Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional imaging of renal cell carcinoma

Abstract

The incidence of early and advanced-stage renal cell carcinoma (RCC) is increasing. Methods of diagnosing, staging and evaluating tumor burden that are more accurate and reliable than the currently available options are needed in order to identify RCC at a stage at which it is curable and to accurately determine the response to treatment. Functional imaging, particularly with combined PET–CT, might improve accuracy of detection and provide essential information that has been unavailable to date. This approach is against a background in which targeted therapies for metastatic RCC have entered clinical practice in the past few years, further highlighting the importance of accurate imaging for patient selection and for monitoring response to treatment. We outline the current clinical status of functional imaging in RCC using PET–CT, which allows simultaneous capture and co-registration of functional and anatomical data. New radiotracers and approaches—including radiolabeled monoclonal antibodies and imaging of tumor hypoxia—are touched on, and areas of future research discussed.

Key Points

  • There is evidence to support a role for functional imaging using 18F-FDG-PET–CT in initial staging and re-staging of relapsing or metastatic renal cell carcinoma

  • Diagnostic 18F-FDG-PET–CT has limitations, but its utility might be enhanced by using immuno-PET (for example, 124I-cG250-PET–CT) or other radiolabeled molecules

  • Functional imaging could optimize monitoring of responses to newer therapies (for example, tyrosine kinase inhibitors), and facilitate more directed allocation of patients to the most appropriate treatments

  • New radiopharmaceuticals—for bone metastases, for example—are being developed, but confirmatory data are required

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the PET–CT imaging apparatus.
Figure 2: Molecular imaging of renal cell carcinoma (RCC).
Figure 3: Increased uptake of fluorine-18-labeled 2-fluoro-2-deoxy-D-glucose (18F-FDG) in recurring renal cell carcinoma (RCC).
Figure 4: Increased proliferation in renal cell carcinoma (RCC).
Figure 5: Immuno-PET imaging.

Similar content being viewed by others

References

  1. Hock, L. M., Lynch, J. & Balaji, K. C. Increasing incidence of all stages of kidney cancer in the last 2 decades in the United States: an analysis of Surveillance, Epidemiology and End Results program data. J. Urol. 167, 57–60 (2002).

    Article  PubMed  Google Scholar 

  2. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249 (2009).

    Article  PubMed  Google Scholar 

  3. Marberger, M. M., Boccon-Gibod, L. & Chapple, C. R. (Eds) EAU Update Series: Renal Cell Cancer (Elsevier, Oxford, 2003).

    Google Scholar 

  4. Lindner, V., Lang, H. & Jacqmin, D. in EAU Update Series: Renal Cell Cancer (eds Marberger, M. M., Boccon-Gibod, L., Chapple C. R. & Jacqmin, D.) 197–208 (Elsevier, Oxford, 2003).

    Google Scholar 

  5. Chow, W. H., Devesa, S. S., Warren, J. L. & Fraumeni, J. F. Jr. Rising incidence of renal cell cancer in the United States. JAMA 281, 1628–1631 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Chow, W. H., Dong, L. M. & Devesa, S. S. Epidemiology and risk factors for kidney cancer. Nat. Rev. Urol. 7, 245–257 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Novick, A. C. Current surgical approaches, nephron-sparing surgery, and the role of surgery in the integrated immunologic approach to renal-cell carcinoma. Semin. Oncol. 22, 29–33 (1995).

    CAS  PubMed  Google Scholar 

  8. Pezaro, C. & Davis, I. D. Targeted therapies in the treatment of renal cell carcinoma. Curr. Med. Chem. 15, 1166–1174 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Colombo, J. R. Jr et al. Seven years after laparoscopic radical nephrectomy: oncologic and renal functional outcomes. Urology 71, 1149–1154 (2008).

    Article  PubMed  Google Scholar 

  11. Bandi, G., Hedican, S. P. & Nakada, S. Y. Current practice patterns in the use of ablation technology for the management of small renal masses at academic centers in the United States. Urology 71, 113–117 (2008).

    Article  PubMed  Google Scholar 

  12. Scott, A. M. Current status of positron emission tomography in oncology. Intern. Med. J. 31, 27–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Brush, J. P. Positron emission tomography in urological malignancy. Curr. Opin. Urol. 11, 175–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Weber, W. A., Grosu, A. L. & Czernin, J. Technology Insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat. Clin. Pract. Oncol. 5, 160–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Francis, D. L. et al. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut 52, 1602–1606 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lawrentschuk, N. et al. Investigation of hypoxia and carbonic anhydrase IX expression in a renal cell carcinoma xenograft model with oxygen tension measurements and 124I-cG250 PET/CT. Urol. Oncol. doi: 10.1016/j.urolonc.2009.03.028.

  17. Hara, T. 18F-fluorocholine: a new oncologic PET tracer. J. Nucl. Med. 42, 1815–1817 (2001).

    CAS  PubMed  Google Scholar 

  18. Bouchelouche, K. & Oehr, P. Recent developments in urologic oncology: positron emission tomography molecular imaging. Curr. Opin. Oncol. 20, 321–326 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Townsend, D. W. & Beyer, T. A combined PET/CT scanner: the path to true image fusion. Br. J. Radiol. 75, S24–S30 (2002).

    Article  PubMed  Google Scholar 

  20. Schmidt, G. P., Kramer, H., Reiser, M. F. & Glaser, C. Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology. Top. Magn. Reson. Imaging 18, 193–202 (2007).

    Article  PubMed  Google Scholar 

  21. Lau, W. F. et al. Clinical experience with the first combined positron emission tomography/computed tomography scanner in Australia. Med. J. Aust. 182, 172–176 (2005).

    PubMed  Google Scholar 

  22. Choi, J. Y. et al. Improved detection of second primary cancer using integrated [18F] fluorodeoxyglucose positron emission tomography and computed tomography for initial tumor staging. J. Clin. Oncol. 23, 7654–7659 (2005).

    Article  PubMed  Google Scholar 

  23. Lawrentschuk, N., Gani, J., Rowden, R., Esler, S. & Bolton, D. Modern multidetector helical computed tomography versus magnetic resonance imaging for defining the upper limit of vena caval tumour thrombus in renal cell carcinoma. BJU Int. 96, 291–295 (2005).

    Article  PubMed  Google Scholar 

  24. Heidenreich, A. & Ravery, V. Preoperative imaging in renal cell cancer. World J. Urol. 22, 307–315 (2004).

    Article  PubMed  Google Scholar 

  25. Hicks, R. J., Ware, R. E. & Lau, E. W. PET/CT: will it change the way that we use CT in cancer imaging? Cancer Imaging 6, S52–S62 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kang, D. E., White, R. L. Jr, Zuger, J. H., Sasser, H. C. & Teigland, C. M. Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J. Urol. 171, 1806–1809 (2004).

    Article  PubMed  Google Scholar 

  27. Lawrentschuk, N., Davis, I. D., Bolton, D. M. & Scott, A. M. Positron emission tomography (PET), immuno-PET and radioimmunotherapy in renal cell carcinoma: a developing diagnostic and therapeutic relationship. BJU Int. 97, 916–922 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Ramdave, S. et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J. Urol. 166, 825–830 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Seto, E., Segall, G. M. & Terris, M. K. Positron emission tomography detection of osseous metastases of renal cell carcinoma not identified on bone scan. Urology 55, 286 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Aide, N. et al. Efficiency of [(18)F]FDG PET in characterising renal cancer and detecting distant metastases: a comparison with CT. Eur. J. Nucl. Med. Mol. Imaging 30, 1236–1245 (2003).

    Article  PubMed  Google Scholar 

  31. Peterson, J. J., Kransdorf, M. J. & O'Connor, M. I. Diagnosis of occult bone metastases: positron emission tomography. Clin. Orthop. 415 (Suppl.), S120–S128 (2003).

    Article  Google Scholar 

  32. Wahl, R. L., Harney, J., Hutchins, G. & Grossman, H. B. Imaging of renal cancer using positron emission tomography with 2-deoxy-2-(18F)-fluoro-D-glucose: pilot animal and human studies. J. Urol. 146, 1470–1474 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Lai, P. et al. Detection of tumour thrombus by 18F-FDG-PET/CT imaging. Eur. J. Cancer Prev. 16, 90–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Park, J. W., Jo, M. K. & Lee, H. M. Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU Int. 103, 615–619 (2009).

    Article  PubMed  Google Scholar 

  35. Krege, S. et al. European Consensus Conference on Diagnosis and Treatment of Germ Cell Cancer: a report of the Second Meeting of the European Germ Cell Cancer Consensus Group (EGCCCG): Part II. Eur. Urol. 53, 497–513 (2008).

    Article  PubMed  Google Scholar 

  36. Dilhuydy, M. S. et al. PET scans for decision-making in metastatic renal cell carcinoma: a single-institution evaluation. Oncology 70, 339–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Safaei, A. et al. The usefulness of F-18 deoxyglucose whole-body positron emission tomography (PET) for re-staging of renal cell cancer. Clin. Nephrol. 57, 56–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Murdoch, D. & Sager, J. Will targeted therapy hold its promise? An evidence-based review. Curr. Opin. Oncol. 20, 104–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Wahl, R. L., Jacene, H., Kasamon, Y. & Lodge, M. A. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 50 (Suppl. 1), 122S–150S (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Dunphy, M. & Lewis, J. Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J. Nucl. Med. 50 (Suppl. 1), 106S–121S (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Nagengast, W. B. et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J. Nucl. Med. 48, 1313–1319 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Oyama, N. et al. 11C-Acetate PET imaging for renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 36, 422–427 (2009).

    Article  PubMed  Google Scholar 

  46. Maleddu, A. et al. 11C-acetate PET for early prediction of sunitinib response in metastatic renal cell carcinoma. Tumori 95, 382–384 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. National Comprehensive Cancer Network [online], (2009).

  49. Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl Cancer Inst. 92, 205–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Leveridge, M. J., Bostrom, P. J., Koulouris, G., Finelli, A. & Lawrentschuk, N. Imaging in renal cell carcinoma with ultrasonography, CT, and MRI—an update. Nat. Rev. Urol. (in press).

  51. Vercellino, L. et al. 18F-FDG PET/CT imaging for an early assessment of response to sunitinib in metastatic renal carcinoma: preliminary study. Cancer Biother. Radiopharm. 24, 137–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Jennens, R. R., Rosenthal, M. A., Lindeman, G. J. & Michael, M. Complete radiological and metabolic response of metastatic renal cell carcinoma to SU5416 (semaxanib) in a patient with probable von Hippel–Lindau syndrome. Urol. Oncol. 22, 193–196 (2004).

    Article  PubMed  Google Scholar 

  53. Lyrdal, D., Boijsen, M., Suurkula, M., Lundstam, S. & Stierner, U. Evaluation of sorafenib treatment in metastatic renal cell carcinoma with 2-fluoro-2-deoxyglucose positron emission tomography and computed tomography. Nucl. Med. Commun. 30, 519–524 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Avril, N. E. & Weber, W. A. Monitoring response to treatment in patients utilizing PET. Radiol. Clin. North Am. 43, 189–204 (2005).

    Article  PubMed  Google Scholar 

  55. Lawrentschuk, N., Poon, A. M. & Scott, A. M. Fluorine-18 fluorothymidine: a new positron emission radioisotope for renal tumors. Clin. Nucl. Med. 31, 788–789 (2006).

    Article  PubMed  Google Scholar 

  56. Lee, H. J., Kim, D. I., Kwak, C., Ku, J. H. & Moon, K. C. Expression of CD24 in clear cell renal cell carcinoma and its prognostic significance. Urology 72, 603–607 (2008).

    Article  PubMed  Google Scholar 

  57. Iwata, T. et al. Lymphangiogenesis and angiogenesis in conventional renal cell carcinoma: association with vascular endothelial growth factors A to D immunohistochemistry. Urology 71, 749–754 (2008).

    Article  PubMed  Google Scholar 

  58. Biswas, S., Kelly, J. & Eisen, T. Cytoreductive nephrectomy in metastatic clear-cell renal cell carcinoma: perspectives in the tyrosine kinase inhibitor era. Oncologist 14, 52–59 (2009).

    Article  PubMed  Google Scholar 

  59. Abel, E. J. & Wood, C. G. Cytoreductive nephrectomy for metastatic RCC in the era of targeted therapy. Nat. Rev. Urol. 6, 375–383 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Di Lorenzo, G., Autorino, R. & Sternberg, C. N. Metastatic renal cell carcinoma: recent advances in the targeted therapy era. Eur. Urol. 56, 959–971 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Kwan, K. G. & Kapoor, A. Cytoreductive nephrectomy in metastatic renal cell carcinoma: the evolving role of surgery in the era of molecular targeted therapy. Curr. Opin. Support. Palliat. Care 3, 157–165 (2009).

    Article  PubMed  Google Scholar 

  62. Ansari, J. et al. Neoadjuvant sunitinib facilitates nephron-sparing surgery and avoids long-term dialysis in a patient with metachronous contralateral renal cell carcinoma. Clin. Genitourin. Cancer 7, E39–E41 (2009).

    Article  PubMed  Google Scholar 

  63. Capitanio, U. et al. Cytoreductive partial nephrectomy does not undermine cancer control in metastatic renal cell carcinoma: a population-based study. Urology 72, 1090–1095 (2008).

    Article  PubMed  Google Scholar 

  64. Hofmann, H. S., Neef, H., Krohe, K., Andreev, P. & Silber, R. E. Prognostic factors and survival after pulmonary resection of metastatic renal cell carcinoma. Eur. Urol. 48, 77–81 (2005).

    Article  PubMed  Google Scholar 

  65. Motzer, R. J. et al. Prognostic factors for survival in previously treated patients with metastatic renal cell carcinoma. J. Clin. Oncol. 22, 454–463 (2004).

    Article  PubMed  Google Scholar 

  66. Lee, N. Y. et al. Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 70, 2–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Wu, A. M. Antibodies and antimatter: the resurgence of immuno-PET. J. Nucl. Med. 50, 2–5 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Verel, I. et al. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J. Nucl. Med. 44, 1663–1670 (2003).

    CAS  PubMed  Google Scholar 

  69. Brouwers, A. et al. PET radioimmunoscintigraphy of renal cell cancer using 89Zr-labeled cG250 monoclonal antibody in nude rats. Cancer Biother. Radiopharm. 19, 155–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Lam, J. S., Pantuck, A. J., Belldegrun, A. S. & Figlin, R. A. G250: a carbonic anhydrase IX monoclonal antibody. Curr. Oncol. Rep. 7, 109–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Zuckier, L. S. & DeNardo, G. L. Trials and tribulations: oncological antibody imaging comes to the fore. Semin. Nucl. Med. 27, 10–29 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Divgi, C. R. et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 8, 304–310 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Steffens, M. G. et al. In vivo and in vitro characterizations of three 99mTc-labeled monoclonal antibody G250 preparations. J. Nucl. Med. 40, 829–836 (1999).

    CAS  PubMed  Google Scholar 

  74. Bauer, S. et al. Targeted therapy of renal cell carcinoma: synergistic activity of cG250-TNF and IFNg. Int. J. Cancer 125, 115–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Tso, C. L. et al. Induction of G250-targeted and T-cell-mediated antitumor activity against renal cell carcinoma using a chimeric fusion protein consisting of G250 and granulocyte/monocyte-colony stimulating factor. Cancer Res. 61, 7925–7933 (2001).

    CAS  PubMed  Google Scholar 

  76. Atkins, M. et al. Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. Clin. Cancer Res. 11, 3714–3721 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Majhail, N. S. et al. F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J. Clin. Oncol. 21, 3995–4000 (2003).

    Article  PubMed  Google Scholar 

  78. Jadvar, H., Kherbache, H. M., Pinski, J. K. & Conti, P. S. Diagnostic role of [F-18]-FDG positron emission tomography in restaging renal cell carcinoma. Clin. Nephrol. 60, 395–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Chang, C. H. et al. Differentiating solitary pulmonary metastases in patients with renal cell carcinomas by 18F-fluoro-2-deoxyglucose positron emission tomography—a preliminary report. Urol. Int. 71, 306–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Miyakita, H. et al. Significance of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of renal cell carcinoma and immunohistochemical glucose transporter 1 (GLUT-1) expression in the cancer. Int. J. Urol. 9, 15–18 (2002).

    Article  PubMed  Google Scholar 

  81. Brouwers, A. H. et al. 131I-cG250 monoclonal antibody immunoscintigraphy versus [18F]FDG-PET imaging in patients with metastatic renal cell carcinoma: a comparative study. Nucl. Med. Commun. 23, 229–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Montravers, F. et al. Evaluation of FDG uptake by renal malignancies (primary tumor or metastases) using a coincidence detection gamma camera. J. Nucl. Med. 41, 78–84 (2000).

    CAS  PubMed  Google Scholar 

  83. Goldberg, M. A., Mayo-Smith, W. W., Papanicolaou, N., Fischman, A. J. & Lee, M. J. FDG PET characterization of renal masses: preliminary experience. Clin. Radiol. 52, 510–515 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Hoh, C. K. et al. Positron emission tomography in urological oncology. J. Urol. 159, 347–356 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Bachor, R. et al. Positron emission tomography in diagnosis of renal cell carcinoma [German]. Urologe A 35, 146–150 (1996).

    CAS  PubMed  Google Scholar 

  86. Bachor, R., Kocher, F., Gropengiesser, F., Reske, S. N. & Hautmann, R. E. Positron emission tomography. Introduction of a new procedure in diagnosis of urologic tumors and initial clinical results [German]. Urologe A 34, 138–142 (1995).

    CAS  PubMed  Google Scholar 

  87. Kocher, F. et al. Preoperative lymph node staging in patients with kidney and urinary bladder neoplasm. J. Nucl. Med. 35 (Suppl.), 223P–224P (1994).

    Google Scholar 

  88. Lawrentschuk, N. et al. Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int. 96, 540–546 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lorraine Trecroce, a student from the Division of Biomedical Communications, University of Toronto, Canada, for creating the original artwork on which Figure 1 is based. N. Lawrentschuk is supported in part by a grant from The University of Toronto, Princess Margaret Hospital Campbell Family Trust, Surgical Oncology Fellowship, Toronto, Canada. I. D. Davis is supported in part by a Victorian Cancer Agency Clinical Researcher Fellowship, and is an Australian National Health and Medical Research Council Honorary Practitioner Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Lawrentschuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrentschuk, N., Davis, I., Bolton, D. et al. Functional imaging of renal cell carcinoma. Nat Rev Urol 7, 258–266 (2010). https://doi.org/10.1038/nrurol.2010.40

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.40

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing