Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Blockade of testicular and adrenal androgens in prostate cancer treatment

Abstract

Prostate cancer is the most hormone sensitive of all cancers. However, any hormonal therapeutic strategy must take into account the fact that two almost equivalent sources of androgens act in the prostate, namely testosterone of testicular origin, and the locally produced androgens testosterone and dihydrotestosterone (DHT) derived from dehydroepiandrosterone of adrenal origin. Combined androgen blockade—medical or surgical castration plus a pure antiandrogen—would, therefore, be the logical first-line treatment for prostate cancer, although castration or an antiandrogen alone is still chosen in the majority of cases. Although long-term control, or even cure, is possible when combined androgen blockade is used when the tumor is localized, resistance to treatment invariably develops in patients when start of treatment is delayed until the disease has become metastatic. This observation can be explained either by elevated levels of the androgen receptor, which can increase the response to low levels of androgens and also modify the response to antiandrogens; or by local biosynthesis of androgens. Research to identify new and more potent antiandrogens, as well as blockers of peripheral and adrenal androgen biosynthesis—such as abiraterone—could be of great importance.

Key Points

  • Testicular androgens account for only 50–60% of total testosterone in the prostate, with the remainder produced by intraprostatic conversion of adrenal steroids

  • Prostate cancer is most frequently treated with medical or surgical castration alone, but this treatment does not ablate androgens of extratesticular origin, and castration resistance usually develops

  • Castration resistance could be caused by increased levels of the androgen receptor or by intraprostatic synthesis of androgens from adrenal steroids or, possibly, from cholesterol

  • Combined androgen blockade with a pure antiandrogen in addition to surgical or medical castration seems, therefore, to be a scientifically sound approach to managing patients with prostate cancer

  • Novel agents such as abiraterone, which blocks androgen biosynthesis, have shown promise in patients with prostate cancer, especially when combined with glucocorticoid treatment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sources of androgens in the human prostate.
Figure 2: Effect of castration on androgen levels.
Figure 3: The human steroidogenesis pathways in peripheral target tissues.
Figure 4: The effect of medical or surgical castration alone (monotherapy) versus CAB (castration plus an antiandrogen, such as flutamide, nilutamide or bicalutamide) on prostate-cancer-specific survival, expressed as a percentage of responses to placebo.
Figure 5: Potential sites of action for hormonal therapies in prostate cancer.

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts & Figures 2010. American Cancer Society [online], (2010).

  2. Lichtenberg, F. R. Measuring the health impacts of medical innovation and expenditure. Presented at the Health Services Research Seminar Series, University of Minnesota, Minnesota, USA, 2002.

  3. Labrie, F. et al. Antifertility effects of LHRH agonists in the male. J. Androl. 1, 209–228 (1980).

    Article  CAS  Google Scholar 

  4. Labrie, F. et al. Gonadotropin-releasing hormone agonists in the treatment of prostate cancer. Endocr. Reviews 26, 361–379 (2005).

    Article  CAS  Google Scholar 

  5. Labrie, F. et al. New hormonal therapy in prostatic carcinoma: combined treatment with an LHRH agonist and an antiandrogen. Clin. Invest. Med. 5, 267–275 (1982).

    CAS  PubMed  Google Scholar 

  6. Labrie, F., Dupont, A. & Bélanger, A. Complete androgen blockade in the treatment oF prostate cancer. In Important Advances in Oncology (eds de Vita, V. T., Hellman, S. & Rosenberg, S. A.) 193–217 (J. B. Lippincott, Philadelphia, 1985).

    Google Scholar 

  7. Crawford, E. D. et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N. Engl. J. Med. 321, 419–424 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Labrie, F. Multiple intracrine hormonal targets in the prostate: opportunities and challenges. BJU Int. 100, 48–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Arnst, C. Developments to watch. Why did prostate cancer death rates fall? Business Week 92, 3853 (2003).

    Google Scholar 

  10. Peto, R. & Dalesio, O. Abstract 328. Presented at ECCO 12, Copenhagen, 2003.

  11. Bélanger, B. et al. Comparison of residual C-19 steroids in plasma and prostatic tissue of human, rat and guinea pig after castration: unique importance of extratesticular androgens in men. J. Steroid Biochem. 32, 695–698 (1989).

    Article  PubMed  Google Scholar 

  12. Labrie, F. et al. Comparable amounts of sex steroids are made outside the gonads in men and women: strong lesson for hormone therapy of prostate and breast cancer. J. Steroid Biochem. Mol. Biol. 113, 52–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Labrie, F. Endocrinology and the prostate. Preface. Best Pract. Res. Clin. Endocrinol. Metab. 22, vii–ix (2008).

    Article  PubMed  Google Scholar 

  14. Labrie, F. Hormonal therapy in prostate cancer. In Neuroendocrinology, The Normal Neuroendocrine System, Progress in Brain Research (eds Martini, L., Chrousos, G. P., Labrie, F., Pacak, K. & Pfaff, D. E.) 321–341 (Elsevier, Oxford, 2010).

    Google Scholar 

  15. Labrie, F. Intracrinology. Mol. Cell. Endocrinol. 78, C113–C118 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Labrie, C. et al. Stimulation of androgen-dependent gene expression by the adrenal precursors dehydroepiandrosterone and androstenedione in the rat ventral prostate. Endocrinology 124, 2745–2754 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Labrie, F. et al. Androgen glucuronides, instead of testosterone, as the new markers of androgenic activity in women. J. Steroid Biochem. Mol. Biol. 99, 182–188 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Nishiyama, T., Hashimoto, Y. & Takahashi, K. The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin. Cancer Res. 10, 7121–7126 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Mostaghel, E. A. et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 67, 5033–5041 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Yoon, F. H. et al. Testosterone recovery after prolonged androgen suppression in patients with prostate cancer. J. Urol. 180, 1438–1444 (2008).

    Article  PubMed  Google Scholar 

  21. Labrie, C. et al. Stimulation of androgen-dependent gene expression by the adrenal precursors dehydroepiandrosterone and androstenedione in the rat ventral prostate. Endocrinology 124, 2745–2754 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Huggins, C. & Hodges, C. V. Studies of prostatic cancer. I. Effect of castration, estrogen and androgen injections on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1, 293–307 (1941).

    CAS  Google Scholar 

  23. Labrie, F., Candas, B., Gomez, J. L. & Cusan, L. Can combined androgen blockade provide long-term control or possible cure of localized prostate cancer? Urology 60, 115–119 (2002).

    Article  PubMed  Google Scholar 

  24. Akaza, H. et al. The case for androgen deprivation as primary therapy for early stage disease: results from J-CaP and CaPSURE. J. Urol. 176, S47–S49 (2006).

    Article  PubMed  Google Scholar 

  25. Homma, Y. et al. Endocrine therapy with or without radical prostatectomy for T1b-T3N0M0 prostate cancer. Int. J. Urol. 11, 218–224 (2004).

    Article  PubMed  Google Scholar 

  26. Egawa, M. et al. Retrospective study on stage B prostate cancer in the Hokuriku District, Japan. Int. J. Urol. 11, 304–309 (2004).

    Article  PubMed  Google Scholar 

  27. Ueno, S. et al. Efficacy of primary hormonal therapy for patients with localized and locally advanced prostate cancer: a retrospective multicenter study. Int. J. Urol. 13, 1494–1500 (2006).

    Article  PubMed  Google Scholar 

  28. Akaza, H. et al. Superior anti-tumor efficacy of bicalutamide 80 mg in combination with a luteinizing hormone-releasing hormone (LHRH) agonist versus LHRH agonist monotherapy as first-line treatment for advanced prostate cancer: interim results of a randomized study in Japanese patients. Jpn J. Clin. Oncol. 34, 20–28 (2004).

    Article  PubMed  Google Scholar 

  29. Akaza, H. Trends in primary androgen depletion therapy for patients with localized and locally advanced prostate cancer: Japanese perspective. Cancer Sci. 97, 243–247 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Dupont, A. et al. Combination therapy with flutamide and [D-Trp6]LHRH ethylamide for stage C prostatic carcinoma. Eur. J. Cancer Clin. Oncol. 24, 659–666 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Dupont, A. et al. Combination therapy with Flutamide and the LHRH agonist [D-Trp6-des-Gly-NH2]LHRH ethylamide in stage C prostatic carcinoma. Br. J. Urol. 72, 629–634 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Cooperberg, M. R., Grossfeld, G. D., Lubeck, D. P. & Carroll, P. R. National practice patterns and time trends in androgen ablation for localized prostate cancer. J. Natl Cancer Inst. 95, 981–989 (2003).

    Article  PubMed  Google Scholar 

  33. Denis, L. J. et al. Maximal androgen blockade: final analysis of EORTC Phase III trial 30853. Eur. Urol. 33, 144–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Caubet, J. F. et al. Maximum androgen blockade in advanced prostate cancer: a meta-analysis of published randomized controlled trials using nonsteroidal antiandrogens. Urology 49, 71–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Bennett, C. L. et al. Maximum androgen-blockade with medical or surgical castration in advanced prostate cancer: a meta-analysis of nine published randomized controlled trials and 4128 patients using Flutamide. Prostate Cancer Prostatic Dis. 2, 4–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Prostate Cancer Triallists' Collaborative Group. Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Lancet 355, 1491–1498 (2000).

  37. Eisenberger, M. A. et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N. Engl. J. Med. 339, 1036–1042 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Labrie, F. et al. Benefits of combination therapy with Flutamide in patients relapsing after castration. Br. J. Urol. 61, 341–346 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Levine, G. N. et al. Androgen-deprivation therapy in prostate cancer and cardiovascular risk: a science advisory from the American Heart Association, American Cancer Society, and American Urological Association: endorsed by the American Society for Radiation Oncology. Circulation 121, 833–840 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Akaza, H. et al. Efficacy of primary hormone therapy for localized or locally advanced prostate cancer: results of a 10-year follow-up. BJU Int. 98, 573–579 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Akaza, H. Current status and prospects of androgen depletion therapy for prostate cancer. Best Pract. Res. Clin. Endocrinol. Metab. 22, 293–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Namiki, M., Kitagawa, Y., Mizokami, A. & Koh, E. Primary combined androgen blockade in localized disease and its mechanism. Best Pract. Res. Clin. Endocrinol. Metab. 22, 303–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Labrie, F. & Veilleux, R. A wide range of sensitivities to androgens develops in cloned Shionogi mouse mammary tumor cells. Prostate 8, 293–300 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Fowler, J. E. Jr & Whitmore, W. F. Jr. The response of metastatic adenocarcinoma of the prostate to exogenous testosterone. J. Urol. 126, 372–375 (1981).

    Article  PubMed  Google Scholar 

  45. Maddy, J. A., Winternitz, W. W. & Norrell, H. Cryohypophysectomy in the management of advanced prostatic cancer. Cancer 28, 322–328 (1971).

    Article  CAS  PubMed  Google Scholar 

  46. Drago, J. R. et al. Clinical effect of aminoglutethimide, medical adrenalectomy, in treatment of 43 patients with advanced prostatic carcinoma. Cancer 53, 1447–1450 (1984).

    Article  CAS  PubMed  Google Scholar 

  47. Murray, R. & Pitt, P. Treatment of advanced prostatic cancer, resistant to conventional therapy, with aminoglutethimide. Eur. J. Cancer Clin. Oncol. 21, 453–458 (1985).

    Article  CAS  PubMed  Google Scholar 

  48. Janknegt, R. A. et al. Orchiectomy and Nilutamide or placebo as treatment of metastatic prostatic cancer in a multinational double-blind randomized trial. J. Urol. 149, 77–83 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Collinson, M. P., Daniel, F., Tyrrell, C. J. & Teasdale, C. Response of carcinoma of the prostate to withdrawal of flutamide. Br. J. Urol. 72, 662–663 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Herrada, J., Dieringer, P. & Logothetis, C. J. Characterization of patients with androgen-independent prostatic carcinoma whose serum prostate specific antigen decreased following flutamide withdrawal. J. Urol. 155, 620–623 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Kelly, W. K. & Scher, H. I. Prostate specific antigen decline after antiandrogen withdrawal: the flutamide withdrawal syndrome. J. Urol. 149, 607–609 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Kelly, W. K., Slovin, S. & Scher, H. I. Steroid hormone withdrawal syndromes. Pathophysiology and clinical significance. Urol. Clin. North Am. 24, 421–431 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Labrie, F., Veilleux, R. & Fournier, A. Low androgen levels induce the development of androgen-hypersensitive cells clones in Shionogi mouse mammary carcinoma cells in culture. J. Natl Cancer Inst. 80, 1138–1147 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Scher, H. I. & Sawyers, C. L. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J. Clin. Oncol. 23, 8253–8261 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Mulders, P. F. & Schalken, J. A. Measuring therapeutic efficacy in the changing paradigm of castrate-resistant prostate cancer. Prostate Cancer Prostatic Dis. 12, 241–246 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. McPhaul, M. J. Mechanisms of prostate cancer progression to androgen independence. Best Pract. Res. Clin. Endocrinol. Metab. 22, 373–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Harris, W. P., Mostaghel, E. A., Nelson, P. S. & Montgomery, B. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol. 6, 76–85 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mostaghel, E. A., Montgomery, B. & Nelson, P. S. Castration-resistant prostate cancer: targeting androgen metabolic pathways in recurrent disease. Urol. Oncol. 27, 251–257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, S. et al. New experimental models for aromatase inhibitor resistance. J. Steroid Biochem. Mol. Biol. 106, 8–15 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koivisto, P. et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 57, 314–319 (1997).

    CAS  PubMed  Google Scholar 

  62. Visakorpi, T. et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. 9, 401–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Culig, Z. et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol. Endocrinol. 7, 1541–1550 (1993).

    CAS  PubMed  Google Scholar 

  64. Taplin, M. E. et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med. 332, 1393–1398 (1996).

    Article  Google Scholar 

  65. Gregory, C. W., Johnson, R. T. Jr, Mohler, J. L., French, F. S. & Wilson, E. M. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res. 61, 2892–2898 (2001).

    CAS  PubMed  Google Scholar 

  66. Mizokami, A. et al. The adrenal androgen androstenediol is present in prostate cancer tissue after androgen deprivation therapy and activates mutated androgen receptor. Cancer Res. 64, 765–771 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Takeda, H. et al. Androgen receptor content of prostate carcinoma cells estimated by immunohistochemistry is related to prognosis of patients with stage D2 prostate carcinoma. Cancer 77, 934–940 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Taplin, M. E. & Balk, S. P. Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J. Cell. Biochem. 91, 483–490 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Labrie, F. et al. Pure selective estrogen inhibitors—new molecules having absolute cell specificity ranging from pure antiestrogens to complete estrogen-like activities. In Advances in Protein Chemistry: Drug Discovery and Design (ed. Scolnick, E. M.) 293–368 (Academic Press, San Diego, CA, 2001).

    Chapter  Google Scholar 

  70. Barbier, O. & Bélanger, A. Inactivation of androgens by UDP-glucuronosyltransferases in the human prostate. Best Pract. Res. Clin. Endocrinol. Metab. 22, 259–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Labrie, C., Bélanger, A. & Labrie, F. Androgenic activity of dehydroepiandrosterone and androstenedione in the rat ventral prostate. Endocrinology 123, 1412–1417 (1988).

    Article  CAS  PubMed  Google Scholar 

  72. Pelletier, G. Expression of steroidogenic enzymes and sex-steroid receptors in human prostate. Best Pract. Res. Clin. Endocrinol. Metab. 22, 223–228 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. El-Alfy, M. et al. Localization of type 5 17β-hydroxysteroid dehydrogenase, 3 β-hydroxysteroid dehydrogenase and androgen receptor in the human prostate by in situ hybridization and immunocytochemistry. Endocrinology 140, 1481–1491 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Nakamura, Y. et al. In situ androgen producing enzymes in human prostate cancer. Endocr. Relat. Cancer 12, 101–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Luu-The, V., Bélanger, A. & Labrie, F. Androgen biosynthetic pathways in the human prostate. Best Pract. Res. Clin. Endocrinol. Metab. 22, 207–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Evaul, K., Li, R., Papari-Zareei, M., Auchus, R. J. & Sharifi, N. 3Beta-hydroxysteroid dehydrogenase is a possible pharmacological target in the treatment of castration-resistant prostate cancer. Endocrinology 151, 3514–3520 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Mizokami, A. et al. Prostate cancer stromal cells and LNCaP cells coordinately activate the androgen receptor through synthesis of testosterone and dihydrotestosterone from dehydroepiandrosterone. Endocr. Relat. Cancer 16, 1139–1155 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Stanbrough, M. et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 66, 2815–2825 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Nishiyama, T., Ikarashi, T., Hashimoto, Y., Wako, K. & Takahashi, K. The change in the dihydrotestosterone level in the prostate before and after androgen deprivation therapy in connection with prostate cancer aggressiveness using the Gleason score. J. Urol. 178, 1282–1288; discussion 1288–1289 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Agus, D. B. et al. Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J. Natl Cancer Inst. 91, 1869–1876 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Rosner, J. M., Macome, J. C. & Cardinali, D. P. In vitro biosynthesis of sterols and steroids by rat submaxillary glands. Endocrinology 85, 1000–1003 (1969).

    Article  CAS  PubMed  Google Scholar 

  82. Voutilainen, R. & Miller, W. L. Developmental expression of genes for the stereoidogenic enzymes P450scc (20, 22-desmolase), P450c17 (17 alpha-hydroxylase/17, 20-lyase), and P450c21 (21-hydroxylase) in the human fetus. J. Clin. Endocrinol. Metab. 63, 1145–1150 (1986).

    Article  CAS  PubMed  Google Scholar 

  83. Labrie, F., Simard, J., Singh, S. M. & Candas, B. Estimated potency of Casodex: a problematic design. Urology 50, 309–313 (1997).

    CAS  PubMed  Google Scholar 

  84. Labrie, F., Simard, J., Coquet, A., Leblanc, G. & Candas, B. Reply by the authors. Urology 54, 195–197 (1999).

    Article  Google Scholar 

  85. Simard, J., Singh, S. M. & Labrie, F. Comparison of in vitro effects of the pure antiandrogens OH-Flutamide, Casodex and Nilutamide on androgen-sensitive parameters. Urology 49, 580–589 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Luo, S. et al. Relative potencies of Flutamide and Casodex: preclinical studies. Endocr. Relat. Cancer 3, 229–241 (1996).

    Article  CAS  Google Scholar 

  87. Labrie, F. et al. New concepts on the androgen sensitivity of prostate cancer. In Progress in Clinical and Biological Research. Prostate Cancer Part A: Research. Endocrine Treatment and Histopathology (eds Murphy, G. P., Khoury, S., Kuss, R., Chatelain, C. & Denis, L.) 145–172 (Liss, New York, 1987).

    Google Scholar 

  88. Debes, J. D. & Tindall, D. J. Mechanisms of androgen-refractory prostate cancer. N. Engl. J. Med. 351, 1488–1490 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Scher, H. I. et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet 375, 1437–1446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reid, A. H. et al. Significant and sustained antitumor activity in post-docetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate. J. Clin. Oncol. 28, 1489–1495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Attard, G. et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 26, 4563–4571 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Attard, G. et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J. Clin. Oncol. 27, 3742–3748 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. O'Donnell, A. et al. Hormonal impact of the 17alpha-hydroxylase/C(17, 20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br. J. Cancer 90, 2317–2325 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Attard, G. Abiraterone clinical data. Presented at the 14th International Congress on Hormonal Steroids and Hormones & Cancer, Edinburgh, 2010.

  96. Small, E. J. et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol. 24, 3089–3094 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares that he is the Director of Endorecherche Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labrie, F. Blockade of testicular and adrenal androgens in prostate cancer treatment. Nat Rev Urol 8, 73–80 (2011). https://doi.org/10.1038/nrurol.2010.231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing