Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Robotic prostate biopsy and its relevance to focal therapy of prostate cancer

Abstract

Focal therapy is an individualized treatment option for prostate cancer, which destroys localized cancerous tissue but not normal tissue, thus avoiding the morbidities associated with whole-gland therapy. Accurate cancer localization and precise ablation are integral to the success of focal therapy, which remains unproven owing to suboptimal patient selection. Currently, there are no clinical or biopsy features that can identify unifocal prostate cancer and no imaging modality that can accurately diagnose or localize prostate cancer. MRI diagnosis has the best accuracy but high cost and limited access hinder its widespread adoption. New management options, including focal therapy and active surveillance, require prostate biopsy to detect, localize and characterize the cancer. Transrectal prostate biopsy has a high false-negative detection rate, which might be related to an inability to biopsy the anterior and apical part of the prostate or interoperator variation. Transrectal biopsy is also associated with sepsis and bleeding. Robotic transperineal prostate biopsy can overcome the limitations of transrectal procedures. Robotic biopsy is automated with high accuracy, has improved access to the apex and anterior part of the prostate and has low risk of sepsis. Furthermore, it involves only two skin punctures, compared with template-based transperineal prostate biopsy, which can result in multiple wounds. Robotic prostate biopsy fulfills the fundamental needs of focal therapy and might be the platform for future treatment delivery for prostate cancer.

Key Points

  • The success of focal therapy for prostate cancer is dependent on the accurate localization of cancer, in order to ensure complete ablation of known disease

  • Transrectal prostate biopsy has a high false-negative detection rate and associated risk of life-threatening infection, which can be overcome with the transperineal approach

  • As new MRI technology is developed, its accuracy for prostate cancer identification is improved

  • An image-guided robotic biopsy system will ensure accurate targeted prostate biopsy and provide a map of prostate cancer location to guide focal therapy delivery

  • Further studies are essential to verify the accuracy of targeted prostate biopsy and the clinical value of robotic and template-based transperineal approaches

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BioXbot—ultrasonography-based robotic prostate biopsy.
Figure 2: Dual-cone concept.
Figure 3: BioXbot software.
Figure 4: Feasibility and safety of the BioXbot.

Similar content being viewed by others

References

  1. Catalona, W. J., Smith, D. S., Ratliff, T. L. & Basler, J. W. Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening. JAMA 270, 948–954 (1993).

    Article  CAS  Google Scholar 

  2. Cooperberg, M. R., Lubeck, D. P., Meng, M. V., Mehta, S. S. & Carroll, P. R. The changing face of low-risk prostate cancer: trends in clinical presentation and primary management. J. Clin. Oncol. 22, 2141–2149 (2004).

    Article  Google Scholar 

  3. Caso, J. R., Mouraviev, V., Tsivian, M., Polascik, T. J. & Moul, J. W. Prostate cancer: an evolving paradigm. J. Endourol. 24, 805–809 (2010).

    Article  Google Scholar 

  4. Andriole, G. L. et al. Mortality results from a randomized prostate cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009).

    Article  CAS  Google Scholar 

  5. Schröder, F. H. et al. Screening and prostate cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

    Article  Google Scholar 

  6. Gravas, S. & de Reijke, T. Is focal therapy an alternative to active surveillance? J. Endourol. 24, 855–860 (2010).

    Article  Google Scholar 

  7. Hu, J. C. et al. Comparative effectiveness of minimally invasive vs open radical prostatectomy. JAMA 302, 1557–1564 (2009).

    Article  CAS  Google Scholar 

  8. Cahlon, O., Hunt, M. & Zelefsky, M. J. Intensity-modulated radiation therapy: supportive data for prostate cancer. Semin. Radiat. Oncol. 18, 48–57 (2008).

    Article  Google Scholar 

  9. Klotz, L. Active surveillance with selective delayed intervention: using natural history to guide treatment in good risk prostate cancer. J. Urol. 172, S48–S50 (2004).

    Article  Google Scholar 

  10. Jayram, E. & Eggener, S. E. Patient selection for focal therapy of prostate cancer. Curr. Opin. Urol. 19, 268–273 (2009).

    Article  Google Scholar 

  11. Hall, G. S., Kramer, C. E. & Epstein, J. I. Evaluation of radical prostatectomy specimens: a comparative analysis of sampling methods. Am. J. Surg. Pathol. 16, 315–324 (1992).

    Article  CAS  Google Scholar 

  12. Ahmed, H. U. The index lesion and the origin of prostate cancer. N. Engl. J. Med. 361, 1704–1706 (2009).

    Article  CAS  Google Scholar 

  13. Karavitakis, M., Ahmed, H. U., Abel, P. D., Hazell, S. & Winkler, M. H. Tumor focality in prostate cancer: implications for focal therapy. Nat. Rev. Clin. Oncol. 8, 48–55 (2011).

    Article  Google Scholar 

  14. Mouraviev, V. et al. Prostate cancer laterality as a rationale of ablative therapy for the treatment of clinically localized prostate. Cancer 110, 906–910 (2007).

    Article  Google Scholar 

  15. Tareen, B. et al. Appropriate candidates for hemiablative focal therapy are infrequently encountered among men selected for radical prostatectomy in contemporary cohort. Urology 73, 351–354 (2009).

    Article  Google Scholar 

  16. Ahmed, H. U. & Emberton, M. Benchmarks for success in focal therapy of prostate cancer. World J. Urol. 28, 577–582 (2010).

    Article  Google Scholar 

  17. D'Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280, 969–974 (1998).

    Article  CAS  Google Scholar 

  18. No authors listed. Consensus statement: guidelines for PSA following radiation therapy. American Society for Therapeutic Radiology and Oncology Consensus Panel. Int. J. Radiat. Oncol. Biol. Phys. 37, 1035–1041 (1997).

  19. Stamey, T. A. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909–916 (1987).

    Article  CAS  Google Scholar 

  20. Ahmed, H. U., Moore, C., Lecornet, E. & Emberton, M. Focal therapy in prostate cancer: determinants of success and failure. J. Endourol. 24, 819–825 (2010).

    Article  Google Scholar 

  21. Dall'Era, M. A. et al. Active surveillance for early-stage prostate cancer: review of the current literature. Cancer 112, 1650–1659 (2008).

    Article  Google Scholar 

  22. Kim, C. K., Park, B. K., Lee, H. M., Kim, S. S. & Kim, E. MRI techniques for prediction of local tumor progression after high-intensity focused ultrasonic ablation of prostate cancer. AJR Am. J. Roentgenol. 190, 1180–1186 (2008).

    Article  Google Scholar 

  23. Rouvière, O. et al. Prostate cancer transrectal HIFU ablation: detection of local recurrences using T2-weighted and dynamic contrast-enhanced MRI. Eur. Radiol. 20, 48–55 (2010).

    Article  Google Scholar 

  24. Vellet, A. D. et al. Prostatic cryosurgery: use of MR imaging in evaluation of success and technical modifications. Radiology 203, 653–659 (1997).

    Article  CAS  Google Scholar 

  25. Pallwein, L. et al. Value of contrast-enhanced ultrasound and elastography in imaging of prostate cancer. Curr. Opin. Urol. 17, 39–47 (2007).

    Article  Google Scholar 

  26. Kitajima, K. et al. Prostate cancer detection with 3T MRI: comparison of diffusion-weighted imaging and dynamic contrast-enhanced MRI in combination with T2-weighted imaging. J. Magn. Reson. Imaging 31, 625–631 (2010).

    Article  Google Scholar 

  27. Pinto, F. et al. Imaging in prostate cancer diagnosis: present role and future perspectives. Urol. Int. 86, 373–382 (2011).

    Article  Google Scholar 

  28. Levine, M. A., Ittman, M., Melamed, J. & Lepor, H. Two consecutive sets of transrectal ultrasound guided sextant biopsies of the prostate for the detection of prostate cancer. J. Urol. 159, 471–475 (1998).

    Article  CAS  Google Scholar 

  29. Demura, T. et al. Differences in tumor core distribution between palpable and nonpalpable prostate tumors in patients diagnosed using extensive transperineal ultrasound-guided template prostate biopsy. Cancer 103, 1826–1832 (2005).

    Article  Google Scholar 

  30. Tiara, A. V. et al. Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis. 13, 71–77 (2010).

    Article  Google Scholar 

  31. Djavan, B. et al. Safety and morbidity of first and repeat transrectal ultrasound guided prostate needle biopsies: results of a prospective European prostate cancer detection study. J. Urol. 166, 856–860 (2001).

    Article  CAS  Google Scholar 

  32. Rietbergen, J. B., Kruger, A. E., Kranse, E. & Schröder, F. H. Complications of transrectal ultrasound-guided systematic sextant biopsies of the prostate: evaluation of complication rates and risk factors within a population-based screening program. Urology 49, 875–880 (1997).

    Article  CAS  Google Scholar 

  33. Lange, D. et al. Bacterial sepsis after prostate biopsy—a new perspective. Urology 74, 1200–1205 (2009).

    Article  Google Scholar 

  34. Hadway, P. et al. Urosepsis and bacteraemia caused by antibiotic-resisitant organisms after transrectal ultrasonography-guided prostate biopsy. BJU Int. 104, 1556–1558 (2009).

    Article  Google Scholar 

  35. Feliciano, J. et al. The incidence of fluoroquinolone resistant infections after prostate biopsy—are fluoroquinolone still effective prophylaxis? J. Urol. 179, 952–955 (2008).

    Article  Google Scholar 

  36. Mohan, P., Ho, H., Yuen, J. S. P., Ng, W. S. & Cheng, W. S. A 3D computer simulation to study the efficacy of transperineal versus transrectal biopsy of the prostate. Int. J. Comput. Assist. Radiol. Surg. 1, 351–360 (2007).

    Article  Google Scholar 

  37. Kawakami, S. et al. Transrectal ultrasound-guided transperineal 14-core systematic biopsy detects apico-anterior cancer foci of T1c prostate cancer. Int. J. Urol. 11, 613–618 (2004).

    Article  Google Scholar 

  38. Merrick, G. S. et al. The morbidity of transperineal template-guided prostate mapping biopsy. BJU Int. 101, 1524–1529 (2008).

    Article  Google Scholar 

  39. Shandera, K. C., Thibault, G. P. & Deshon, G. E. Jr. Variability in patient preparation for prostate biopsy among American urologists. Urology 52, 644–646 (1998).

    Article  CAS  Google Scholar 

  40. Onik, G., Miessau, M. & Bostwick, D. G. Three-dimensional prostate mapping biopsy has a potentially significant impact on prostate cancer management. J. Clin. Oncol. 27, 4321–4326 (2009).

    Article  Google Scholar 

  41. Emiliozzi, P. et al. The value of a single biopsy with 12 transperineal cores for detecting prostate cancer in patients with elevated prostate specific antigen. J. Urol. 166, 845–849 (2001).

    Article  CAS  Google Scholar 

  42. Elhawary, H. et al. The case for MR-compatible robotics: a review of the state of the art. Int. J. Med. Robot. 4, 105–113 (2008).

    Article  Google Scholar 

  43. Ho, H. S. et al. Robotic ultrasound-guided prostate intervention device: system description and results from phantom studies. Int. J. Med. Robot. 5, 51–58 (2009).

    Article  CAS  Google Scholar 

  44. Ho, H. et al. A device for precise robotic assisted transperineal saturation prostate biopsy in men with previous negative biopsy: Preliminary study [abstract V2061]. J. Urol. 179 (Suppl.), 710 (2008).

    Article  Google Scholar 

  45. Ho, H. et al. Robotic transperineal prostate biopsy: pilot clinical study. Urology http://dx.doi.org/10.1016/j.urology.2011.07.1389

  46. Ho, H. et al. Robotic-assisted transperineal prostate biopsy with novel device for future prostate interventions: 3-years' clinical experience [abstract 1091]. J. Urol. 183 (Suppl.), e424–e425 (2010).

    Google Scholar 

  47. Andriole, G. L. et al. Is there a better way to biopsy the prostate? Prospects for a novel transrectal systematic biopsy approach. Urology 70 (6 Suppl.), 22–26 (2007).

    Article  Google Scholar 

  48. Megwalu, I. I. et al. Evaluation of a novel precision template-guided biopsy system for detecting prostate cancer. BJU Int. 102, 546–550 (2008).

    Article  Google Scholar 

  49. Natarajan, S. et al. Clinical application of a 3D ultrasound-guided prostate biopsy system. Urol. Oncol. 29, 334–342 (2011).

    Article  Google Scholar 

  50. Gassert, R. et al. A 2-DOF fMR-compatible haptic interface to investigate the neural control of arm movements. Proceedings of the IEEE International Conference 3825–3831 (2006).

  51. Masamune, K. et al. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J. Image Guid. Surg. 1, 242–248 (1995).

    Article  CAS  Google Scholar 

  52. Stoianovici, D., Patriciu, A., Petrisor, D., Mazilu, D. & Kavoussi, L. A new type of motor: pneumatic step motor. IEEE/ASME Trans. Mechatronics 12, 98–106 (2007).

    Article  Google Scholar 

  53. Fischer, G. S., DiMaio, S., Iordachita, I. I. & Fichtinger, G. Robotic assistant for transperineal prostate intervention in 3T closed MRI. Med. Image Comput. Comput. Assist. Interv. 10, 425–433 (2007).

    PubMed  Google Scholar 

  54. Zangos, S. et al. MR-compatible assistance system for punction in a high-field system: device and feasibility of transgluteal biopsies of the prostate gland. Eur. Radiol. 17, 1118–1124 (2007).

    Article  Google Scholar 

  55. Zangos, S. et al. MR-compatible assistance system for biopsy in a high-field-strength system: initial results in patients with suspicious prostate lesions. Radiology 259, 903–910 (2011).

    Article  Google Scholar 

  56. Engelhard, K. et al. Prostate biopsy in the supine position in a standard 1.5-T scanner under real time MR-imaging control using a MR-compatible endorectal biopsy device. Eur. Radiol. 16, 1237–1243 (2006).

    Article  CAS  Google Scholar 

  57. Singh, A. K. et al. Initial clinical experience with real-time transrectal ultrasonography-magnetic resonance imaging fusion-guided prostate biopsy. BJU Int. 101, 841–845 (2008).

    Article  Google Scholar 

  58. Ukimura, O. et al. Technique for a hybrid system of real-time transrectal ultrasound with preoperative magnetic resonance imaging in the guidance of targeted prostate biopsy. Int. J. Urol. 10, 890–893 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H. Ho, J. S. P. Yuen and C. W. S. Cheng contributed equally to the research, discussion of content, writing and reviewing of this manuscript.

Corresponding author

Correspondence to Henry Ho.

Ethics declarations

Competing interests

The authors are patent holders/applicants with SingHealth Services Pte Ltd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, H., Yuen, J. & Cheng, C. Robotic prostate biopsy and its relevance to focal therapy of prostate cancer. Nat Rev Urol 8, 579–585 (2011). https://doi.org/10.1038/nrurol.2011.131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.131

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer