Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ureteroscopy for the management of stone disease

Abstract

Ureteroscopy is the first-line treatment for urinary stone disease at many institutions. Techniques and indications continue to evolve. This Review covers the most current trends, controversies, and issues in ureteroscopic stone management. We present a summary of the most recent evidence regarding ureteroscopic treatment of ureteral and renal stones, current standard indications, adjunct devices and instruments used during ureteroscopy, and future directions.

Key Points

  • Ureteroscopy has become the first-line treatment for renal and ureteral stones in many centers

  • Ureteroscopic treatment of stone disease can be performed with high success rates and low complication rates

  • With increasing experience, indications for ureteroscopy have expanded to include large stones, bilateral stones, pediatric patients, pregnant patients, patients on anticoagulation medications and those with coagulopathy

  • Studies have demonstrated the advantages of a number of adjunct devices (for example, ureteral stents, ureteral access sheaths, and antiretropulsion devices) but their use during ureteroscopy is largely surgeon dependent

  • Improvements and innovations in the field of ureteroscopy are ongoing, with new devices such as digital ureteroscopes (currently in use) and robotic ureteroscopes (presently being developed) paving the way for further innovation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Young, H. H. & McKay, R. W. Congenital valvular obstruction of the prostatic urethra. Surg. Gynecol. Obstet. 48, 509 (1929).

    Google Scholar 

  2. Marshall, V. F. Fiber optics in urology. J. Urol. 91, 110–114 (1964).

    Article  CAS  Google Scholar 

  3. Goodman, T. M. Ureteroscopy with pediatric cystoscope in adults. Urology 9, 394 (1977).

    Article  CAS  Google Scholar 

  4. Basillote, J. B., Lee, D. I., Eichel, L. & Clayman, R. V. Ureteroscopes: flexible, rigid, and semirigid. Urol. Clin. North Am. 31, 21–32 (2004).

    Article  Google Scholar 

  5. Raney, A. M. Electrohydraulic ureterolithotripsy. Preliminary report. Urology 12, 284–285 (1978).

    Article  CAS  Google Scholar 

  6. Das, S. Transurethral ureteroscopy and stone manipulation under direct vision. J. Urol. 125, 112–113 (1981).

    Article  CAS  Google Scholar 

  7. Grocela, J. A. & Dretler, S. P. Intracorporeal lithotripsy. Instrumentation and development. Urol. Clin. North Am. 24, 13–23 (1997).

    Article  CAS  Google Scholar 

  8. Dretler, S. P., Watson, G., Parrish, J. A. & Murray, S. Pulsed dye laser fragmentation of ureteral calculi: initial clinical experience. J. Urol. 137, 386–389 (1987).

    Article  CAS  Google Scholar 

  9. Dretler, S. P. & Cho, G. Semirigid ureteroscopy: a new genre. J. Urol. 141, 1314–1316 (1989).

    Article  CAS  Google Scholar 

  10. Ritchey, M., Patterson, D. E., Kelalis, P. P. & Segura, J. W. A case of pediatric ureteroscopic lasertripsy. J. Urol. 139, 1272–1274 (1988).

    Article  CAS  Google Scholar 

  11. Conlin, M. J., Marberger, M. & Bagley, D. H. Ureteroscopy. Development and instrumentation. Urol. Clin. North Am. 24, 25–42 (1997).

    Article  CAS  Google Scholar 

  12. Preminger, G. M. et al. 2007 guideline for the management of ureteral calculi. J. Urol. 178, 2418–2434 (2007).

    Article  Google Scholar 

  13. Nabi, G., Downey, P., Keeley, F., Watson, G. & McClinton, S. Extra-corporeal shock wave lithotripsy (ESWL) versus ureteroscopic management for ureteric calculi. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD006029. doi:10.1002/14651858.CD006029.pub2 (2007).

    Google Scholar 

  14. Elashry, O. M. et al. Ureteroscopic management of lower ureteric calculi: a 15-year single-centre experience. BJU Int. 102, 1010–1017 (2008).

    Article  Google Scholar 

  15. Chow, G. K. et al. Ureteroscopy: effect of technology and technique on clinical practice. J. Urol. 170, 99–102 (2003).

    Article  Google Scholar 

  16. Krambeck, A. E. et al. The evolution of ureteroscopy: a modern single-institution series. Mayo Clin. Proc. 81, 468–473 (2006).

    Article  Google Scholar 

  17. Pearle, M. S. et al. Prospective randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J. Urol. 179 (Suppl.), S69–S73 (2008).

    Google Scholar 

  18. Kourambas, J., Delvecchio, F. C., Munver, R. & Preminger, G. M. Nitinol stone retrieval-assisted ureteroscopic management of lower pole renal calculi. Urology 56, 935–939 (2000).

    Article  CAS  Google Scholar 

  19. Elbahnasy, A. M. et al. Lower-pole caliceal stone clearance after shockwave lithotripsy, percutaneous nephrolithotomy, and flexible ureteroscopy: impact of radiographic spatial anatomy. J. Endourol. 12, 113–119 (1998).

    Article  CAS  Google Scholar 

  20. Ackermann, D. K., Fuhrimann, R., Pfluger, D., Studer, U. E. & Zingg, E. J. Prognosis after extracorporeal shock wave lithotripsy of radiopaque renal calculi: a multivariate analysis. Eur. Urol. 25, 105–109 (1994).

    Article  CAS  Google Scholar 

  21. Perks, A. E. et al. Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 72, 765–769 (2008).

    Article  Google Scholar 

  22. Irwin, B. H. & Desai, M. Ureteroscopic superiority to extracorporeal shock wave lithotripsy for the treatment of small-to-medium-sized intrarenal non-staghorn calculi. Urology 74, 256–258 (2009).

    Article  Google Scholar 

  23. Kourambas, J., Delvecchio, F. C., Munver, R. & Preminger, G. M. Nitinol stone retrieval-assisted ureteroscopic management of lower pole renal calculi. Urology 56, 935–939 (2000).

    Article  CAS  Google Scholar 

  24. Kourambas, J., Delvecchio, F. C. & Preminger, G. M. Low-power holmium laser for the management of urinary tract calculi, structures, and tumors. J. Endourol. 15, 529–532 (2001).

    Article  CAS  Google Scholar 

  25. Schuster, T. G., Hollenbeck, B. K., Faerber, G. J. & Wolf, J. S. Jr. Ureteroscopic treatment of lower pole calculi: comparison of lithotripsy in situ and after displacement. J. Urol. 168, 43–45 (2002).

    Article  Google Scholar 

  26. Grasso, M., Conlin, M. & Bagley, D. Retrograde ureteropyeloscopic treatment of 2 cm or greater upper urinary tract and minor Staghorn calculi. J. Urol. 160, 346–351 (1998).

    Article  CAS  Google Scholar 

  27. Ricchiuti, D. J. et al. Staged retrograde endoscopic lithotripsy as alternative to PCNL in select patients with large renal calculi. J. Endourol. 21, 1421–1424 (2007).

    Article  Google Scholar 

  28. Riley, J. M., Stearman, L. & Troxel, S. Retrograde ureteroscopy for renal stones larger than 2.5 cm. J. Endourol. 23, 1395–1398 (2009).

    Article  Google Scholar 

  29. El-Anany, F. G., Hammouda, H. M., Maghraby, H. A. & Elakkad, M. A. Retrograde ureteropyeloscopic holmium laser lithotripsy for large renal calculi. BJU Int. 88, 850–853 (2001).

    Article  CAS  Google Scholar 

  30. Mugiya, S., Suzuki, K., Ushiyama, T. & Fujita, K. Combined treatment of staghorn calculi by fiberoptic transurethral nephrolithotripsy and extracorporeal shock wave lithotripsy. Int. J. Urol. 5, 129–133 (1998).

    Article  CAS  Google Scholar 

  31. Smaldone, M. C. et al. Is ureteroscopy first line treatment for pediatric stone disease? J. Urol. 178, 2128–2131 (2007).

    Article  Google Scholar 

  32. Tan, A. H., Al-Omar, M., Denstedt, J. D. & Razvi, H. Ureteroscopy for pediatric urolithiasis: an evolving first-line therapy. Urology 65, 153–156 (2005).

    Article  CAS  Google Scholar 

  33. Basiri, A., Zare, S., Shakhssalim, N. & Hosseini Moghaddam, S. M. Ureteral calculi in children: what is best as a minimally invasive modality? Urol. J. 5, 67–73 (2008).

    PubMed  Google Scholar 

  34. Ulvik, N. M., Bakke, A. & Høisaeter, P. A. Ureteroscopy in pregnancy. J. Urol. 154, 1660–1663 (1995).

    Article  CAS  Google Scholar 

  35. Semins, M. J., Trock, B. J. & Matlaga, B. R. The safety of ureteroscopy during pregnancy: a systematic review and meta-analysis. J. Urol. 181, 139–143 (2009).

    Article  Google Scholar 

  36. Swartz, M. A., Lydon-Rochelle, M. T., Simon, D., Wright, J. L. & Porter, M. P. Admission for nephrolithiasis in pregnancy and risk of adverse birth outcomes. Obstet. Gynecol. 109, 1099–1104 (2007).

    Article  Google Scholar 

  37. Kavoussi, L. R., Albala, D. M., Basler, J. W., Apte, S. & Clayman, R. V. Percutaneous management of urolithiasis during pregnancy. J. Urol. 148, 1069–1071 (1992).

    Article  CAS  Google Scholar 

  38. Khoo, L., Anson, K. & Patel, U. Success and short-term complication rates of percutaneous nephrostomy during pregnancy. J. Vasc. Interv. Radiol. 15, 1469–1473 (2004).

    Article  Google Scholar 

  39. McAleer, S. J. & Loughlin, K. R. Nephrolithiasis and pregnancy. Curr. Opin. Urol. 14, 123–127 (2004).

    Article  Google Scholar 

  40. Turna, B. et al. Safety and efficacy of flexible ureterorenoscopy and holmium:YAG lithotripsy for intrarenal stones in anticoagulated cases. J. Urol. 179, 1415–1419 (2008).

    Article  Google Scholar 

  41. Watterson, J. D. et al. Safety and efficacy of holmium: YAG laser lithotripsy in patients with bleeding diatheses. J. Urol. 168, 442–445 (2002).

    Article  Google Scholar 

  42. Klingler, H. C. et al. Stone treatment and coagulopathy. Eur. Urol. 43, 75–79 (2003).

    Article  CAS  Google Scholar 

  43. Pearle, M. S. et al. Prospective randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J. Urol. 173, 2005–2009 (2005).

    Article  Google Scholar 

  44. Hollenbeck, B. K., Schuster, T. G., Faerber, G. J. & Wolf, J. S. Jr. Safety and efficacy of same-session bilateral ureteroscopy. J. Endourol. 17, 881–885 (2003).

    Article  Google Scholar 

  45. Grossi, F. S. et al. Bilateral same session ureteroscopy: safety and efficacy. Arch. Ital. Urol. Androl. 79, 20–22 (2007).

    PubMed  Google Scholar 

  46. Gunlusoy, B. et al. Bilateral single-session ureteroscopy with pneumatic lithotripsy for bilateral ureter stones: feasible and safe. Urol. Int. 81, 202–205 (2008).

    Article  Google Scholar 

  47. Ryan, P. C., Lennon, G. M., McLean, P. A. & Fitzpatrick, J. M. The effects of acute and chronic JJ stent placement on upper urinary tract motility and calculus transit. Br. J. Urol. 74, 434–439 (1994).

    Article  CAS  Google Scholar 

  48. Knudsen, B. E., Beiko, D. T. & Denstedt, J. D. Stenting after ureteroscopy: pros and cons. Urol. Clin. North Am. 31, 173–180 (2004).

    Article  Google Scholar 

  49. Chen, Y. T. et al. Is ureteral stenting necessary after uncomplicated ureteroscopic lithotripsy? A prospective, randomized controlled trial. J. Urol. 167, 1977–1980 (2002).

    Article  Google Scholar 

  50. Rapoport, D., Perks, A. E. & Teichman, J. M. Ureteral access sheath use and stenting in ureteroscopy: effect on unplanned emergency room visits and cost. J. Endourol. 21, 993–997 (2007).

    Article  Google Scholar 

  51. Vanlangendonck, R. & Landman, J. Ureteral access strategies: pro-access sheath. Urol. Clin. North Am. 31, 71–81 (2004).

    Article  Google Scholar 

  52. Kourambas, J., Byrne, R. R. & Preminger, G. M. Does a ureteral access sheath facilitate ureteroscopy? J. Urol. 165, 789–793 (2001).

    Article  CAS  Google Scholar 

  53. Abrahams, H. M. & Stoller, M. L. The argument against the routine use of ureteral access sheaths. Urol. Clin. North Am. 31, 83–87 (2004).

    Article  Google Scholar 

  54. Lallas, C. D. et al. Laser Doppler flowmetric determination of ureteral blood flow after ureteral access sheath placement. J. Endourol. 16, 583–590 (2002).

    Article  Google Scholar 

  55. Delvecchio, F. C. et al. Assessment of stricture formation with the ureteral access sheath. Urology 61, 518–522 (2003).

    Article  Google Scholar 

  56. Geavlete, P., Georgescu, D., Nita, G., Mirciulescu, V. & Cauni, V. Complications of 2735 retrograde semirigid ureteroscopy procedures: a single-center experience. J. Endourol. 20, 179–185 (2006).

    Article  Google Scholar 

  57. Marguet, C. G. et al. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse nd:yag laser and the holmium:yag laser. J. Urol. 173, 1797–1800 (2005).

    Article  Google Scholar 

  58. Gonen, M., Cenker, A., Istanbulluoglu, O. & Ozkardes, H. Efficacy of dretler stone cone in the treatment of ureteral stones with pneumatic lithotripsy. Urol. Int. 76, 159–162 (2006).

    Article  CAS  Google Scholar 

  59. Eisner, B. H., Pengune, W. & Stoller, M. L. Use of an antiretropulsion device to prevent stone retropulsion significantly increases the efficiency of pneumatic lithotripsy: an in vitro study. BJU Int. 104, 858–861 (2009).

    Article  Google Scholar 

  60. Desai, M. R. et al. The Dretler stone cone: a device to prevent ureteral stone migration—the initial clinical experience. J. Urol. 167, 1985–1988 (2002).

    Article  Google Scholar 

  61. Lee, H. J. et al. In vitro evaluation of nitinol urological retrieval coil and ureteral occlusion device: retropulsion and holmium laser fragmentation efficiency. J. Urol. 180, 969–973 (2008).

    Article  Google Scholar 

  62. Eisner, B. H. & Dretler, S. P. Use of the Stone Cone for prevention of calculus retropulsion during holmium:YAG laser lithotripsy: case series and review of the literature. Urol. Int. 82, 356–360 (2009).

    Article  Google Scholar 

  63. Sacco, D., McDougal, W. S. & Schwarz, A. Preventing migration of stones during fragmentation with thermosensitive polymer. J. Endourol. 21, 504–507 (2007).

    Article  Google Scholar 

  64. Adiyat, K. T., Meuleners, R. & Monga, M. Selective postoperative imaging after ureteroscopy. Urology 73, 490–493 (2009).

    Article  Google Scholar 

  65. Leijte, J. A., Oddens, J. R. & Lock, T. M. Holmium laser lithotripsy for ureteral calculi: predictive factors for complications and success. J. Endourol. 22, 257–260 (2008).

    Article  Google Scholar 

  66. Humphreys, M. R. et al. A new world revealed: early experience with digital ureteroscopy. J. Urol. 179, 970–975 (2008).

    Article  Google Scholar 

  67. Desai, M. M. et al. Flexible robotic retrograde renoscopy: description of novel robotic device and preliminary laboratory experience. Urology 72, 42–46 (2008).

    Article  Google Scholar 

  68. Canes, D., Lehman, A. C., Farritor, S. M., Oleynikov, D. & Desai, M. M. The future of NOTES instrumentation: Flexible robotics and in vivo minirobots. J. Endourol. 23, 787–792 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Eisner.

Ethics declarations

Competing interests

B. H. Eisner has been a consultant for The Ravine Group, PercSys, and has received speakers bureau honoraria from Boston Scientific. S. P. Dretler has been a consultant for Accellent and Oxford Bioscience. M. P. Kurtz declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisner, B., Kurtz, M. & Dretler, S. Ureteroscopy for the management of stone disease. Nat Rev Urol 7, 40–45 (2010). https://doi.org/10.1038/nrurol.2009.233

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.233

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing