Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The genetic basis of kidney cancer: a metabolic disease

Abstract

Kidney cancer is not a single disease but comprises a number of different types of cancer that occur in the kidney, each caused by a different gene with a different histology and clinical course that responds differently to therapy. Each of the seven known kidney cancer genes, VHL, MET, FLCN, TSC1, TSC2, FH and SDH, is involved in pathways that respond to metabolic stress or nutrient stimulation. The VHL protein is a component of the oxygen and iron sensing pathway that regulates hypoxia-inducible factor (HIF) levels in the cell. HGF–MET signaling affects the LKB1–AMPK energy sensing cascade. The FLCN–FNIP1–FNIP2 complex binds AMPK and, therefore, might interact with the cellular energy and nutrient sensing pathways AMPK–TSC1/2–mTOR and PI3K–Akt–mTOR. TSC1–TSC2 is downstream of AMPK and negatively regulates mTOR in response to cellular energy deficit. FH and SDH have a central role in the mitochondrial tricarboxylic acid cycle, which is coupled to energy production through oxidative phosphorylation. Mutations in each of these kidney cancer genes result in dysregulation of metabolic pathways involved in oxygen, iron, energy or nutrient sensing, suggesting that kidney cancer is a disease of cell metabolism. Targeting the fundamental metabolic abnormalities in kidney cancer provides a unique opportunity for the development of more-effective forms of therapy for this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The genetic basis of kidney cancer.
Figure 2: Abnormal VHL activity leads to HIF accumulation.
Figure 3: Birt–Hogg–Dubé syndrome.
Figure 4: The putative FLCN pathway.
Figure 5: Hereditary leiomyomatosis renal cell cancer.
Figure 6: FH-deficient and SDH-deficient kidney cancer: the Warburg effect.

Similar content being viewed by others

References

  1. Linehan, W. M., Walther, M. M. & Zbar, B. The genetic basis of cancer of the kidney. J. Urol. 170, 2163–2172 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Thompson, C. B. Attacking cancer at its root. Cell 138, 1051–1054 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Jones, R. G. & Thompson, C. B. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 23, 537–548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seizinger, B. R. et al. Von Hippel–Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332, 268–269 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Lerman, M. I. et al. Isolation and regional localization of a large collection (2,000) of single copy DNA fragments on human chromosome 3 for mapping and cloning tumor suppressor genes. Hum. Genet. 86, 567–577 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Glenn, G. M. et al. Screening for von hippel-lindau disease by DNA-polymorphism analysis. JAMA 267, 1226–1231 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Latif, F. et al. Molecular and genetic characterization and physical mapping of 11 new markers detecting multiallele restriction fragment length polymorphisms on the short arm of human chromosome 3. Hum. Genet. 90, 17–22 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Maher, E. R. et al. Presymptomatic diagnosis of von Hippel–Lindau disease with flanking DNA markers. J. Med. Genet. 29, 902–905 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crossey, P. A. et al. Genetic linkage between von Hippel–Lindau disease and three microsatellite polymorphisms refines the localisation of the VHL locus. Hum. Mol. Genet. 2, 279–282 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Latif, F. et al. Identification of the von Hippel–Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Stolle, C. et al. Improved detection of germline mutations in the von Hippel–Lindau disease tumor suppressor gene. Hum. Mutat. 12, 417–423 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7, 85–90 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Nickerson, M. L. et al. Improved identification of von Hippel–Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 14, 4726–4734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shuin, T. et al. Frequent somatic mutations and loss of heterozygosity of the von Hippel-lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res. 54, 2852–2855 (1994).

    CAS  PubMed  Google Scholar 

  17. Duan, D. R. et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269, 1402–1406 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Pause, A. et al. The von Hippel–Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl Acad. Sci. USA 94, 2156–2161 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kibel, A., Iliopoulos, O., DeCaprio, J. A. & Kaelin, W. G. Jr. Binding of the von Hippel–Lindau tumor suppressor protein to elongin B and C. Science 269, 1444–1446 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Iliopoulos, O., Jiang, C., Levy, A. P., Kaelin, W. G. & Goldberg, M. A. Negative regulation of hypoxia-inducible genes by the von Hippel–Lindau protein. Proc. Natl Acad. Sci. USA 93, 10595–10599 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Kaelin, W. G. Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer 2, 673–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel–Lindau protein. Cancer Cell 1, 237–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Kondo, K., Kim, W. Y., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, E83 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maranchie, J. K. et al. The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1, 247–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Gordan, J. D. et al. HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14, 435–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thomas, G. V. et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat. Med. 12, 122–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Sun, M., Lughezzani, G., Perrotte, P. & Karakiewicz, P. I. Treatment of metastatic renal cell carcinoma. Nat. Rev. Urol. (in press).

  29. Wilhelm, S. M. et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Mendel, D. B. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9, 327–337 (2003).

    CAS  PubMed  Google Scholar 

  31. Rixe, O. et al. Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a phase II study. Lancet Oncol. 8, 975–984 (2007).

    Article  PubMed  Google Scholar 

  32. Harris, P. A. et al. Discovery of 5-[[4-[(2, 3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-m ethyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J. Med. Chem. 51, 4632–4640 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Rapisarda, A. et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 62, 4316–4324 (2002).

    CAS  PubMed  Google Scholar 

  34. Rapisarda, A. et al. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res. 64, 1475–1482 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. National Cancer Institute. A pilot trial of oral topotecan for the treatment of refractory advanced solid neoplasms expressing HIF-1 alpha. NCI-05-C-0186. CCR Clinical Trials at NIH [online], (2009).

  36. Woldemichael, G. M. et al. Development of a cell-based reporter assay for screening of inhibitors of hypoxia-inducible factor 2-induced gene expression. J. Biomol. Screen. 11, 678–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Thomas, G. V. et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat. Med. 12, 122–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Toschi, A., Lee, E., Gadir, N., Ohh, M. & Foster, D. A. Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J. Biol. Chem. 283, 34495–34499 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chresta, C. M. et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70, 288–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Sanchez, M., Galy, B., Muckenthaler, M. U. & Hentze, M. W. Iron-regulatory proteins limit hypoxia-inducible factor-2alpha expression in iron deficiency. Nat. Struct. Mol. Biol. 14, 420–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Rouault, T. A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2, 406–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Rouault, T. A. & Tong, W. H. Iron-sulfur cluster biogenesis and human disease. Trends Genet. 24, 398–407 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, G., Fillebeen, C., Wang, J. & Pantopoulos, K. Overexpression of iron regulatory protein 1 suppresses growth of tumor xenografts. Carcinogenesis 28, 785–791 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Zimmer, M. et al. Small-molecule inhibitors of HIF-2a translation link its 5'UTR iron-responsive element to oxygen sensing. Mol. Cell 32, 838–848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Turcotte, S. et al. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 14, 90–102 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peruzzi, B. & Bottaro, D. P. Targeting the c-Met signaling pathway in cancer. Clin. Cancer Res. 12, 3657–3660 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt, L. S. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt, L. S. et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18, 2343–2350 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Lubensky, I. A. et al. Hereditary and sporadic papillary renal carcinomas with c-met mutations share a distinct morphological phenotype. Am. J. Pathol. 155, 517–526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Srinivasan, R. et al. A phase II study of two dosing regimens of GSK 1363089 (GSK089), a dual MET/VEGFR2 inhibitor, in patients (pts) with papillary renal carcinoma (PRC) [abstract 5103]. J. Clin. Oncol. 27 (Suppl.), 15s (2009).

    Google Scholar 

  51. Crino, P. B., Nathanson, K. L. & Henske, E. P. The tuberous sclerosis complex. N. Engl. J. Med. 355, 1345–1356 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Bjornsson, J., Short, M. P., Kwiatkowski, D. J. & Henske, E. P. Tuberous sclerosis-associated renal cell carcinoma. Clinical, pathological, and genetic features. Am. J. Pathol. 149, 1–8 (1996).

    Google Scholar 

  53. Schmidt, L. S. et al. Birt–Hogg–Dube syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2. Am. J. Hum. Genet. 69, 876–882 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nickerson, M. L. et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt–Hogg–Dube syndrome. Cancer Cell 2, 157–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Birt, A. R., Hogg, G. R. & Dube, W. J. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch. Dermatol. 113, 1674–1677 (1977).

    Article  CAS  PubMed  Google Scholar 

  56. Pavlovich, C. P. et al. Renal tumors in the Birt–Hogg–Dubé syndrome. Am. J. Surg. Pathol. 26, 1542–1552 (2002).

    Article  PubMed  Google Scholar 

  57. Pavlovich, C. P. et al. Evaluation and management of renal tumors in the Birt–Hogg–Dube syndrome. J. Urol. 173, 1482–1486 (2005).

    Article  PubMed  Google Scholar 

  58. Toro, J. R. et al. Lung cysts, spontaneous pneumothrorax and genetic associations in 89 families with Birt–Hogg–Dubé syndrome. Am. J. Respir. Crit. Care Med. 175, 1044–1053 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schmidt, L. S. et al. Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt–Hogg–Dubé syndrome. Am. J. Hum. Genet. 76, 1023–1033 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Toro, J. R. et al. BHD mutations, clinical and molecular genetic investigations of Birt–Hogg–Dube syndrome: a new series of 50 families and a review of published reports. J. Med. Genet. 45, 321–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Vocke, C. D. et al. High frequency of somatic frameshift BHD gene mutations in Birt–Hogg–Dube-associated renal tumors. J. Natl Cancer Inst. 97, 931–935 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Baba, M. et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc. Natl Acad. Sci. USA 103, 15552–15557 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hasumi, H. et al. Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene 415, 60–67 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takagi, Y. et al. Interaction of folliculin (Birt–Hogg–Dube gene product) with a novel Fnip1-like (FnipL/Fnip2) protein. Oncogene 27, 5339–5347 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Hasumi, Y. et al. Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc. Natl Acad. Sci. USA 106, 18722–18727 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Baba, M. et al. Kidney-targeted Birt–Hogg–Dubé gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. J. Natl Cancer Inst. 100, 140–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, J. et al. Deficiency of FLCN in mouse kidney led to development of polycystic kidneys and renal neoplasia. PLoS ONE 3, e3581 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Merino, M. J., Torres-Cabala, C., Pinto, P. A. & Linehan, W. M. The morphologic spectrum of kidney tumors in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. Am. J. Surg. Pathol. 31, 1578–1585 (2007).

    Article  PubMed  Google Scholar 

  70. Stewart, L. et al. Association of germline mutations in the fumarate hydratase gene and uterine fibroids in women with hereditary leiomyomatosis and renal cell cancer. Arch. Dermatol. 144, 1584–1592 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Toro, J. R. et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am. J. Hum. Genet. 73, 95–106 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wei, M. H. et al. Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J. Med. Genet. 43, 18–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, Y. et al. UOK 262 cell line, fumarate hydratase deficient (FH-/FH-) hereditary leiomyomatosis renal cell carcinoma: in vitro and in vivo model of an aberrant energy metabolic pathway in human cancer. Cancer Genet. Cytogenet. 196, 45–55 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sudarshan, S. et al. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and HIF-1{alpha} stabilization by glucose-dependent generation of reactive oxygen species. Mol. Cell Biol. 15, 4080–4090 (2009).

    Article  CAS  Google Scholar 

  76. Xie, H. et al. LDH-A inhibition, a therapeutic strategy for treatment of hereditary leiomyomatosis and renal cell cancer. Mol. Cancer Ther. 8, 626–635 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Vanharanta, S. et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am. J. Hum. Genet. 74, 153–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Neumann, H. P. et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292, 943–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Ricketts, C. et al. Germline SDHB mutations and familial renal cell carcinoma. J. Natl Cancer Inst. 100, 1260–1262 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Srirangalingam, U. et al. Clinical manifestations of familial paraganglioma and phaeochromocytomas in succinate dehydrogenase B (SDH-B) gene mutation carriers. Clin. Endocrinol. (Oxf.) 69, 587–596 (2008).

    Article  CAS  Google Scholar 

  82. Henderson, A., Douglas, F., Perros, P., Morgan, C. & Maher, E. R. SDHB-associated renal oncocytoma suggests a broadening of the renal phenotype in hereditary paragangliomatosis. Fam. Cancer 8, 257–260 (2009).

    Article  PubMed  Google Scholar 

  83. Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  85. Krishnan, B. & Truong, L. D. Renal epithelial neoplasms: the diagnostic implications of electron microscopic study in 55 cases. Hum. Pathol. 33, 68–79 (2002).

    Article  PubMed  Google Scholar 

  86. Landman, G. W. et al. Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33, 322–326 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hirsch, H. A., Iliopoulos, D., Tsichlis, P. N. & Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 69, 7507–7511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang, X. et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem. J. 412, 211–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Chow, W. H., Gridley, G., Fraumeni, F. J. & Jarvholm, B. Obesity, hypertension, and the risk of kidney cancer in men. N. Engl. J. Med. 343, 1305–1311 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Leitao, V. A. et al. Renal medullary carcinoma. Case report and review of the literature. Urol. Int. 77, 184–186 (2006).

    Article  PubMed  Google Scholar 

  92. Davis, C. J. Jr, Mostofi, F. K. & Sesterhenn, I. A. Renal medullary carcinoma. The seventh sickle cell nephropathy. Am. J. Surg. Pathol. 19, 1–11 (1995).

    Article  PubMed  Google Scholar 

  93. Linehan, W. M. et al. Molecular diagnosis and therapy of kidney cancer. Annu. Rev. Med. 10, 329–343 (2010).

    Article  CAS  Google Scholar 

  94. Jaakkola, P. et al. Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Intramural Research Program of the National Institute of Health, National Cancer Institute, Center for Cancer Research and funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Heath and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. The authors acknowledge the outstanding editorial and graphics support by Georgia Shaw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Marston Linehan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linehan, W., Srinivasan, R. & Schmidt, L. The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol 7, 277–285 (2010). https://doi.org/10.1038/nrurol.2010.47

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing