Review Article | Published:

Genetics of vesicoureteral reflux

Nature Reviews Urology volume 8, pages 539552 (2011) | Download Citation

Abstract

Primary vesicoureteral reflux (VUR) is the most common urological anomaly in children, affecting 1–2% of the pediatric population and 30–40% of children presenting with urinary tract infections (UTIs). Reflux-associated nephropathy is a major cause of childhood hypertension and chronic renal failure. The hereditary and familial nature of VUR is well recognized and several studies have reported that siblings of children with VUR have a higher incidence of reflux than the general pediatric population. Familial clustering of VUR implies that genetic factors have an important role in its pathogenesis, but no single major locus or gene for VUR has yet been identified and most researchers now acknowledge that VUR is genetically heterogeneous. Improvements in genome-scan techniques and continuously increasing knowledge of the genetic basis of VUR should help us to further understand its pathogenesis.

Key points

  • Increasing amounts of evidence suggest that vesicoureteral reflux (VUR) is a genetically heterogenous disorder

  • Although VUR transgenic or knockout mouse models exist, the cognate genes in humans do not seem to be major contributors to primary VUR

  • Genome-wide linkage and association studies show little overlap of the major linkage peaks, although there is some intriguing evidence of overlaps in the minor peaks

  • Improvements in genome-scan techniques and increasing knowledge of the genetic basis of diseases should help us to search for VUR susceptibility genes

  • Improved knowledge of the genetic basis of VUR should help us to understand the reasons why some patients develop reflux nephropathy while others do not

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Diagnosis and management of vesicoureteral reflux in children. Nat. Rev. Urol. 6, 481–489 (2009).

  2. 2.

    , , & Relation of age, sex, and infection to reflux: data indicating high spontaneous cure rate in pediatric patients. J. Urol. 95, 27–32 (1966).

  3. 3.

    , , , & The outcome of stopping prophylactic antibiotics in older children with vesicoureteral reflux. J. Urol. 163, 269–273 (2000).

  4. 4.

    et al. Clinical significance of primary vesicoureteral reflux and urinary antibiotic prophylaxis after acute pyelonephritis: a multicenter, randomized, controlled study. Pediatrics 117, 626–632 (2006).

  5. 5.

    , , & Interventions for primary vesicoureteric reflux. Cochrane Database of Systematic Reviews, Issue 6. Art. No.: CD001532. doi:10.1002/14651858.CD001532.pub4 (2011).

  6. 6.

    , & Renal parenchymal damage in intermediate and high grade infantile vesicoureteral reflux. J. Urol. 180, 1635–1638 (2008).

  7. 7.

    et al. Clinical characteristics of primary vesicoureteral reflux in infants: multicenter retrospective study in Japan. J. Urol. 169, 309–312 (2003).

  8. 8.

    et al. The natural history of neonatal vesicoureteral reflux associated with antenatal hydronephrosis. J. Urol. 164, 1057–1060 (2000).

  9. 9.

    et al. Congenital renal damage associated with primary vesicoureteral reflux detected prenatally in male infants. J. Pediatr. 124, 726–730 (1994).

  10. 10.

    et al. Severe vesicoureteral reflux and chronic renal failure: a condition peculiar to male gender? Data from the ItalKid Project. J. Pediatr. 144, 677–681 (2004).

  11. 11.

    & Vesicoureteral reflux associated renal damage: congenital reflux nephropathy and acquired renal scarring. J. Urol. 184, 265–273 (2010).

  12. 12.

    , , , & Relationship among vesicoureteral reflux, urinary tract infection and renal damage in children. J. Urol. 178, 647–651 (2007).

  13. 13.

    , , , & Kidney transplantation in children: a single center experience. J. Urol. 161, 1920–1925 (1999).

  14. 14.

    The long-term results of prospective sibling reflux screening. J. Urol. 148, 1739–1742 (1992).

  15. 15.

    , , & Outcome of sibling vesicoureteral reflux. J. Urol. 167, 283–284 (2002).

  16. 16.

    et al. Sibling reflux: a dual center retrospective study. J. Urol. 156, 677–679 (1996).

  17. 17.

    , & Renal scarring in familial vesicoureteral reflux: is prevention possible? J. Urol. 176, 1842–1846 (2006).

  18. 18.

    , , & The transmission of vesicoureteral reflux from parent to child. J. Urol. 148, 1869–1871 (1992).

  19. 19.

    et al. The relationship between early renal status, and the resolution of vesico-ureteric reflux and bladder function at 16 months. BJU Int. 87, 457–462 (2001).

  20. 20.

    , , , & Vesicoureteric reflux: segregation analysis. Am. J. Med. Genet. 20, 577–584 (1985).

  21. 21.

    , , & Unravelling the genetics of vesicoureteric reflux: a common familial disorder. Hum. Mol. Genet. 5 (Suppl. 1), 1425–1429 (1996).

  22. 22.

    et al. Primary, nonsyndromic vesicoureteric reflux and its nephropathy is genetically heterogeneous, with a locus on chromosome 1. Am. J. Hum. Genet. 66, 1420–1425 (2000).

  23. 23.

    et al. Familial vesicoureteral reflux: testing replication of linkage in seven new multigenerational kindreds. J. Am. Soc. Nephrol. 16, 1781–1787 (2005).

  24. 24.

    et al. Linkage study of 14 candidate genes and loci in four large Dutch families with vesico-ureteral reflux. Pediatr. Nephrol. 22, 1129–1133 (2007).

  25. 25.

    , , , & Multiple urinary tract malformations with likely recessive inheritance in a large Somalian kindred. Nephrol. Dial. Transplant 19, 3172–3175 (2004).

  26. 26.

    et al. A recessive gene for primary vesicoureteral reflux maps to chromosome 12p11-q13. J. Am. Soc. Nephrol. 20, 1633–1640 (2009).

  27. 27.

    , & Sex-linked familial reflux. J. Urol. 114, 36–39 (1975).

  28. 28.

    , , & Five cases of severe vesico-ureteric reflux in a family with an X-linked compatible trait. Pediatr. Nephrol. 25, 349–352 (2010).

  29. 29.

    et al. A family study of vesicoureteric reflux. J. Med. Genet. 15, 85–96 (1978).

  30. 30.

    Vesicoureteral reflux: pathophysiology and experimental studies. In Pediatric Urology (eds Gearhart, J. G., Rink, R. C. & Mouriquand, P. D.) (Saunders Elsevier, Amsterdam, 2001).

  31. 31.

    , , & Long-term clinical outcome of infants with mild and moderate fetal pyelectasis: validation of neonatal ultrasound as a screening tool to detect significant nephrouropathies. J. Pediatr. 144, 759–765 (2004).

  32. 32.

    & Familial vesicoureteral reflux--is screening beneficial? J. Urol. 182, 1673–1677 (2009).

  33. 33.

    et al. The characteristics of primary vesico-ureteric reflux in male and female infants with pre-natal hydronephrosis. Br. J. Urol. 80, 319–327 (1997).

  34. 34.

    , & Primary vesico-ureteral reflux: comparison of factors between infants and children. Korean J. Urol. 52, 206–209 (2011).

  35. 35.

    , , & Prevalence of duplex collecting systems in familial vesicoureteral reflux. Pediatr. Surg. Int. 26, 115–117 (2010).

  36. 36.

    & A new perspective on the natural history of vesicoureteric reflux. Pediatrics 90, 30–32 (1992).

  37. 37.

    et al. Familial vesicoureteral reflux: influence of sex on prevalence and expression. J. Urol. 176, 1776–1780 (2006).

  38. 38.

    et al. Sibling vesicoureteral reflux in multiple gestation births. Pediatrics 105, 800–804 (2000).

  39. 39.

    , , & Sibling vesicoureteral reflux in twins. Pediatr. Surg. Int. 27, 513–515 (2011).

  40. 40.

    , , , & Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int. 61, 889–898 (2002).

  41. 41.

    & Vesicoureteric reflux and renal malformations: a developmental problem. Clin. Genet. 69, 105–117 (2006).

  42. 42.

    , & Embryology and genetics of primary vesico-ureteric reflux and associated renal dysplasia. Pediatr. Nephrol. 22, 788–797 (2007).

  43. 43.

    & Cell and molecular biology of kidney development. Semin. Nephrol. 29, 321–337 (2009).

  44. 44.

    Renal abnormalities and their developmental origin. Nat. Rev. Genet. 8, 791–802 (2007).

  45. 45.

    et al. Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat. Genet. 37, 1082–1089 (2005).

  46. 46.

    et al. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat. Genet. 32, 109–115 (2002).

  47. 47.

    et al. A genome-wide scan for genes involved in primary vesicoureteric reflux. J. Med. Genet. 44, 710–717 (2007).

  48. 48.

    & Position and configuration of the ureteral orifice and its relationship to renal scarring in adults. J. Urol. 109, 579–584 (1973).

  49. 49.

    & Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J. Urol. 114, 274–280 (1975).

  50. 50.

    & Gene discovery and vesicoureteric reflux. Pediatr. Nephrol. 23, 1021–1027 (2008).

  51. 51.

    , , & Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/− mouse. Am. J. Physiol. Renal Physiol. 293, F1736–F1745 (2007).

  52. 52.

    , , & Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133, 53–61 (2006).

  53. 53.

    Transcriptional control of kidney development. Differentiation 72, 295–306 (2004).

  54. 54.

    , , , & Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130, 175–185 (2003).

  55. 55.

    et al. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signaling during kidney branching morphogenesis. Development 134, 2397–2405 (2007).

  56. 56.

    et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev. Cell 6, 709–717 (2004).

  57. 57.

    , & Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127, 1387–1395 (2000).

  58. 58.

    et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev. Cell 8, 229–239 (2005).

  59. 59.

    , , , & Angiotensin II AT2 receptor regulates ureteric bud morphogenesis. Am. J. Physiol. Renal Physiol. 298, F807–F817 (2009).

  60. 60.

    et al. Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J. Cell Biol. 151, 961–972 (2000).

  61. 61.

    , & Uroplakins as markers of urothelial differentiation. Adv. Exp. Med. Biol. 462, 7–18 (1999).

  62. 62.

    et al. Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins. J. Biol. Chem. 269, 13716–13724 (1994).

  63. 63.

    et al. Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J. Cell Biol. 167, 1195–1204 (2004).

  64. 64.

    et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol. Cell 3, 1–10 (1999).

  65. 65.

    et al. Angiotensin type II receptor expression and ureteral budding. J. Urol. 166, 1848–1852 (2001).

  66. 66.

    , , & Overexpression of RET leads to vesicoureteric reflux in mice. Am. J. Physiol. Renal Physiol. 287, F1123–F1130 (2004).

  67. 67.

    et al. Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) ± mutant mice. Hum. Mol. Genet. 9, 1–11 (2000).

  68. 68.

    , & Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev. Biol. 288, 571–581 (2005).

  69. 69.

    Role of fibroblast growth factor receptor signaling in kidney development. Pediatr. Nephrol. doi:10.1007/s00467-010-1747-z.

  70. 70.

    & Renal coloboma syndrome in Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 2007).

  71. 71.

    et al. Renal coloboma syndrome. Ophthalmology 108, 1912–1916 (2001).

  72. 72.

    , , & Clinical utility gene card for: renal coloboma (Papillorenal) syndrome. Eur. J. Hum. Genet. doi:10.1038/ejhg.2011.16.

  73. 73.

    Branchiootorenal syndrome. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 1999).

  74. 74.

    et al. Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum. Mutat. 23, 582–589 (2004).

  75. 75.

    et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am. J. Hum. Genet. 80, 800–804 (2007).

  76. 76.

    , , & Familial nephrosis, nerve deafness, and hypoparathyroidism. J. Pediatr. 91, 61–64 (1977).

  77. 77.

    et al. Brief report: autosomal dominant familial hypoparathyroidism, sensorineural deafness, and renal dysplasia. N. Engl. J. Med. 327, 1069–1074 (1992).

  78. 78.

    et al. An HDR (hypoparathyroidism, deafness, renal dysplasia) syndrome locus maps distal to the DiGeorge syndrome region on 10p13/14. J. Med. Genet. 37, 33–37 (2000).

  79. 79.

    et al. GATA3 haplo-insufficiency causes human HDR syndrome. Nature 406, 419–422 (2000).

  80. 80.

    et al. Functional analysis of a novel GATA3 mutation in a family with the hypoparathyroidism, deafness, and renal dysplasia syndrome. J. Clin. Endocrinol. Metab. 90, 2445–2450 (2005).

  81. 81.

    et al. GATA3 abnormalities in six patients with HDR syndrome. Endocr. J. 58, 117–121 (2011).

  82. 82.

    , , , & Kallmann Syndrome. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 2007).

  83. 83.

    , , , & Proteinuria, hypertension and chronic renal failure in X-linked Kallmann's syndrome, a defined genetic cause of solitary functioning kidney. Nephrol. Dial. Transplant. 13, 1998–2003 (1998).

  84. 84.

    Hand-foot-genital syndrome. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (Seattle, WA, 2006).

  85. 85.

    & Mutation of HOXA13 in hand-foot-genital syndrome. Nat. Genet. 15, 179–180 (1997).

  86. 86.

    Townes-Brocks syndrome. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 2007).

  87. 87.

    et al. Ochoa syndrome: a spectrum of urofacial syndrome. Eur. J. Pediatr. 169, 431–435 (2010).

  88. 88.

    et al. Mutations in HPSE2 cause urofacial syndrome. Am. J. Hum. Genet. 86, 963–969 (2010).

  89. 89.

    et al. Loss-of-function mutations in HPSE2 cause the autosomal recessive urofacial syndrome. Am. J. Hum. Genet. 86, 957–962 (2010).

  90. 90.

    , & Cornelia de Lange syndrome. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 2005).

  91. 91.

    , , & de Lange syndrome: a clinical review of 310 individuals. Am. J. Med. Genet. 47, 940–946 (1993).

  92. 92.

    , & FGFR-related craniosystosis syndromes. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 1998).

  93. 93.

    et al. High incidence of vesicoureteral reflux in mice with Fgfr2 deletion in kidney mesenchyma. J. Urol. 183, 2077–2084 (2010).

  94. 94.

    , , , & High-grade vesicoureteral reflux in Pfeiffer syndrome. Urol. J. 5, 200–202 (2008).

  95. 95.

    & MYH9-related disorders. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 2008).

  96. 96.

    , , , & Upper urinary tract manifestations of the VACTERL association. J. Urol. 163, 1949–1951 (2000).

  97. 97.

    , & Chromosomal anomalies in the etiology of oesophageal atresia and tracheo-oesophageal fistula. Eur. J. Med. Genet. 50, 163–175 (2007).

  98. 98.

    Esophageal atresia/tracheoesophageal fistula overview. In Gene Reviews (eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) (University of Washington, Seattle, 2009).

  99. 99.

    et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am. J. Hum. Genet. 84, 780–791 (2009).

  100. 100.

    et al. Mapping of a new locus for congenital anomalies of the kidney and urinary tract on chromosome 8q24. Nephrol. Dial. Transplant. 25, 1496–1501 (2010).

  101. 101.

    et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434, 857–863 (2005).

  102. 102.

    et al. Hirschsprung disease and congenital anomalies of the kidney and urinary tract (CAKUT): a novel syndromic association. Medicine (Baltimore) 88, 83–90 (2009).

  103. 103.

    et al. Evidence for a recurrent microdeletion at chromosome 16p11.2 associated with congenital anomalies of the kidney and urinary tract (CAKUT) and Hirschsprung disease. Am. J. Med. Genet. A 152A, 2618–2622 (2010).

  104. 104.

    , , & RET Gly691Ser mutation is associated with primary vesicoureteral reflux in the French-Canadian population from Quebec. Hum. Mutat. 29, 695–702 (2008).

  105. 105.

    et al. Whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux. J. Am. Soc. Nephrol. 21, 113–123 (2010).

  106. 106.

    , , , & The increased incidence of the RET p.Gly691Ser variant in French-Canadian vesicoureteric reflux patients is not replicated by a larger study in Ireland. Hum. Mutat. 30, E612–617 (2009).

  107. 107.

    et al. ROBO2 gene variants are associated with familial vesicoureteral reflux. J. Am. Soc. Nephrol. 19, 825–831 (2008).

  108. 108.

    et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am. J. Hum. Genet. 80, 616–632 (2007).

  109. 109.

    , , , & Mutations in the ROBO2 and SLIT2 genes are rare causes of familial vesico-ureteral reflux. Pediatr. Nephrol. 24, 1501–1508 (2009).

  110. 110.

    , , , & Absence of PAX2 gene mutations in patients with primary familial vesicoureteric reflux. J. Med. Genet. 35, 338–339 (1998).

  111. 111.

    et al. Mutations in SOX17 are associated with congenital anomalies of the kidney and the urinary tract. Hum. Mutat. 31, 1352–1359 (2010).

  112. 112.

    et al. Significance of the tissue kallikrein promoter and transforming growth factor-beta1 polymorphisms with renal progression in children with vesicoureteral reflux. Kidney Int. 65, 1467–1472 (2004).

  113. 113.

    , & TGF-beta1 gene polymorphisms and primary vesicoureteral reflux in childhood. Pediatr. Nephrol. 23, 2195–2200 (2008).

  114. 114.

    , & Association of transforming growth factor-beta1 gene polymorphism with familial vesicoureteral reflux. J. Urol. 178, 1650–1653 (2007).

  115. 115.

    et al. ACE I/D gene polymorphism predicts renal damage in congenital uropathies. Pediatr. Nephrol. 13, 514–518 (1999).

  116. 116.

    et al. Angiotensin converting enzyme gene polymorphism in primary vesicoureteral reflux. Pediatr. Nephrol. 16, 648–652 (2001).

  117. 117.

    et al. Angiotensin-converting enzyme and angiotensin type 2 receptor gene genotype distributions in Italian children with congenital uropathies. Pediatr. Res. 56, 988–993 (2004).

  118. 118.

    et al. Association of angiotensin I converting enzyme gene polymorphism with reflux nephropathy in children. Nephron 86, 52–55 (2000).

  119. 119.

    , & Angiotensin-converting enzyme genotype distribution in familial vesicoureteral reflux. Pediatr. Surg. Int. 17, 308–311 (2001).

  120. 120.

    , , , & Angiotensin II type 2 receptor gene is not responsible for familial vesicoureteral reflux. J. Urol. 168, 1138–1141 (2002).

  121. 121.

    et al. De novo uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J. Am. Soc. Nephrol. 16, 2141–2149 (2005).

  122. 122.

    et al. Mutations in uroplakin IIIA are a rare cause of renal hypodysplasia in humans. Am. J. Kidney Dis. 47, 1004–1012 (2006).

  123. 123.

    , , & No pathogenic mutations in the uroplakin III gene of 25 patients with primary vesicoureteral reflux. J. Urol. 171, 931–932 (2004).

  124. 124.

    et al. Lack of major involvement of human uroplakin genes in vesicoureteral reflux: implications for disease heterogeneity. Kidney Int. 66, 10–19 (2004).

  125. 125.

    , , & Linkage analysis of candidate genes in families with vesicoureteral reflux. J. Urol. 182, 1669–1672 (2009).

  126. 126.

    et al. Uroplakin III is not a major candidate gene for primary vesicoureteral reflux. Eur. J. Hum. Genet. 13, 500–502 (2005).

  127. 127.

    et al. A genome scan in affected sib-pairs with familial vesicoureteral reflux identifies a locus on chromosome 5. Eur. J. Hum. Genet. 18, 245–250 (2010).

  128. 128.

    et al. Chromosome 2q terminal deletion: report of 6 new patients and review of phenotype-breakpoint correlations in 66 individuals. Am. J. Med. Genet. A 130A, 331–339 (2004).

  129. 129.

    et al. A genome search for primary vesicoureteral reflux shows further evidence for genetic heterogeneity. Pediatr. Nephrol. 23, 587–595 (2008).

  130. 130.

    et al. A genome scan for all-cause end-stage renal disease in African Americans. Nephrol. Dial. Transplant. 20, 712–718 (2005).

  131. 131.

    et al. Genetic evidence for a novel gene(s) involved in urogenital development on 10q26. Kidney Int. 58, 2281–2290 (2000).

  132. 132.

    et al. A locus for renal malformations including vesico-ureteric reflux on chromosome 13q33–34. J. Am. Soc. Nephrol. 17, 1158–1167 (2006).

  133. 133.

    et al. Association of gene polymorphisms with chronic kidney disease in Japanese individuals. Int. J. Mol. Med. 24, 539–547 (2009).

  134. 134.

    , , & Congenital anomalies of the kidney and urinary tract (CAKUT): a current review of cell signaling processes in ureteral development. J. Pediatr. Urol. 2, 2–9 (2006).

  135. 135.

    , , , & A comprehensive evaluation of SNP genotype imputation. Hum. Genet. 125, 163–171 (2009).

  136. 136.

    et al. Interrogating type 2 diabetes genome-wide association data using a biological pathway-based approach. Diabetes 58, 1463–1467 (2009).

  137. 137.

    , , , & GSEA-P: a desktop application for gene set enrichment analysis. Bioinformatics 23, 3251–3253 (2007).

  138. 138.

    et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

  139. 139.

    , & Pathway-based approaches for analysis of genomewide association studies. Am. J. Hum. Genet. 81, 1278–1283 (2007).

  140. 140.

    & Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010).

  141. 141.

    , , , & Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J. Clin. Invest. 105, 863–873 (2000).

  142. 142.

    , , & Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney Int. 63, 835–844 (2003).

  143. 143.

    et al. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat. Genet. 23, 113–117 (1999).

  144. 144.

    , , & Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development. Development 122, 1919–1929 (1996).

  145. 145.

    et al. Role of angiotensin in the congenital anomalies of the kidney and urinary tract in the mouse and the human. Kidney Int. Suppl. 67, S75–S77 (1998).

  146. 146.

    , & Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129, 5301–5312 (2002).

  147. 147.

    et al. Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J. Clin. Invest. 113, 1051–1058 (2004).

Download references

Author information

Affiliations

  1. National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland

    • Prem Puri
    •  & Jan-Hendrik Gosemann
  2.  National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland

    • John Darlow
    •  & David E. Barton

Authors

  1. Search for Prem Puri in:

  2. Search for Jan-Hendrik Gosemann in:

  3. Search for John Darlow in:

  4. Search for David E. Barton in:

Contributions

P. Puri and J.-H. Gosemann researched data for the article and reviewed and edited the article before submission. P. Puri, J.-H. Gosemann and D. E. Barton wrote the article. All authors contributed significantly to discussions of content.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Prem Puri.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nrurol.2011.113