Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic potential of targeting sphingosine kinase 1 in prostate cancer

Abstract

Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipid sphingosine into the antiapoptotic lipid sphingosine-1-phosphate, which activates the signal transduction pathways that lead to cell proliferation, migration, activation of the inflammatory response and impairment of apoptosis. Compelling evidence suggests that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization and metastatic spread. High levels of SK1 expression or activity have been associated with poor prognosis in several cancers, including those of the prostate. Recent studies using prostate cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of docetaxel chemotherapy and radiotherapy. However, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery that clinically approved drug fingolimod has SK1-inhibiting properties, SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors might follow soon.

Key Points

  • Sphingosine kinase 1 (SK1) is a lipid enzyme that plays a critical role in oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization and metastatic spread

  • High levels of SK1 expression and activity have been associated with prostate cancer progression (PSA, tumor volumes and Gleason score) and disease recurrence (positive margins and surgical failure)

  • In prostate cancer SK1 has been suggested to be a 'sensor' to anticancer therapies—positive outcome is associated with SK1 inhibition

  • Preclinical studies demonstrate significant potential for SK1-targeting therapies to synergize with the effects of docetaxel chemotherapy and radiotherapy

  • The first clinically applicable drug that was demonstrated to have SK1-inhibiting properties (fingolimod), was shown to induce prostate cancer radiosensitization, reducing primary tumor size and inhibiting metastasis

  • The development of a new generation of clinically applicable pharmacological SK1 inhibitors is urgently required for further preclinical and clinical studies of SK1 targeting therapies as sensitizers to prostate cancer treatment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sphingolipid biostat.
Figure 2: SK1–S1P signaling.

Similar content being viewed by others

References

  1. American Cancer Society. How many men get prostate cancer? [online] (2011).

  2. Cancer Research UK. Prostate cancer statistics—Key Facts http://info.cancerresearchuk.org/cancerstats/keyfacts/prostate-cancer/ (2011).

  3. Reynolds, M. A. Molecular alterations in prostate cancer. Cancer Lett. 271, 13–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Routh, J. C. & Leibovich, B. C. Adenocarcinoma of the prostate: epidemiological trends, screening, diagnosis, and surgical management of localized disease. Mayo Clin. Proc. 80, 899–907 (2005).

    Article  PubMed  Google Scholar 

  5. Nelson, W. G., De Marzo, A. M. & Isaacs, W. B. Prostate cancer. N. Engl. J. Med. 349, 366–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Steineck, G. et al. Cytotoxic treatment of aggressive prostate tumors with or without neuroendocrine elements. Acta Oncol. 41, 668–674 (2002).

    Article  PubMed  Google Scholar 

  7. Petrylak, D. P. et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 351, 1513–1520 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Malavaud, B. et al. Sphingosine kinase-1 activity and expression in human prostate cancer resection specimens. Eur. J. Cancer 46, 3417–3424 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Pchejetski, D. et al. FTY720 (Fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1. Cancer Res. 70, 8651–8661 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Taha, T. A., Hannun, Y. A. & Obeid, L. M. Sphingosine kinase: biochemical and cellular regulation and role in disease. J. Biochem. Mol. Biol. 39, 113–131 (2006).

    CAS  PubMed  Google Scholar 

  12. Pitson, S. M. Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem. Sci. (2010).

  13. Mitra, P. et al. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc. Natl Acad. Sci. USA 103, 16394–16399 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takabe, K. et al. Estradiol induces export of sphingosine-1-phosphate from breast cancer cells via ABCC1 and ABCG2. J. Biol. Chem. 285, 10477–10486 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hisano, Y., Kobayashi, N., Kawahara, A., Yamaguchi, A. & Nishi, T. The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. J. Biol. Chem. 286, 1758–1766 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Young, N. & Van Brocklyn, J. R. Signal transduction of sphingosine-1-phosphate G protein-coupled receptors. Scientific World Journal 6, 946–966 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takabe, K., Paugh, S. W., Milstien, S. & Spiegel, S. “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol. Rev. 60, 181–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Strub, G. M., Maceyka, M., Hait, N. C., Milstien, S. & Spiegel, S. Extracellular and intracellular actions of sphingosine-1-phosphate. Adv. Exp. Med. Biol. 688, 141–155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duan, H. F. et al. Sphingosine kinase activation regulates hepatocyte growth factor induced migration of endothelial cells. Exp. Cell Res. 298, 593–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Hait, N. C. et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alvarez, S. E. et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465, 1084–1088 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pitson, S. M. et al. Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J. Exp. Med. 201, 49–54 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xia, P. et al. An oncogenic role of sphingosine kinase. Curr. Biol. 10, 1527–1530 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Olivera, A. et al. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J. Cell Biol. 147, 545–558 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xia, P., Wang, L., Gamble, J. R. & Vadas, M. A. Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J. Biol. Chem. 274, 34499–34505 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Le Scolan, E. et al. Overexpression of sphingosine kinase 1 is an oncogenic event in erythroleukemic progression. Blood 106, 1808–1816 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Bonhoure, E. et al. Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 20, 95–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Song, L. et al. Sphingosine kinase-1 enhances resistance to apoptosis through activation of PI3K/Akt/NF-{kappa}B pathway in human non-small cell lung cancer. Clin. Cancer Res. 17, 1839–1849 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Sukocheva, O. A. et al. Sphingosine kinase transmits estrogen signaling in human breast cancer cells. Mol. Endocrinol. 17, 2002–2012 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Billich, A. et al. Basal and induced sphingosine kinase 1 activity in A549 carcinoma cells: function in cell survival and IL-1beta and TNF-alpha induced production of inflammatory mediators. Cell Signal. 17, 1203–1217 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Bayerl, M. G. et al. Sphingosine kinase 1 protein and mRNA are overexpressed in non-Hodgkin lymphomas and are attractive targets for novel pharmacological interventions. Leuk. Lymphoma 49, 948–954 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. French, K. J. et al. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res. 63, 5962–5969 (2003).

    CAS  PubMed  Google Scholar 

  33. Licht, T., Tsirulnikov, L., Reuveni, H., Yarnitzky, T. & Ben-Sasson, S. A. Induction of pro-angiogenic signaling by a synthetic peptide derived from the second intracellular loop of S1P3 (EDG3). Blood 102, 2099–2107 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Visentin, B. et al. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9, 225–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Akao, Y. et al. High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC3 cells and their camptothecin-induced up-regulation. Biochem. Biophys. Res. Commun. 342, 1284–1290 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Pchejetski, D. et al. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res. 65, 11667–11675 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Gude, D. R. et al. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. Faseb J. 22, 2629–2638 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weigert, A. et al. Tumor cell apoptosis polarizes macrophages role of sphingosine-1-phosphate. Mol. Biol. Cell 18, 3810–3819 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johann, A. M. et al. Apoptotic cell-derived sphingosine-1-phosphate promotes HuR-dependent cyclooxygenase-2 mRNA stabilization and protein expression. J. Immunol. 180, 1239–1248 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Xie, B. et al. Blockade of sphingosine-1-phosphate reduces macrophage influx and retinal and choroidal neovascularization. J. Cell Physiol. 218, 192–198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Doll, F., Pfeilschifter, J. & Huwiler, A. Prolactin upregulates sphingosine kinase-1 expression and activity in the human breast cancer cell line MCF7 and triggers enhanced proliferation and migration. Endocr. Relat. Cancer 14, 325–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Kaneider, N. C., Djanani, A., Fischer-Colbrie, R. & Wiedermann, C. J. Sphingosine kinase-dependent directional migration of leukocytes in response to phorbol ester. Biochem. Biophys. Res. Commun. 297, 806–810 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Maceyka, M., Alvarez, S. E., Milstien, S. & Spiegel, S. Filamin A links sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 at lamellipodia to orchestrate cell migration. Mol. Cell Biol. 28, 5687–5697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shida, D. et al. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res. 68, 6569–6577 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hobson, J. P. et al. Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291, 1800–1803 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Hla, T. Signaling and biological actions of sphingosine 1-phosphate. Pharmacol. Res. 47, 401–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Graler, M. H. et al. The sphingosine 1-phosphate receptor S1P4 regulates cell shape and motility via coupling to Gi and G12/13. J. Cell Biochem. 89, 507–519 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Maeda, Y. et al. Migration of CD4 T cells and dendritic cells toward sphingosine 1-phosphate (S1P) is mediated by different receptor subtypes: S1P regulates the functions of murine mature dendritic cells via S1P receptor type 3. J. Immunol. 178, 3437–3446 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Van Brocklyn, J. R., Young, N. & Roof, R. Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Lett. 199, 53–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Berdyshev, E. V. et al. Intracellular S1P generation is essential for S1P-induced motility of human lung endothelial cells: role of sphingosine kinase 1 and S1P lyase. PLoS ONE 6, e16571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arikawa, K. et al. Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Requirement of inhibition of cellular RAC activity. J. Biol. Chem. 278, 32841–32851 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Novgorodov, A. S., El-Alwani, M., Bielawski, J., Obeid, L. M. & Gudz, T. I. Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB J. 21, 1503–1514 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Hashimoto, M. et al. Sphingosine 1-phosphate potentiates human lung fibroblast chemotaxis through the S1P2 receptor. Am. J. Respir. Cell. Mol. Biol. 39, 356–363 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bryan, L. et al. Sphingosine-1-phosphate and interleukin-1 independently regulate plasminogen activator inhibitor-1 and urokinase-type plasminogen activator receptor expression in glioblastoma cells: implications for invasiveness. Mol. Cancer Res. 6, 1469–1477 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Long, J. S. et al. Sphingosine kinase 1 induces tolerance to human epidermal growth factor receptor 2 and prevents formation of a migratory phenotype in response to sphingosine-1-phosphate in estrogen receptor positive breast cancer cells. Mol. Cell Biol. 30, 3827–3841 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, F. et al. Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. Am. J. Respir. Cell. Mol. Biol. 24, 711–719 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Wu, W., Shu, X., Hovsepyan, H., Mosteller, R. D. & Broek, D. VEGF receptor expression and signaling in human bladder tumors. Oncogene 22, 3361–3370 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Anelli, V., Gault, C. R., Snider, A. J. & Obeid, L. M. Role of sphingosine kinase-1 in paracrine/transcellular angiogenesis and lymphangiogenesis in vitro. FASEB J. 24, 2727–2738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, J. D. et al. Early induction of apoptosis in androgen-independent prostate cancer cell line by FTY720 requires caspase-3 activation. Prostate 40, 50–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Nava, V. E. et al. Sphingosine enhances apoptosis of radiation-resistant prostate cancer cells. Cancer Res. 60, 4468–4474 (2000).

    CAS  PubMed  Google Scholar 

  61. Dayon, A. et al. Sphingosine kinase-1 is central to androgen-regulated prostate cancer growth and survival. PLoS ONE 4, e8048 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ader, I., Brizuela, L., Bouquerel, P., Malavaud, B. & Cuvillier, O. Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Res. 68, 8635–8642 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Sun, Y., Lin, J., Katz, A. E. & Fisher, P. B. Human prostatic carcinoma oncogene PTI-1 is expressed in human tumor cell lines and prostate carcinoma patient blood samples. Cancer Res. 57, 18–23 (1997).

    CAS  PubMed  Google Scholar 

  64. Su, Z., Goldstein, N. I. & Fisher, P. B. Antisense inhibition of the PTI-1 oncogene reverses cancer phenotypes. Proc. Natl Acad. Sci. USA 95, 1764–1769 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leclercq, T. M., Moretti, P. A. & Pitson, S. M. Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene 30, 372–378 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Edsall, L. C., Van Brocklyn, J. R., Cuvillier, O., Kleuser, B. & Spiegel, S. N. N-Dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of sphingosine 1-phosphate and ceramide. Biochemistry 37, 12892–12898 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Sweeney, E. A. et al. Sphingosine and its methylated derivative N, N-dimethylsphingosine (DMS) induce apoptosis in a variety of human cancer cell lines. Int. J. Cancer 66, 358–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Merrill, A. H. Jr et al. Sphingolipids—the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol. Appl. Pharmacol. 142, 208–225 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Kono, K., Sugiura, M. & Kohama, T. Inhibition of recombinant sphingosine kinases by novel inhibitors of microbial origin, F-12509A and B-5354c. J. Antibiot. (Tokyo) 55, 99–103 (2002).

    Article  CAS  Google Scholar 

  70. Pchejetski, D. et al. Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models. Mol. Cancer Ther. 7, 1836–1845 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Vessey, D. A. et al. Dimethylsphingosine and FTY720 inhibit the SK1 form but activate the SK2 form of sphingosine kinase from rat heart. J. Biochem. Mol. Toxicol. 21, 273–279 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Permpongkosol, S. et al. Anticarcinogenic effect of FTY720 in human prostate carcinoma DU145 cells: modulation of mitogenic signaling, FAK, cell-cycle entry and apoptosis. Int. J. Cancer 98, 167–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Paugh, S. W. et al. A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112, 1382–1391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sukocheva, O., Wang, L., Verrier, E., Vadas, M. A. & Xia, P. Restoring endocrine response in breast cancer cells by inhibition of the sphingosine kinase-1 signaling pathway. Endocrinology 150, 4484–4492 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Huwiler, A. et al. Loss of sphingosine kinase-1 in carcinoma cells increases formation of reactive oxygen species and sensitivity to doxorubicin-induced DNA damage. Br. J. Pharmacol. 162, 532–543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sarkar, S. et al. Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett. 579, 5313–5317 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Brizuela, L. et al. The sphingosine kinase-1 survival pathway is a molecular target for the tumor-suppressive tea and wine polyphenols in prostate cancer. FASEB J. 24, 3882–3894 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Sauer, L. et al. Sphingosine kinase 1 inhibition sensitizes hormone-resistant prostate cancer to docetaxel. Int. J. Cancer 125, 2728–2736 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Tonelli, F. et al. FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cell Signal 22, 1536–1542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sharma, A. K. Sphingo-guanidines and their use as inhibitors of sphingosine kinase (WO2010078247). Expert Opin. Ther. Pat. 21, 807–812 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Chiba, K. FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol. Ther. 108, 308–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Budde, K. et al. FTY720 (fingolimod) in renal transplantation. Clin. Transplant. 20 (Suppl. 17), 17–24 (2006).

    Article  PubMed  Google Scholar 

  83. Cohen, J. A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Leroux, M. E. et al. Sphingolipids and the sphingosine kinase inhibitor, SKI II, induce BCL-2-independent apoptosis in human prostatic adenocarcinoma cells. Prostate 67, 1699–1717 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Zhou, C. et al. FTY720, a fungus metabolite, inhibits invasion ability of androgen-independent prostate cancer cells through inactivation of RhoA-GTPase. Cancer Lett. 233, 36–47 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Chua, C. W. et al. FTY720, a fungus metabolite, inhibits in vivo growth of androgen-independent prostate cancer. Int. J. Cancer 117, 1039–1048 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Nagahara, Y., Ikekita, M. & Shinomiya, T. Immunosuppressant FTY720 induces apoptosis by direct induction of permeability transition and release of cytochrome c from mitochondria. J. Immunol. 165, 3250–3259 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Azuma, H. et al. Selective cancer cell apoptosis induced by FTY720; evidence for a Bcl-dependent pathway and impairment in ERK activity. Anticancer Res. 23, 3183–3193 (2003).

    CAS  PubMed  Google Scholar 

  90. LaMontagne, K. et al. Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res. 66, 221–231 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Payne, S. G. et al. The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 109, 1077–1085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ushitora, Y. et al. Suppression of hepatocellular carcinoma recurrence after rat liver transplantation by FTY720, a sphingosine-1-phosphate analog. Transplantation 88, 980–986 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Nagaoka, Y., Otsuki, K., Fujita, T. & Uesato, S. Effects of phosphorylation of immunomodulatory agent FTY720 (fingolimod) on antiproliferative activity against breast and colon cancer cells. Biol. Pharm. Bull. 31, 1177–1181 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Wolf, A. M. et al. The sphingosine 1-phosphate receptor agonist FTY720 potently inhibits regulatory T cell proliferation in vitro and in vivo. J. Immunol. 183, 3751–3760 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Nishikawa, H. & Sakaguchi, S. Regulatory T cells in tumor immunity. Int. J. Cancer 127, 759–767 (2010).

    CAS  PubMed  Google Scholar 

  96. Domhan, S., Zeier, M. & Abdollahi, A. Immunosuppressive therapy and post-transplant malignancy. Nephrol. Dial. Transplant 24, 1097–1103 (2009).

    Article  PubMed  Google Scholar 

  97. Tedesco-Silva, H. et al. FTY720 versus mycophenolate mofetil in de novo renal transplantation: six-month results of a double-blind study. Transplantation 84, 885–892 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Graler, M. H. Targeting sphingosine 1-phosphate (S1P) levels and S1P receptor functions for therapeutic immune interventions. Cell. Physiol. Biochem. 26, 79–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Skerjanec, A. et al. FTY720, a novel immunomodulator in de novo kidney transplant patients: pharmacokinetics and exposure-response relationship. J. Clin. Pharmacol. 45, 1268–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Kovarik, J. M. et al. Ethnic sensitivity study of fingolimod in white and Asian subjects. Int. J. Clin. Pharmacol. Ther. 45, 98–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Kovarik, J. M., Schmouder, R., Barilla, D., Wang, Y. & Kraus, G. Single-dose FTY720 pharmacokinetics, food effect, and pharmacological responses in healthy subjects. Br. J. Clin. Pharmacol. 57, 586–591 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sensken, S. C., Bode, C. & Graler, M. H. Accumulation of fingolimod (FTY720) in lymphoid tissues contributes to prolonged efficacy. J. Pharmacol. Exp. Ther. 328, 963–969 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Budde, K. et al. First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J. Am. Soc. Nephrol. 13, 1073–1083 (2002).

    CAS  PubMed  Google Scholar 

  104. Koyrakh, L., Roman, M. I., Brinkmann, V. & Wickman, K. The heart rate decrease caused by acute FTY720 administration is mediated by the G protein-gated potassium channel I. Am. J. Transplant. 5, 529–536 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Kovarik, J. M. et al. Multiple-dose FTY720: tolerability, pharmacokinetics, and lymphocyte responses in healthy subjects. J. Clin. Pharmacol. 44, 532–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Kovarik, J. M. et al. The ability of atropine to prevent and reverse the negative chronotropic effect of fingolimod in healthy subjects. Br. J. Clin. Pharmacol. 66, 199–206 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schwab, S. R. & Cyster, J. G. Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol. 8, 1295–1301 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Loveridge, C. et al. The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J. Biol. Chem. 285, 38841–38852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Antoon, J. W. et al. Antiestrogenic effects of the novel sphingosine kinase-2 inhibitor ABC294640. Endocrinology 151, 5124–5135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mizugishi, K. et al. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol. 25, 11113–11121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zemann, B. et al. Normal neutrophil functions in sphingosine kinase type 1 and 2 knockout mice. Immunol. Lett. 109, 56–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. de Bono, J. S. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147–1154 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Pitson, S. M. et al. Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation. A dominant-negative sphingosine kinase. J. Biol. Chem. 275, 33945–33950 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Shu, X., Wu, W., Mosteller, R. D. & Broek, D. Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol. Cell Biol. 22, 7758–7768 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fujita, T. et al. Delta-catenin/NPRAP (neural plakophilin-related armadillo repeat protein) interacts with and activates sphingosine kinase 1. Biochem. J. 382, 717–723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xia, P. et al. Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. J. Biol. Chem. 277, 7996–8003 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Stahelin, R. V. et al. The mechanism of membrane targeting of human sphingosine kinase 1. J. Biol. Chem. 280, 43030–43038 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Duan, H. F. et al. Shp-2 tyrosine phosphatase is required for hepatocyte growth factor-induced activation of sphingosine kinase and migration in embryonic fibroblasts. Cell Signal. 18, 2049–2055 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Iyer, S. S. & Kusner, D. J. Coordinate regulation of sphingosine kinase and actin dynamics. Methods Mol. Biol. 531, 347–361 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Kusner, D. J. et al. The localization and activity of sphingosine kinase 1 are coordinately regulated with actin cytoskeletal dynamics in macrophages. J. Biol. Chem. 282, 23147–23162 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Hayashi, S. et al. Identification and characterization of RPK118, a novel sphingosine kinase-1-binding protein. J. Biol. Chem. 277, 33319–33324 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Fukuda, Y., Aoyama, Y., Wada, A. & Igarashi, Y. Identification of PECAM-1 association with sphingosine kinase 1 and its regulation by agonist-induced phosphorylation. Biochim. Biophys. Acta 1636, 12–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Maceyka, M., Nava, V. E., Milstien, S. & Spiegel, S. Aminoacylase 1 is a sphingosine kinase 1-interacting protein. FEBS Lett. 568, 30–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Barr, R. K., Lynn, H. E., Moretti, P. A., Khew-Goodall, Y. & Pitson, S. M. Deactivation of sphingosine kinase 1 by protein phosphatase 2A. J. Biol. Chem. 283, 34994–35002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lacana, E., Maceyka, M., Milstien, S. & Spiegel, S. Cloning and characterization of a protein kinase A anchoring protein (AKAP)-related protein that interacts with and regulates sphingosine kinase 1 activity. J. Biol. Chem. 277, 32947–32953 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Kovanich, D. et al. Sphingosine kinase interacting protein is an A-kinase anchoring protein specific for type I cAMP-dependent protein kinase. Chembiochem. 11, 963–971 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Ruckhäberle, E. et al. Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res. Treat. 112, 41–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Watson, C. et al. High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. Am. J. Pathol. 177, 2205–2215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, J. et al. Clinical significance of sphingosine kinase-1 expression in human astrocytomas progression and overall patient survival. Clin. Cancer Res. 14, 6996–7003 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Van Brocklyn, J. R. et al. Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J. Neuropathol. Exp. Neurol. 64, 695–705 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Li, W. et al. Sphingosine kinase 1 is associated with gastric cancer progression and poor survival of patients. Clin. Cancer Res. 15, 1393–1399 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Facchinetti, M. M. et al. The expression of sphingosine kinase-1 in head and neck carcinoma. Cells Tissues Organs 192, 314–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sinha, U. K. et al. Increased radiation sensitivity of head and neck squamous cell carcinoma with sphingosine kinase 1 inhibition. Head Neck 33, 178–188 (2010).

    Article  Google Scholar 

  134. Liu, G. et al. Overexpression of sphingosine kinase 1 is associated with salivary gland carcinoma progression and might be a novel predictive marker for adjuvant therapy. BMC Cancer 10, 495 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ogretmen, B. & Hannun, Y. A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer 4, 604–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Fyrst, H. & Saba, J. D. An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat. Chem. Biol. 6, 489–497 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell. Biol. 9, 139–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Maceyka, M., Payne, S. G., Milstien, S. & Spiegel, S. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim. Biophys. Acta 1585, 193–201 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Pettus, B. J. et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. Faseb J. 17, 1411–1421 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Cuvillier, O. et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800–803 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Jin, Z. Q., Goetzl, E. J. & Karliner, J. S. Sphingosine kinase activation mediates ischemic preconditioning in murine heart. Circulation 110, 1980–1989 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Pchejetski, D. et al. Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ. Res. 100, 41–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Gomez-Brouchet, A. et al. Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-beta peptide. Mol. Pharmacol. 72, 341–349 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Osawa, Y. et al. Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha. J. Biol. Chem. 280, 27879–27887 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Pyne, S., Lee, S. C., Long, J. & Pyne, N. J. Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell Signal. 21, 14–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Xia, P. et al. Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc. Natl Acad. Sci. USA 95, 14196–14201 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Radeff-Huang, J., Seasholtz, T. M., Chang, J. W., Smith, J. M. & Walsh, C. T. TNF-alpha -stimulated cell proliferation is mediated through sphingosine kinase-dependent AKT activation and cyclin D expression. J. Biol. Chem. 282, 863–870 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Melendez, A. J. & Ibrahim, F. B. Antisense knockdown of sphingosine kinase 1 in human macrophages inhibits C5a receptor-dependent signal transduction, Ca2+ signals, enzyme release, cytokine production, and chemotaxis. J. Immunol. 173, 1596–1603 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Pchejetski, D. et al. The involvement of sphingosine kinase 1 in LPS-induced Toll-like receptor 4-mediated accumulation of HIF-1alpha protein, activation of ASK1 and production of the pro-inflammatory cytokine IL-6. Immunol. Cell Biol. 89, 268–274 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Puneet, P. et al. SphK1 regulates proinflammatory responses associated with endotoxin and polymicrobial sepsis. Science 328, 1290–1294 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Yamanaka, M. et al. Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J. Biol. Chem. 279, 53994–54001 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Cencetti, F., Bernacchioni, C., Nincheri, P., Donati, C. & Bruni, P. Transforming growth factor-beta1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis. Mol. Biol. Cell 21, 1111–1124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gellings Lowe, N., Swaney, J. S., Moreno, K. M. & Sabbadini, R. A. Sphingosine-1-phosphate and sphingosine kinase are critical for transforming growth factor-beta-stimulated collagen production by cardiac fibroblasts. Cardiovasc. Res. 82, 303–312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Serriere-Lanneau, V. et al. The sphingosine 1-phosphate receptor S1P2 triggers hepatic wound healing. Faseb J. 21, 2005–2013 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Hla, T. & Brinkmann, V. Sphingosine 1-phosphate (S1P): physiology and the effects of S1P receptor modulation. Neurology 76, S3–S8 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Okada, T., Kajimoto, T., Jahangeer, S. & Nakamura, S. Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. Cell Signal. 21, 7–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Kajimoto, T. et al. Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol. Cell. Biol. 27, 3429–3440 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Brailoiu, E., Cooper, R. L. & Dun, N. J. Sphingosine 1-phosphate enhances spontaneous transmitter release at the frog neuromuscular junction. Br. J. Pharmacol. 136, 1093–1097 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pitson, S. M. et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22, 5491–5500 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Igarashi, N. et al. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J. Biol. Chem. 278, 46832–46839 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Sankala, H. M. et al. Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res. 67, 10466–10474 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Hait, N. C. et al. Role of sphingosine kinase 2 in cell migration toward epidermal growth factor. J. Biol. Chem. 280, 29462–29469 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Weigert, A. et al. Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an anti-inflammatory phenotype. Int. J. Cancer 125, 2114–2121 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Schnitzer, S. E., Weigert, A., Zhou, J. & Brune, B. Hypoxia enhances sphingosine kinase 2 activity and provokes sphingosine-1-phosphate-mediated chemoresistance in A549 lung cancer cells. Mol. Cancer Res. 7, 393–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Beljanski, V., Lewis, C. S. & Smith, C. D. Antitumor activity of Sphingosine Kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts. Cancer Biol. Ther. 11, 524–534 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Antoon, J. W. et al. Targeting NF-kB mediated breast cancer chemoresistance through selective inhibition of sphingosine kinase-2. Cancer Biol. Ther. 11, 678–689 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D. Pchejetski, T. Böhler, J. Stebbing and J. Waxman contributed to researching, discussion of content and writing the article. D. Pchejetski, T. Böhler and J. Waxman reviewed the article before submission.

Corresponding author

Correspondence to Dmitri Pchejetski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pchejetski, D., Böhler, T., Stebbing, J. et al. Therapeutic potential of targeting sphingosine kinase 1 in prostate cancer. Nat Rev Urol 8, 569–578 (2011). https://doi.org/10.1038/nrurol.2011.117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing