BAF180 is a critical regulator of p21 induction and a tumor suppressor mutated in breast cancer. Cancer Res. 68, 1667–1674 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Burrows, A. E., Smogorzewska, A. & Elledge, S. J. Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc. Natl Acad. Sci. USA 107, 14280–14285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Janssen, A., Kops, G. J. & Medema, R. H. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc. Natl Acad. Sci. USA 106, 19108–19113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71, 3447–3452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kenneth, N. S., Mudie, S., van Uden, P. & Rocha, S. SWI/SNF regulates the cellular response to hypoxia. J. Biol. Chem. 284, 4123–4131 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Guo, G. et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat. Genet. 44, 17–19 (2012).

    Article  CAS  Google Scholar 

  82. Morita, R. et al. Common regions of deletion on chromosomes 5q, 6q, and 10q in renal cell carcinoma. Cancer Res. 51, 5817–5820 (1991).

    CAS  PubMed  Google Scholar 

  83. Flaig, T. W. et al. Safety and efficacy of the combination of erlotinib and sirolimus for the treatment of metastatic renal cell carcinoma after failure of sunitinib or sorafenib. Br. J. Cancer 103, 796–801 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bukowski, R. M. et al. Randomized phase II study of erlotinib combined with bevacizumab compared with bevacizumab alone in metastatic renal cell cancer. J. Clin. Oncol. 25, 4536–4541 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Jermann, M. et al. A phase II, open-label study of gefitinib (IRESSA) in patients with locally advanced, metastatic, or relapsed renal-cell carcinoma. Cancer Chemother. Pharmacol. 57, 533–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Ravaud, A. et al. Lapatinib versus hormone therapy in patients with advanced renal cell carcinoma: a randomized phase III clinical trial. J. Clin. Oncol. 26, 2285–2291 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Shand, N. et al. A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum. Gene Ther. 10, 2325–2335 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Buchner, A. et al. Phase 1 trial of allogeneic gene-modified tumor cell vaccine RCC-26/CD80/IL-2 in patients with metastatic renal cell carcinoma. Hum. Gene Ther. 21, 285–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71, 3447–3452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Roylance, R. et al. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol. Biomarkers Prev. 20, 2183–2194 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Moch, H. et al. Intratumoral heterogeneity of von Hippel-Lindau gene deletions in renal cell carcinoma detected by fluorescence in situ hybridization. Cancer Res. 58, 2304–2309 (1998).

    CAS  PubMed  Google Scholar 

  92. Li, G. et al. Different DNA ploidy patterns for the differentiation of common subtypes of renal tumors. Cell Oncol. 27, 51–56 (2005).

    PubMed  PubMed Central  Google Scholar 

  93. Ljungberg, B., Mehle, C., Stenling, R. & Roos, G. Heterogeneity in renal cell carcinoma and its impact no prognosis--a flow cytometric study. Br. J. Cancer 74, 123–127 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zama, I. N. et al. Sunitinib rechallenge in metastatic renal cell carcinoma patients. Cancer 116, 5400–5406 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Schifitto, G. et al. Valproic acid adjunctive therapy for HIV-associated cognitive impairment: a first report. Neurology 66, 919–921 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Kramer, O. H., Knauer, S. K., Zimmermann, D., Stauber, R. H. & Heinzel, T. Histone deacetylase inhibitors and hydroxyurea modulate the cell cycle and cooperatively induce apoptosis. Oncogene 27, 732–740 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Swoboda, K. J. et al. Phase II open label study of valproic acid in spinal muscular atrophy. PLoS ONE 4, e5268, (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kelly, T. K., De Carvalho, D. D. & Jones, P. A. Epigenetic modifications as therapeutic targets. Nat. Biotechnol. 28, 1069–1078 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grant, C. et al. Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev. Anticancer Ther. 10, 997–1008 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Olsen, E. A. et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 25, 3109–3115 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Vansteenkiste, J. et al. Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Invest. New Drugs 26, 483–488 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Modesitt, S. C., Sill, M., Hoffman, J. S. & Bender, D. P. A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol. Oncol. 109, 182–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Klimek, V. M. et al. Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin. Cancer Res. 14, 826–832 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Schrump, D. S. et al. Clinical and molecular responses in lung cancer patients receiving Romidepsin. Clin. Cancer Res. 14, 188–198 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Nagji, A. S., Cho, S. H., Liu, Y., Lee, J. K. & Jones, D. R. Multigene expression-based predictors for sensitivity to Vorinostat and Velcade in non-small cell lung cancer. Mol. Cancer Ther. 9, 2834–2843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, C. S., Weng, S. C., Tseng, P. H. & Lin, H. P. Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J. Biol. Chem. 280, 38879–38887 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Traynor, A. M. et al. Vorinostat (NSC# 701852) in patients with relapsed non-small cell lung cancer: a Wisconsin Oncology Network phase II study. J. Thorac. Oncol. 4, 522–526 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Garber, K. HDAC inhibitors overcome first hurdle. Nat. Biotechnol. 25, 17–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Tan, J. et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21, 1050–1063 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Miranda, T. B. et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther. 8, 1579–1588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhou, J. et al. The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood 118, 2830–2839 (2011).

    Article  PubMed  Google Scholar 

  112. Cha, T. L. et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310, 306–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Shi, L. et al. Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc. Natl Acad. Sci. USA 108, 7541–7546 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Duns, G. et al. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res. 70, 4287–4291 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J. Larkin, X. Y. Goh and M. Vetter contributed equally to the writing of this manuscript, researching data for the article, writing the manuscript and making a substantial contribution to discussion of content, as well as reviewing and editing the manuscript before submission. L. Pickering reviewed and edited the article before submission. C. Swanton researched data for the article, made a substantial contribution to discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Charles Swanton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkin, J., Goh, X., Vetter, M. et al. Epigenetic regulation in RCC: opportunities for therapeutic intervention?. Nat Rev Urol 9, 147–155 (2012). https://doi.org/10.1038/nrurol.2011.236

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.236

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer