Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The non-haemostatic role of platelets in systemic lupus erythematosus

Key Points

  • Platelets contain and can synthesize molecules capable of modulating adaptive and innate immune responses.

  • In systemic lupus erythematosus (SLE), platelets are activated, their abundance often reflects disease activity, and treatments for SLE can affect platelet functions.

  • Platelets express immune receptors, including FcγRIIA and Toll-like receptors, that could initiate platelet activation in SLE.

  • Complement activation during the course of SLE implicates platelets and supports a role for platelets in thrombosis in SLE.

  • Molecules such as CD40 ligand, IL-1, serotonin and danger-associated molecular patterns are present in platelets and can participate in the pathogenesis of SLE.

  • Platelets can shed membrane vesicles, known as microparticles or microvesicles, that convey inflammatory mediators and disseminate mitochondrial antigens for the formation of immune complexes.

Abstract

Dysregulation of lymphocyte function, accumulation of autoantibodies and defective clearance of circulating immune complexes and apoptotic cells are hallmarks of systemic lupus erythematosus (SLE). Moreover, it is now evident that an intricate interplay between the adaptive and innate immune systems contributes to the pathogenesis of SLE, ultimately resulting in chronic inflammation and organ damage. Platelets circulate in the blood and are chiefly recognized for their role in the prevention of bleeding and promotion of haemostasis; however, accumulating evidence points to a role for platelets in both adaptive and innate immunity. Through a broad repertoire of receptors, platelets respond promptly to immune complexes, complement and damage-associated molecular patterns, and represent a major reservoir of immunomodulatory molecules in the circulation. Furthermore, evidence suggests that platelets are activated in patients with SLE, and that they could contribute to the circulatory autoantigenic load through the release of microparticles and mitochondrial antigens. Herein, we highlight how platelets contribute to the immune response and review evidence implicating platelets in the pathogenesis of SLE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Megakaryocytes contribute to the immunomodulatory content of platelets.
Figure 2: Platelet activation pathways and putative effects of activated platelets in SLE pathogenesis.
Figure 3: Mechanisms potentially involved in the dysregulation of platelet serotonin levels in SLE.
Figure 4: Platelets release microparticles and mitochondrial antigens.

Similar content being viewed by others

References

  1. Lovgren, T., Eloranta, M. L., Bave, U., Alm, G. V. & Ronnblom, L. Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50, 1861–1872 (2004).

    PubMed  Google Scholar 

  2. Bengtsson, A. A. & Ronnblom, L. Systemic lupus erythematosus: still a challenge for physicians. J. Intern. Med. 281, 52–64 (2017).

    CAS  PubMed  Google Scholar 

  3. Mahajan, A., Herrmann, M. & Munoz, L. E. Clearance deficiency and cell death pathways: a model for the pathogenesis of SLE. Front. Immunol. 7, 35 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sjoberg, A. P., Trouw, L. A. & Blom, A. M. Complement activation and inhibition: a delicate balance. Trends Immunol. 30, 83–90 (2009).

    CAS  PubMed  Google Scholar 

  6. Truedsson, L., Bengtsson, A. A. & Sturfelt, G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity 40, 560–566 (2007).

    CAS  PubMed  Google Scholar 

  7. Pickering, M. C., Botto, M., Taylor, P. R., Lachmann, P. J. & Walport, M. J. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv. Immunol. 76, 227–324 (2000).

    CAS  PubMed  Google Scholar 

  8. Manderson, A. P., Botto, M. & Walport, M. J. The role of complement in the development of systemic lupus erythematosus. Annu. Rev. Immunol. 22, 431–456 (2004).

    CAS  PubMed  Google Scholar 

  9. Esdaile, J. M. et al. Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum. 44, 2331–2337 (2001).

    CAS  PubMed  Google Scholar 

  10. Manzi, S. et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am. J. Epidemiol. 145, 408–415 (1997).

    CAS  PubMed  Google Scholar 

  11. Bengtsson, C., Ohman, M. L., Nived, O. & Rantapaa Dahlqvist, S. Cardiovascular event in systemic lupus erythematosus in northern Sweden: incidence and predictors in a 7-year follow-up study. Lupus 21, 452–459 (2012).

    CAS  PubMed  Google Scholar 

  12. Willis, R., Harris, E. N. & Pierangeli, S. S. Pathogenesis of the antiphospholipid syndrome. Semin. Thromb. Hemost 38, 305–321 (2012).

    CAS  PubMed  Google Scholar 

  13. Chighizola, C. B., Raschi, E., Borghi, M. O. & Meroni, P. L. Update on the pathogenesis and treatment of the antiphospholipid syndrome. Curr. Opin. Rheumatol 27, 476–482 (2015).

    CAS  PubMed  Google Scholar 

  14. Kapur, R., Zufferey, A., Boilard, E. & Semple, J. W. Nouvelle cuisine: platelets served with inflammation. J. Immunol. 194, 5579–5587 (2015).

    CAS  PubMed  Google Scholar 

  15. Semple, J. W., Italiano, J. E. & Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 11, 264–274 (2011).

    CAS  PubMed  Google Scholar 

  16. Grozovsky, R., Giannini, S., Falet, H. & Hoffmeister, K. M. Regulating billions of blood platelets: glycans and beyond. Blood 126, 1877–1884 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Machlus, K. R. & Italiano, J. E. Jr. The incredible journey: from megakaryocyte development to platelet formation. J. Cell Biol. 201, 785–796 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lefrancais, E. et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544, 105–109 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fuentes, R. et al. Infusion of mature megakaryocytes into mice yields functional platelets. J. Clin. Invest. 120, 3917–3922 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nieswandt, B., Varga-Szabo, D. & Elvers, M. Integrins in platelet activation. J. Thromb. Haemost. 7 (Suppl. 1), 206–209 (2009).

    CAS  PubMed  Google Scholar 

  21. Clemetson, K. J. Platelets and primary haemostasis. Thromb. Res. 129, 220–224 (2012).

    CAS  PubMed  Google Scholar 

  22. Boulaftali, Y., Hess, P. R., Kahn, M. L. & Bergmeier, W. Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity. Circ. Res. 114, 1174–1184 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Karas, S. P., Rosse, W. F. & Kurlander, R. J. Characterization of the IgG-Fc receptor on human platelets. Blood 60, 1277–1282 (1982).

    CAS  PubMed  Google Scholar 

  24. Gros, A. et al. Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex-mediated inflammation in mice. Blood 126, 1017–1026 (2015).

    CAS  PubMed  Google Scholar 

  25. King, S. M. & Reed, G. L. Development of platelet secretory granules. Semin. Cell Dev. Biol. 13, 293–302 (2002).

    CAS  PubMed  Google Scholar 

  26. Maynard, D. M., Heijnen, H. F., Horne, M. K., White, J. G. & Gahl, W. A. Proteomic analysis of platelet α-granules using mass spectrometry. J. Thromb. Haemost. 5, 1945–1955 (2007).

    CAS  PubMed  Google Scholar 

  27. Nieswandt, B., Pleines, I. & Bender, M. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J. Thromb. Haemost. 9 (Suppl. 1), 92–104 (2011).

    CAS  PubMed  Google Scholar 

  28. George, J. N. Platelets. Lancet 355, 1531–1539 (2000).

    CAS  PubMed  Google Scholar 

  29. Cox, D., Kerrigan, S. W. & Watson, S. P. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J. Thromb. Haemost. 9, 1097–1107 (2011).

    CAS  PubMed  Google Scholar 

  30. Zahn, A., Jennings, N., Ouwehand, W. H. & Allain, J. P. Hepatitis C virus interacts with human platelet glycoprotein VI. J. Gen. Virol. 87, 2243–2251 (2006).

    CAS  PubMed  Google Scholar 

  31. Chaipan, C. et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J. Virol. 80, 8951–8960 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rondina, M. T., Weyrich, A. S. & Zimmerman, G. A. Platelets as cellular effectors of inflammation in vascular diseases. Circ. Res. 112, 1506–1519 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sreeramkumar, V. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 346, 1234–1238 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhi, H. et al. Platelet activation and thrombus formation over IgG immune complexes requires integrin αIIbβ3 and Lyn kinase. PLoS ONE 10, e0135738 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Cloutier, N. et al. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proc. Natl Acad. Sci. USA 115, E1550–E1559 (2018).

    CAS  PubMed  Google Scholar 

  36. Boilard, E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327, 580–583 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hitchcock, J. R. et al. Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets. J. Clin. Invest. 125, 4429–4446 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Lax, S. et al. Platelet CLEC-2 protects against lung injury via effects of its ligand podoplanin on inflammatory alveolar macrophages in the mouse. Am. J. Physiol. Lung Cell Mol. Physiol. 313, L1016–L1029 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Nylander, A. N. et al. Podoplanin is a negative regulator of Th17 inflammation. JCI Insight 2, e92321 (2017).

    PubMed Central  Google Scholar 

  40. Bruhns, P. & Jonsson, F. Mouse and human FcR effector functions. Immunol. Rev. 268, 25–51 (2015).

    CAS  PubMed  Google Scholar 

  41. McKenzie, S. E. et al. The role of the human Fc receptor FcγRIIA in the immune clearance of platelets: a transgenic mouse model. J. Immunol. 162, 4311–4318 (1999).

    CAS  PubMed  Google Scholar 

  42. Aslam, R. et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo. Blood 107, 637–641 (2006).

    CAS  PubMed  Google Scholar 

  43. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007).

    CAS  PubMed  Google Scholar 

  44. Thon, J. N. et al. T granules in human platelets function in TLR9 organization and signaling. J. Cell Biol. 198, 561–574 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cognasse, F. et al. Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br. J. Haematol. 141, 84–91 (2008).

    CAS  PubMed  Google Scholar 

  46. Morrell, C. N., Aggrey, A. A., Chapman, L. M. & Modjeski, K. L. Emerging roles for platelets as immune and inflammatory cells. Blood 123, 2759–2767 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Speth, C. et al. Complement and platelets: Mutual interference in the immune network. Mol. Immunol. 67, 108–118 (2015).

    CAS  PubMed  Google Scholar 

  48. Zufferey, A. et al. Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets. Blood Adv. 1, 1773–1785 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chapman, L. M. et al. Platelets present antigen in the context of MHC class I. J. Immunol. 189, 916–923 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Assoian, R. K., Komoriya, A., Meyers, C. A., Miller, D. M. & Sporn, M. B. Transforming growth factor-β in human platelets. Identification of a major storage site, purification, and characterization. J. Biol. Chem. 258, 7155–7160 (1983).

    CAS  PubMed  Google Scholar 

  51. Petersen, F., Bock, L., Flad, H. D. & Brandt, E. Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. Blood 94, 4020–4028 (1999).

    CAS  PubMed  Google Scholar 

  52. Shi, G. et al. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J. Clin. Invest. 124, 543–552 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Italiano, J. E. Jr & Battinelli, E. M. Selective sorting of α-granule proteins. J. Thromb. Haemost. 7 (Suppl. 1), 173–176 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pignatelli, P. et al. Tumor necrosis factor-α as trigger of platelet activation in patients with heart failure. Blood 106, 1992–1994 (2005).

    CAS  PubMed  Google Scholar 

  55. Negrotto, S. et al. Expression and functionality of type I interferon receptor in the megakaryocytic lineage. J. Thromb. Haemost. 9, 2477–2485 (2011).

    CAS  PubMed  Google Scholar 

  56. Beaulieu, L. M. et al. Interleukin 1 receptor 1 and interleukin 1β regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans. Arterioscler. Thromb. Vasc. Biol. 34, 552–564 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bester, J. & Pretorius, E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci. Rep. 6, 32188 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hamad, O. A. et al. Complement activation triggered by chondroitin sulfate released by thrombin receptor-activated platelets. J. Thromb. Haemost. 6, 1413–1421 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Denis, M. M. et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 122, 379–391 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hawrylowicz, C. M., Howells, G. L. & Feldmann, M. Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J. Exp. Med. 174, 785–790 (1991).

    CAS  PubMed  Google Scholar 

  61. Brown, G. T. & McIntyre, T. M. Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1β-rich microparticles. J. Immunol. 186, 5489–5496 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Landry, P. et al. Existence of a microRNA pathway in anucleate platelets. Nat. Struct. Mol. Biol. 16, 961–966 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. McManus, D. D. & Freedman, J. E. MicroRNAs in platelet function and cardiovascular disease. Nat. Rev. Cardiol. 12, 711–717 (2015).

    CAS  PubMed  Google Scholar 

  64. Laffont, B. et al. Activated platelets can deliver mRNA regulatory Ago2·microRNA complexes to endothelial cells via microparticles. Blood 122, 253–261 (2013).

    CAS  PubMed  Google Scholar 

  65. Laffont, B. et al. Platelet microparticles reprogram macrophage gene expression and function. Thromb. Haemost. 115, 311–323 (2016).

    PubMed  Google Scholar 

  66. Duchez, A. C. et al. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc. Natl Acad. Sci. USA 112, E3564–E3573 (2015).

    CAS  PubMed  Google Scholar 

  67. Michael, J. V. et al. Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood 130, 567–580 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Boilard, E., Blanco, P. & Nigrovic, P. A. Platelets: active players in the pathogenesis of arthritis and SLE. Nat. Rev. Rheumatol. 8, 534–542 (2012).

    CAS  PubMed  Google Scholar 

  69. Ferro, D. et al. Determinants of enhanced thromboxane biosynthesis in patients with systemic lupus erythematosus. Arthritis Rheum. 42, 2689–2697 (1999).

    CAS  PubMed  Google Scholar 

  70. Nagahama, M. et al. Platelet activation markers and soluble adhesion molecules in patients with systemic lupus erythematosus. Autoimmunity 33, 85–94 (2001).

    CAS  PubMed  Google Scholar 

  71. Tam, L. S. et al. Patients with systemic lupus erythematosus show increased platelet activation and endothelial dysfunction induced by acute hyperhomocysteinemia. J. Rheumatol. 30, 1479–1484 (2003).

    PubMed  Google Scholar 

  72. Ekdahl, K. N. et al. Thrombotic disease in systemic lupus erythematosus is associated with a maintained systemic platelet activation. Br. J. Haematol. 125, 74–78 (2004).

    PubMed  Google Scholar 

  73. Nhek, S. et al. Activated platelets induce endothelial cell activation via an interleukin-1β pathway in systemic lupus erythematosus. Arterioscler. Thromb. Vasc. Biol. 37, 707–716 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Duffau, P. et al. Platelet CD154 potentiates interferon-α secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci. Transl Med. 2, 47ra63 (2010).

    PubMed  Google Scholar 

  75. Goules, A. et al. Elevated levels of soluble CD40 ligand (sCD40L) in serum of patients with systemic autoimmune diseases. J. Autoimmun. 26, 165–171 (2006).

    CAS  PubMed  Google Scholar 

  76. Ekdahl, K. N., Ronnblom, L., Sturfelt, G. & Nilsson, B. Increased phosphate content in complement component C3, fibrinogen, vitronectin, and other plasma proteins in systemic lupus erythematosus: covariation with platelet activation and possible association with thrombosis. Arthritis Rheum. 40, 2178–2186 (1997).

    CAS  PubMed  Google Scholar 

  77. Lang, T., Foote, A., Lee, J. P., Morand, E. F. & Harris, J. MIF: implications in the pathoetiology of systemic lupus erythematosus. Front. Immunol. 6, 577 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. Foote, A. et al. Macrophage migration inhibitory factor in systemic lupus erythematosus. J. Rheumatol. 31, 268–273 (2004).

    CAS  PubMed  Google Scholar 

  79. Devarapu, S. K. et al. Dual blockade of the pro-inflammatory chemokine CCL2 and the homeostatic chemokine CXCL12 is as effective as high dose cyclophosphamide in murine proliferative lupus nephritis. Clin. Immunol. 169, 139–147 (2016).

    CAS  PubMed  Google Scholar 

  80. Hrycek, E., Franek, A., Blaszczak, E., Dworak, J. & Hrycek, A. Serum levels of selected chemokines in systemic lupus erythematosus patients. Rheumatol. Int. 33, 2423–2427 (2013).

    CAS  PubMed  Google Scholar 

  81. Wang, A. et al. Dysregulated expression of CXCR4/CXCL12 in subsets of patients with systemic lupus erythematosus. Arthritis Rheum. 62, 3436–3446 (2010).

    PubMed  Google Scholar 

  82. Li, Y. et al. Urinary biomarkers in lupus nephritis. Autoimmun. Rev. 5, 383–388 (2006).

    CAS  PubMed  Google Scholar 

  83. Patsouras, M. D. et al. Elevated expression of platelet-derived chemokines in patients with antiphospholipid syndrome. J. Autoimmun. 65, 30–37 (2015).

    CAS  PubMed  Google Scholar 

  84. Boilard, E. Platelet-derived interleukin-1β fuels the fire in blood vessels in systemic lupus erythematosus. Arterioscler. Thromb. Vasc. Biol. 37, 607–608 (2017).

    CAS  PubMed  Google Scholar 

  85. Lood, C. et al. Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease. Blood 116, 1951–1957 (2010).

    CAS  PubMed  Google Scholar 

  86. Aslan, J. E. et al. Histone deacetylase 6-mediated deacetylation of α-tubulin coordinates cytoskeletal and signaling events during platelet activation. Am. J. Physiol. Cell Physiol. 305, C1230–C1239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cerecedo, D., Martinez-Vieyra, I., Alonso-Rangel, L., Benitez-Cardoza, C. & Ortega, A. Epithelial sodium channel modulates platelet collagen activation. Eur. J. Cell Biol. 93, 127–136 (2014).

    CAS  PubMed  Google Scholar 

  88. Pretorius, E., du Plooy, J., Soma, P. & Gasparyan, A. Y. An ultrastructural analysis of platelets, erythrocytes, white blood cells, and fibrin network in systemic lupus erythematosus. Rheumatol Int. 34, 1005–1009 (2014).

    CAS  PubMed  Google Scholar 

  89. Lood, C. et al. Decreased platelet size is associated with platelet activation and anti-phospholipid syndrome in systemic lupus erythematosus. Rheumatology (Oxford) 56, 408–416 (2017).

    CAS  Google Scholar 

  90. Delgado-Garcia, G. et al. Mean platelet volume is decreased in adults with active lupus disease. Revista Brasileira Reumatol. 56, 504–508 (2016).

    Google Scholar 

  91. Bai, M. et al. Mean platelet volume could reflect disease activity of adult patients with systemic lupus erythematosus. Clin. Lab. 62, 1317–1322 (2016).

    CAS  PubMed  Google Scholar 

  92. Leader, A., Pereg, D. & Lishner, M. Are platelet volume indices of clinical use? A multidisciplinary review. Ann. Med. 44, 805–816 (2012).

    PubMed  Google Scholar 

  93. Leytin, V. Apoptosis in the anucleate platelet. Blood Rev. 26, 51–63 (2012).

    CAS  PubMed  Google Scholar 

  94. White, S. & Rosen, A. Apoptosis in systemic lupus erythematosus. Curr. Opin. Rheumatol 15, 557–562 (2003).

    CAS  PubMed  Google Scholar 

  95. Sellam, J. et al. Increased levels of circulating microparticles in primary Sjögren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res. Ther. 11, R156 (2009).

    PubMed  PubMed Central  Google Scholar 

  96. Pereira, J. et al. Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb. Haemost. 95, 94–99 (2006).

    CAS  PubMed  Google Scholar 

  97. Jagroop, I. A. & Mikhailidis, D. P. Angiotensin II can induce and potentiate shape change in human platelets: effect of losartan. J. Hum. Hypertension 14, 581–585 (2000).

    CAS  Google Scholar 

  98. Kucera, M. et al. The effects of atorvastatin treatment on the mean platelet volume and red cell distribution width in patients with dyslipoproteinemia and comparison with plasma atherogenicity indicators — a pilot study. Clin. Biochem. 48, 557–561 (2015).

    CAS  PubMed  Google Scholar 

  99. Sivri, N. et al. Statins decrease mean platelet volume irrespective of cholesterol lowering effect. Kardiol. Polska 71, 1042–1047 (2013).

    PubMed  Google Scholar 

  100. Varol, E. & Ozaydin, M. Mean platelet volume as a surrogate marker of inflammation in systemic lupus erythematosus. Clin. Rheumatol 33, 1691–1692 (2014).

    PubMed  Google Scholar 

  101. Tan, E. M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25, 1271–1277 (1982).

    CAS  PubMed  Google Scholar 

  102. Petri, M. et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 64, 2677–2686 (2012).

    PubMed  PubMed Central  Google Scholar 

  103. Abdel Galil, S. M. et al. Prognostic significance of platelet count in SLE patients. Platelets 28, 203–207 (2017).

    CAS  PubMed  Google Scholar 

  104. Cervera, R. et al. Morbidity and mortality in systemic lupus erythematosus during a 5-year period. A multicenter prospective study of 1,000 patients. European Working Party on Systemic Lupus Erythematosus. Medicine 78, 167–175 (1999).

    CAS  PubMed  Google Scholar 

  105. Keeling, D. M. & Isenberg, D. A. Haematological manifestations of systemic lupus erythematosus. Blood Rev. 7, 199–207 (1993).

    CAS  PubMed  Google Scholar 

  106. Fayyaz, A. et al. Haematological manifestations of lupus. Lupus Sci. Med. 2, e000078 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. Reveille, J. D., Bartolucci, A. & Alarcon, G. S. Prognosis in systemic lupus erythematosus. Negative impact of increasing age at onset, black race, and thrombocytopenia, as well as causes of death. Arthritis Rheum. 33, 37–48 (1990).

    CAS  PubMed  Google Scholar 

  108. Zhao, H., Li, S. & Yang, R. Thrombocytopenia in patients with systemic lupus erythematosus: significant in the clinical implication and prognosis. Platelets 21, 380–385 (2010).

    CAS  PubMed  Google Scholar 

  109. Fernandez, M. et al. Systemic lupus erythematosus in a multiethnic US cohort: XLIII. The significance of thrombocytopenia as a prognostic factor. Arthritis Rheum. 56, 614–621 (2007).

    PubMed  Google Scholar 

  110. Feinglass, E. J., Arnett, F. C., Dorsch, C. A., Zizic, T. M. & Stevens, M. B. Neuropsychiatric manifestations of systemic lupus erythematosus: diagnosis, clinical spectrum, and relationship to other features of the disease. Medicine 55, 323–339 (1976).

    CAS  PubMed  Google Scholar 

  111. Miller, M. H., Urowitz, M. B. & Gladman, D. D. The significance of thrombocytopenia in systemic lupus erythematosus. Arthritis Rheum. 26, 1181–1186 (1983).

    CAS  PubMed  Google Scholar 

  112. Pujol, M., Ribera, A., Vilardell, M., Ordi, J. & Feliu, E. High prevalence of platelet autoantibodies in patients with systemic lupus erythematosus. Br. J. Haematol. 89, 137–141 (1995).

    CAS  PubMed  Google Scholar 

  113. Fabris, F., Casonato, A., Randi, M. L., Luzzatto, G. & Girolami, A. Clinical significance of surface and internal pools of platelet-associated immunoglobulins in immune thrombocytopenia. Scand. J. Haematol. 37, 215–220 (1986).

    CAS  PubMed  Google Scholar 

  114. Howe, S. E. & Lynch, D. M. Platelet antibody binding in systemic lupus erythematosus. J. Rheumatol 14, 482–486 (1987).

    CAS  PubMed  Google Scholar 

  115. Hisada, R. et al. Thrombotic risk stratification by platelet count in patients with antiphospholipid antibodies: a longitudinal study. J. Thromb. Haemost. 15, 1782–1787 (2017).

    CAS  PubMed  Google Scholar 

  116. Michel, M. et al. The spectrum of Evans syndrome in adults: new insight into the disease based on the analysis of 68 cases. Blood 114, 3167–3172 (2009).

    CAS  PubMed  Google Scholar 

  117. Zufferey, A., Kapur, R. & Semple, J. W. Pathogenesis and therapeutic mechanisms in immune thrombocytopenia (ITP). J. Clin. Med. 6, 16 (2017).

    PubMed Central  Google Scholar 

  118. Fabris, F. et al. Specific antiplatelet autoantibodies in patients with antiphospholipid antibodies and thrombo-cytopenia. Eur. J. Haematol. 53, 232–236 (1994).

    CAS  PubMed  Google Scholar 

  119. Qian, K. et al. Functional expression of IgA receptor FcαRI on human platelets. J. Leukoc. Biol. 84, 1492–1500 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Qiao, J., Al-Tamimi, M., Baker, R. I., Andrews, R. K. & Gardiner, E. E. The platelet Fc receptor, FcγRIIa. Immunol. Rev. 268, 241–252 (2015).

    CAS  PubMed  Google Scholar 

  121. Reveille, J. D. The genetic basis of autoantibody production. Autoimmun Rev. 5, 389–398 (2006).

    CAS  PubMed  Google Scholar 

  122. Balada, E. et al. Multiplex family-based study in systemic lupus erythematosus: association between the R620W polymorphism of PTPN22 and the FcγRIIa (CD32A) R131 allele. Tissue Antigens 68, 432–438 (2006).

    CAS  PubMed  Google Scholar 

  123. Arman, M. & Krauel, K. Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis. J. Thromb. Haemost. 13, 893–908 (2015).

    CAS  PubMed  Google Scholar 

  124. Huang, Z. Y., Chien, P., Indik, Z. K. & Schreiber, A. D. Human platelet FcγRIIA and phagocytes in immune-complex clearance. Mol. Immunol. 48, 691–696 (2011).

    CAS  PubMed  Google Scholar 

  125. Worth, R. G. et al. Platelet FcγRIIA binds and internalizes IgG-containing complexes. Exp. Hematol. 34, 1490–1495 (2006).

    CAS  PubMed  Google Scholar 

  126. Tsokos, G. C., Lo, M. S., Reis, P. C. & Sullivan, K. E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 716–730 (2016).

    CAS  PubMed  Google Scholar 

  127. Mayadas, T. N., Tsokos, G. C. & Tsuboi, N. Mechanisms of immune complex-mediated neutrophil recruitment and tissue injury. Circulation 120, 2012–2024 (2009).

    PubMed  PubMed Central  Google Scholar 

  128. Reilly, M. P. et al. Heparin-induced thrombocytopenia/thrombosis in a transgenic mouse model requires human platelet factor 4 and platelet activation through FcγRIIA. Blood 98, 2442–2447 (2001).

    CAS  PubMed  Google Scholar 

  129. Boilard, E. et al. Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. Blood 123, 2854–2863 (2014).

    CAS  PubMed  Google Scholar 

  130. Arman, M. et al. Amplification of bacteria-induced platelet activation is triggered by FcγRIIA, integrin αIIbβ3, and platelet factor 4. Blood 123, 3166–3174 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Berlacher, M. D. et al. FcγRIIa ligation induces platelet hypersensitivity to thrombotic stimuli. Am. J. Pathol. 182, 244–254 (2013).

    CAS  PubMed  Google Scholar 

  132. Johnson, R. J. et al. Platelets mediate neutrophil-dependent immune complex nephritis in the rat. J. Clin. Invest. 82, 1225–1235 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Zoja, C. & Remuzzi, G. Role of platelets in progressive glomerular diseases. Pediatr. Nephrol. 9, 495–502 (1995).

    CAS  PubMed  Google Scholar 

  134. Hamad, O. A. et al. Complement component C3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1. J. Immunol. 184, 2686–2692 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Saggu, G. et al. Identification of a novel mode of complement activation on stimulated platelets mediated by properdin and C3(H2O). J. Immunol. 190, 6457–6467 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Peerschke, E. I., Yin, W., Grigg, S. E. & Ghebrehiwet, B. Blood platelets activate the classical pathway of human complement. J. Thromb. Haemost. 4, 2035–2042 (2006).

    CAS  PubMed  Google Scholar 

  137. Peerschke, E. I., Murphy, T. K. & Ghebrehiwet, B. Activation-dependent surface expression of gC1qR/p33 on human blood platelets. Thromb. Haemost. 89, 331–339 (2003).

    CAS  PubMed  Google Scholar 

  138. Peerschke, E. I., Yin, W. & Ghebrehiwet, B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol. Immunol. 47, 2170–2175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Del Conde, I., Cruz, M. A., Zhang, H., Lopez, J. A. & Afshar-Kharghan, V. Platelet activation leads to activation and propagation of the complement system. J. Exp. Med. 201, 871–879 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Schmaier, A. H., Amenta, S., Xiong, T., Heda, G. D. & Gewirtz, A. M. Expression of platelet C1 inhibitor. Blood 82, 465–474 (1993).

    CAS  PubMed  Google Scholar 

  141. Hamad, O. A. et al. Contribution of chondroitin sulfate A to the binding of complement proteins to activated platelets. PLoS ONE 5, e12889 (2010).

    PubMed  PubMed Central  Google Scholar 

  142. Peerschke, E. I. & Ghebrehiwet, B. C1q augments platelet activation in response to aggregated Ig. J. Immunol. 159, 5594–5598 (1997).

    CAS  PubMed  Google Scholar 

  143. Lood, C. et al. Increased C1q, C4 and C3 deposition on platelets in patients with systemic lupus erythematosus — a possible link to venous thrombosis? Lupus 21, 1423–1432 (2012).

    CAS  PubMed  Google Scholar 

  144. Murata, K. & Baldwin, W. M. 3rd. Mechanisms of complement activation, C4d deposition, and their contribution to the pathogenesis of antibody-mediated rejection. Transplant. Rev. 23, 139–150 (2009).

    Google Scholar 

  145. Navratil, J. S. et al. Platelet C4d is highly specific for systemic lupus erythematosus. Arthritis Rheum. 54, 670–674 (2006).

    CAS  PubMed  Google Scholar 

  146. Peerschke, E. I. et al. Serum complement activation on heterologous platelets is associated with arterial thrombosis in patients with systemic lupus erythematosus and antiphospholipid antibodies. Lupus 18, 530–538 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ziakas, P. D., Poulou, L. S., Giannouli, S., Tzioufas, A. G. & Voulgarelis, M. Thrombocytopenia in lupus: baseline C3 as an independent risk factor for relapse. Ann. Rheum. Dis. 66, 130–131 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Baroni, G. et al. The role of platelets in antiphospholipid syndrome. Platelets 28, 762–766 (2017).

    CAS  PubMed  Google Scholar 

  149. Urbanus, R. T., Pennings, M. T., Derksen, R. H. & de Groot, P. G. Platelet activation by dimeric β2-glycoprotein I requires signaling via both glycoprotein Ibα and apolipoprotein E receptor 2'. J. Thromb. Haemost. 6, 1405–1412 (2008).

    CAS  PubMed  Google Scholar 

  150. Shi, T. et al. Anti-β2-glycoprotein I antibodies in complex with β2-glycoprotein I can activate platelets in a dysregulated manner via glycoprotein Ib-IX-V. Arthritis Rheum. 54, 2558–2567 (2006).

    CAS  PubMed  Google Scholar 

  151. Khamashta, M. A. et al. Immune mediated mechanism for thrombosis: antiphospholipid antibody binding to platelet membranes. Ann. Rheum. Dis. 47, 849–854 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lood, C. et al. Platelet activation and anti-phospholipid antibodies collaborate in the activation of the complement system on platelets in systemic lupus erythematosus. PLoS ONE 9, e99386 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. Pierangeli, S. S., Vega-Ostertag, M., Liu, X. & Girardi, G. Complement activation: a novel pathogenic mechanism in the antiphospholipid syndrome. Ann. NY Acad. Sci. 1051, 413–420 (2005).

    CAS  PubMed  Google Scholar 

  154. Jonsson, G. et al. Rheumatological manifestations, organ damage and autoimmunity in hereditary C2 deficiency. Rheumatology (Oxford) 46, 1133–1139 (2007).

    CAS  Google Scholar 

  155. Rodriguez-Pinto, I., Espinosa, G. & Cervera, R. Catastrophic antiphospholipid syndrome: the current management approach. Best Pract. Res. Clin. Rheumatol. 30, 239–249 (2016).

    PubMed  Google Scholar 

  156. Lonze, B. E. et al. Eculizumab prevents recurrent antiphospholipid antibody syndrome and enables successful renal transplantation. Am. J. Transplant 14, 459–465 (2014).

    CAS  PubMed  Google Scholar 

  157. Levine, J. S. et al. Phospholipid-binding proteins differ in their capacity to induce autoantibodies and murine systemic lupus erythematosus. Lupus 23, 752–768 (2014).

    CAS  PubMed  Google Scholar 

  158. Chighizola, C. B., Gerosa, M. & Meroni, P. L. New tests to detect antiphospholipid antibodies: anti-domain I β-2-glycoprotein-I antibodies. Curr. Rheumatol. Rep. 16, 402 (2014).

    PubMed  Google Scholar 

  159. Meroni, P. L. Anti-β-2 glycoprotein I epitope specificity: from experimental models to diagnostic tools. Lupus 25, 905–910 (2016).

    CAS  PubMed  Google Scholar 

  160. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    CAS  PubMed  Google Scholar 

  161. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Boudreau, L. H. et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 124, 2173–2183 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Vogel, S. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J. Clin. Invest. 125, 4638–4654 (2015).

    PubMed  PubMed Central  Google Scholar 

  164. Wang, Y. et al. Platelet-derived S100 family member myeloid-related protein-14 regulates thrombosis. J. Clin. Invest. 124, 2160–2171 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Deane, J. A. et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27, 801–810 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. D'Atri, L. P. et al. Expression and functionality of Toll-like receptor 3 in the megakaryocytic lineage. J. Thromb. Haemost. 13, 839–850 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Cognasse, F. et al. The inflammatory role of platelets via their TLRs and Siglec receptors. Front. Immunol. 6, 83 (2015).

    PubMed  PubMed Central  Google Scholar 

  168. Koupenova, M. et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 124, 791–802 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Koupenova, M. et al. Sex differences in platelet Toll-like receptors and their association with cardiovascular risk factors. Arterioscler. Thromb. Vasc. Biol. 35, 1030–1037 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Yuan, Y. et al. Excessive activation of the TLR9/TGF-β1/PDGF-B pathway in the peripheral blood of patients with systemic lupus erythematosus. Arthritis Res. Ther. 19, 70 (2017).

    PubMed  PubMed Central  Google Scholar 

  171. Berthet, J. et al. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin. Immunol. 145, 189–200 (2012).

    CAS  PubMed  Google Scholar 

  172. Jenne, C. N., Urrutia, R. & Kubes, P. Platelets: bridging hemostasis, inflammation, and immunity. Int. J. Lab. Hematol. 35, 254–261 (2013).

    CAS  PubMed  Google Scholar 

  173. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Barnado, A., Crofford, L. J. & Oates, J. C. At the bedside: Neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J. Leukoc. Biol. 99, 265–278 (2016).

    CAS  PubMed  Google Scholar 

  175. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Maugeri, N. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost. 12, 2074–2088 (2014).

    CAS  PubMed  Google Scholar 

  177. Ma, C. Y. et al. Elevated plasma level of HMGB1 is associated with disease activity and combined alterations with IFN-α and TNF-α in systemic lupus erythematosus. Rheumatol. Int. 32, 395–402 (2012).

    CAS  PubMed  Google Scholar 

  178. Choi, W. S., Jeon, O. H. & Kim, D. S. CD40 ligand shedding is regulated by interaction between matrix metalloproteinase-2 and platelet integrin αIIbβ3. J. Thromb. Haemost. 8, 1364–1371 (2010).

    CAS  PubMed  Google Scholar 

  179. Rahman, M. et al. Metalloproteinases regulate CD40L shedding from platelets and pulmonary recruitment of neutrophils in abdominal sepsis. Inflamm. Res. 61, 571–579 (2012).

    CAS  PubMed  Google Scholar 

  180. Rahman, M. et al. Platelet shedding of CD40L is regulated by matrix metalloproteinase-9 in abdominal sepsis. J. Thromb. Haemost. 11, 1385–1398 (2013).

    CAS  PubMed  Google Scholar 

  181. Elgueta, R. et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229, 152–172 (2009).

    CAS  PubMed  Google Scholar 

  182. Phipps, R. P., Kaufman, J. & Blumberg, N. Platelet derived CD154 (CD40 ligand) and febrile responses to transfusion. Lancet 357, 2023–2024 (2001).

    CAS  PubMed  Google Scholar 

  183. Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591–594 (1998).

    CAS  PubMed  Google Scholar 

  184. Cognasse, F. et al. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp. Hematol. 35, 1376–1387 (2007).

    CAS  PubMed  Google Scholar 

  185. Elzey, B. D. et al. Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood 111, 3684–3691 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Ntelis, K., Solomou, E. E., Sakkas, L., Liossis, S. N. & Daoussis, D. The role of platelets in autoimmunity, vasculopathy, and fibrosis: implications for systemic sclerosis. Semin. Arthritis Rheum. 47, 409–417 (2017).

    CAS  PubMed  Google Scholar 

  187. Elzey, B. D. et al. Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J. Leukoc. Biol. 78, 80–84 (2005).

    CAS  PubMed  Google Scholar 

  188. de Sanctis, J. B., Garmendia, J. V., Chaurio, R., Zabaleta, M. & Rivas, L. Total and biologically active CD154 in patients with SLE. Autoimmunity 42, 263–265 (2009).

    CAS  PubMed  Google Scholar 

  189. Cote, F. et al. Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc. Natl Acad. Sci. USA 100, 13525–13530 (2003).

    CAS  PubMed  Google Scholar 

  190. Mercado, C. P. & Kilic, F. Molecular mechanisms of SERT in platelets: regulation of plasma serotonin levels. Mol. Interv 10, 231–241 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Angiolillo, D. J., Ueno, M. & Goto, S. Basic principles of platelet biology and clinical implications. Circul. J. 74, 597–607 (2010).

    CAS  Google Scholar 

  192. Herr, N., Bode, C. & Duerschmied, D. The effects of serotonin in immune cells. Front. Cardiovasc. Med. 4, 48 (2017).

    PubMed  PubMed Central  Google Scholar 

  193. Bennett, A., Frampton, G. & Cameron, J. S. Platelet-associated IgG in idiopathic glomerulonephritis and the nephritis of systemic lupus erythematosus. Br. J. Haematol. 62, 695–703 (1986).

    CAS  PubMed  Google Scholar 

  194. Dorsch, C. A. & Meyerhoff, J. Mechanisms of abnormal platelet aggregation in systemic lupus erythematosus. Arthritis Rheum. 25, 966–973 (1982).

    CAS  PubMed  Google Scholar 

  195. Kanai, H., Tsuchida, A., Yano, S. & Naruse, T. Intraplatelet and urinary serotonin concentrations in systemic lupus erythematosus with reference to its clinical manifestations. J. Med. 20, 371–390 (1989).

    CAS  PubMed  Google Scholar 

  196. Lood, C. et al. Type I interferon-mediated skewing of the serotonin synthesis is associated with severe disease in systemic lupus erythematosus. PLoS ONE 10, e0125109 (2015).

    PubMed  PubMed Central  Google Scholar 

  197. Meyerhoff, J. & Dorsch, C. A. Decreased platelet serotonin levels in systemic lupus erythematosus. Arthritis Rheum. 24, 1495–1500 (1981).

    CAS  PubMed  Google Scholar 

  198. Parbtani, A., Frampton, G., Yewdall, V., Kasai, N. & Cameron, J. S. Platelet and plasma serotonin in glomerulonephritis. III: The nephritis of systemic lupus erythematosus. Clin. Nephrol. 14, 164–172 (1980).

    CAS  PubMed  Google Scholar 

  199. Zeller, J., Weissbarth, E., Baruth, B., Mielke, H. & Deicher, H. Serotonin content of platelets in inflammatory rheumatic diseases. Correlation with clinical activity. Arthritis Rheum. 26, 532–540 (1983).

    CAS  PubMed  Google Scholar 

  200. Praschak-Rieder, N. et al. Novel 5-HTTLPR allele associates with higher serotonin transporter binding in putamen: a [11C] DASB positron emission tomography study. Biol. Psychiatry 62, 327–331 (2007).

    CAS  PubMed  Google Scholar 

  201. Denny, M. F. et al. Interferon-α promotes abnormal vasculogenesis in lupus: a potential pathway for premature atherosclerosis. Blood 110, 2907–2915 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Kaplan, M. J. Premature vascular damage in systemic lupus erythematosus. Autoimmunity 42, 580–586 (2009).

    PubMed  Google Scholar 

  203. Gustafsson, J. T. et al. Excess atherosclerosis in systemic lupus erythematosus, — a matter of renal involvement: case control study of 281 SLE patients and 281 individually matched population controls. PLoS ONE 12, e0174572 (2017).

    PubMed  PubMed Central  Google Scholar 

  204. Stalker, T. J. et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 121, 1875–1885 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Furie, B. & Furie, B. C. Mechanisms of thrombus formation. N. Engl. J. Med. 359, 938–949 (2008).

    CAS  PubMed  Google Scholar 

  206. Vikerfors, A. et al. Clinical manifestations and anti-phospholipid antibodies in 712 patients with systemic lupus erythematosus: evaluation of two diagnostic assays. Rheumatology (Oxford) 52, 501–509 (2013).

    CAS  Google Scholar 

  207. Macchi, L. et al. Anti-platelet antibodies in patients with systemic lupus erythematosus and the primary antiphospholipid antibody syndrome: their relationship with the observed thrombocytopenia. Br. J. Haematol. 98, 336–341 (1997).

    CAS  PubMed  Google Scholar 

  208. Weissbarth, E., Baruth, B., Mielke, H., Liman, W. & Deicher, H. Platelets as target cells in rheumatoid arthritis and systemic lupus erythematosus: a platelet specific immunoglobulin inducing the release reaction. Rheumatol. Int. 2, 67–73 (1982).

    CAS  PubMed  Google Scholar 

  209. Kasai, N. et al. Platelet-aggregating immune complexes in idiopathic glomerulonephritis and SLE. Proc. Eur. Dial. Transplant. Assoc. 17, 621–628 (1980).

    CAS  PubMed  Google Scholar 

  210. Cloutier, N. et al. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1720553115 (2018).

    CAS  Google Scholar 

  211. Walther, D. J. et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76 (2003).

    CAS  PubMed  Google Scholar 

  212. Averill, M. M., Kerkhoff, C. & Bornfeldt, K. E. S100A8 and S100A9 in cardiovascular biology and disease. Arterioscler. Thromb. Vasc. Biol. 32, 223–229 (2012).

    CAS  PubMed  Google Scholar 

  213. Edgeworth, J., Gorman, M., Bennett, R., Freemont, P. & Hogg, N. Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J. Biol. Chem. 266, 7706–7713 (1991).

    CAS  PubMed  Google Scholar 

  214. Yen, T. et al. Induction of the S100 chemotactic protein, CP-10, in murine microvascular endothelial cells by proinflammatory stimuli. Blood 90, 4812–4821 (1997).

    CAS  PubMed  Google Scholar 

  215. Vogl, T. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–1049 (2007).

    CAS  PubMed  Google Scholar 

  216. Kerkhoff, C., Sorg, C., Tandon, N. N. & Nacken, W. Interaction of S100A8/S100A9-arachidonic acid complexes with the scavenger receptor CD36 may facilitate fatty acid uptake by endothelial cells. Biochemistry 40, 241–248 (2001).

    CAS  PubMed  Google Scholar 

  217. Hibino, T. et al. S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res. 73, 172–183 (2013).

    CAS  PubMed  Google Scholar 

  218. Loser, K. et al. The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat. Med. 16, 713–717 (2010).

    CAS  PubMed  Google Scholar 

  219. Donato, R. et al. Functions of S100 proteins. Curr. Mol. Med. 13, 24–57 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Bjork, P. et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol. 7, e97 (2009).

    PubMed  Google Scholar 

  221. Payen, D. et al. Gene profiling in human blood leucocytes during recovery from septic shock. Intensive Care Med. 34, 1371–1376 (2008).

    CAS  PubMed  Google Scholar 

  222. Gao, S., Yang, Y., Fu, Y., Guo, W. & Liu, G. Diagnostic and prognostic value of myeloid-related protein complex 8/14 for sepsis. Am. J. Emerg. Med. 33, 1278–1282 (2015).

    PubMed  Google Scholar 

  223. Foell, D. & Roth, J. Proinflammatory S100 proteins in arthritis and autoimmune disease. Arthritis Rheum. 50, 3762–3771 (2004).

    CAS  PubMed  Google Scholar 

  224. van Lent, P. L. et al. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann. Rheum. Dis. 67, 1750–1758 (2008).

    CAS  PubMed  Google Scholar 

  225. Tyden, H. et al. Pro-inflammatory S100 proteins are associated with glomerulonephritis and anti-dsDNA antibodies in systemic lupus erythematosus. Lupus 26, 139–149 (2016).

    PubMed  Google Scholar 

  226. Tyden, H. et al. Increased serum levels of S100A8/A9 and S100A12 are associated with cardiovascular disease in patients with inactive systemic lupus erythematosus. Rheumatology (Oxford) 52, 2048–2055 (2013).

    CAS  Google Scholar 

  227. Soyfoo, M. S., Roth, J., Vogl, T., Pochet, R. & Decaux, G. Phagocyte-specific S100A8/A9 protein levels during disease exacerbations and infections in systemic lupus erythematosus. J. Rheumatol. 36, 2190–2194 (2009).

    CAS  PubMed  Google Scholar 

  228. McCormick, M. M. et al. S100A8 and S100A9 in human arterial wall. Implications for atherogenesis. J. Biol. Chem. 280, 41521–41529 (2005).

    CAS  PubMed  Google Scholar 

  229. Oesterle, A. & Bowman, M. A. S100A12 and the S100/calgranulins: emerging biomarkers for atherosclerosis and possibly therapeutic targets. Arterioscler. Thromb. Vasc. Biol. 35, 2496–2507 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Healy, A. M. et al. Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events. Circulation 113, 2278–2284 (2006).

    CAS  PubMed  Google Scholar 

  231. Lood, C. et al. Platelet-derived S100A8/A9 and cardiovascular disease in systemic lupus erythematosus. Arthritis Rheumatol. 68, 1970–1980 (2016).

    CAS  PubMed  Google Scholar 

  232. Nojima, J. et al. Strong correlation between the prevalence of cerebral infarction and the presence of anti-cardiolipin/β2-glycoprotein I and anti-phosphatidylserine/prothrombin antibodies — co-existence of these antibodies enhances ADP-induced platelet activation in vitro. Thromb. Haemost. 91, 967–976 (2004).

    CAS  PubMed  Google Scholar 

  233. Lin, Y. L. & Wang, C. T. Activation of human platelets by the rabbit anticardiolipin antibodies. Blood 80, 3135–3143 (1992).

    CAS  PubMed  Google Scholar 

  234. Vega-Ostertag, M., Harris, E. N. & Pierangeli, S. S. Intracellular events in platelet activation induced by antiphospholipid antibodies in the presence of low doses of thrombin. Arthritis Rheum. 50, 2911–2919 (2004).

    CAS  PubMed  Google Scholar 

  235. Melki, I., Tessandier, N., Zufferey, A. & Boilard, E. Platelet microvesicles in health and disease. Platelets 28, 214–221 (2017).

    CAS  PubMed  Google Scholar 

  236. Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J. & Sixma, J. J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood 94, 3791–3799 (1999).

    CAS  PubMed  Google Scholar 

  237. Tersteeg, C. et al. FLow-induced PRotrusions (FLIPRs): a platelet-derived platform for the retrieval of microparticles by monocytes and neutrophils. Circ. Res. 114, 780–791 (2014).

    CAS  PubMed  Google Scholar 

  238. Arraud, N. et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 12, 614–627 (2014).

    CAS  PubMed  Google Scholar 

  239. Flaumenhaft, R. et al. Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood 113, 1112–1121 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Gitz, E. et al. CLEC-2 expression is maintained on activated platelets and on platelet microparticles. Blood 124, 2262–2270 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Cunin, P. et al. Megakaryocytes compensate for Kit insufficiency in murine arthritis. J. Clin. Invest. 127, 1714–1724 (2017).

    PubMed  PubMed Central  Google Scholar 

  242. Aloui, C. et al. The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int. J. Mol. Sci. 15, 22342–22364 (2014).

    PubMed  Google Scholar 

  243. Boilard, E., Duchez, A. C. & Brisson, A. The diversity of platelet microparticles. Curr. Opin. Hematol. 22, 437–444 (2015).

    CAS  PubMed  Google Scholar 

  244. Pisetsky, D. S. Microparticles as autoantigens: making immune complexes big. Arthritis Rheum. 64, 958–961 (2012).

    PubMed  PubMed Central  Google Scholar 

  245. Lopez, P., Rodriguez-Carrio, J., Martinez-Zapico, A., Caminal-Montero, L. & Suarez, A. Circulating microparticle subpopulations in systemic lupus erythematosus are affected by disease activity. Int. J. Cardiol. 236, 138–144 (2017).

    PubMed  Google Scholar 

  246. McCarthy, E. M. et al. Microparticle subpopulations are potential markers of disease progression and vascular dysfunction across a spectrum of connective tissue disease. BBA Clin. 7, 16–22 (2017).

    CAS  PubMed  Google Scholar 

  247. Nielsen, C. T., Ostergaard, O., Johnsen, C., Jacobsen, S. & Heegaard, N. H. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus. Arthritis Rheum. 63, 3067–3077 (2011).

    PubMed  Google Scholar 

  248. Fortin, P. R. et al. Distinct subtypes of microparticle-containing immune complexes are associated with disease activity, damage, and carotid intima-media thickness in systemic lupus erythematosus. J. Rheumatol. 43, 2019–2025 (2016).

    CAS  PubMed  Google Scholar 

  249. Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Sandhir, R., Halder, A. & Sunkaria, A. Mitochondria as a centrally positioned hub in the innate immune response. Biochim. Biophys. Acta 1863, 1090–1097 (2017).

    CAS  Google Scholar 

  251. Berg, P. A. & Klein, R. Mitochondrial antigens and autoantibodies: from anti-M1 to anti-M9. Klinische Wochenschrift 64, 897–909 (1986).

    CAS  PubMed  Google Scholar 

  252. Wang, H., Li, T., Chen, S., Gu, Y. & Ye, S. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis Rheumatol. 67, 3190–3200 (2015).

    CAS  PubMed  Google Scholar 

  253. Reimer, G., Rubin, R. L., Kotzin, B. L. & Tan, E. M. Anti-native DNA antibodies from autoimmune sera also bind to DNA in mitochondria. J. Immunol. 133, 2532–2536 (1984).

    CAS  PubMed  Google Scholar 

  254. Thachil, J. Platelets in inflammatory disorders: a pathophysiological and clinical perspective. Semin. Thromb. Hemost. 41, 572–581 (2015).

    CAS  PubMed  Google Scholar 

  255. Gawaz, M. et al. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis. Atherosclerosis 148, 75–85 (2000).

    CAS  PubMed  Google Scholar 

  256. Kaplanski, G. et al. Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin-1-mediated event. Blood 81, 2492–2495 (1993).

    CAS  PubMed  Google Scholar 

  257. Furie, B. & Furie, B. C. The molecular basis of platelet and endothelial cell interaction with neutrophils and monocytes: role of P-selectin and the P-selectin ligand, PSGL-1. Thromb. Haemost. 74, 224–227 (1995).

    CAS  PubMed  Google Scholar 

  258. Ehlers, R. et al. Targeting platelet-leukocyte interactions: identification of the integrin Mac-1 binding site for the platelet counter receptor glycoprotein Ibα. J. Exp. Med. 198, 1077–1088 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Wang, Y. et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat. Commun. 8, 15559 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Flick, M. J. et al. Fibrin(ogen) exacerbates inflammatory joint disease through a mechanism linked to the integrin αMβ2 binding motif. J. Clin. Invest. 117, 3224–3235 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Flick, M. J. et al. Leukocyte engagement of fibrin(ogen) via the integrin receptor αMβ2/Mac-1 is critical for host inflammatory response in vivo. J. Clin. Invest. 113, 1596–1606 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Flick, M. J. et al. The development of inflammatory joint disease is attenuated in mice expressing the anticoagulant prothrombin mutant W215A/E217A. Blood 117, 6326–6337 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Joseph, J. E., Harrison, P., Mackie, I. J., Isenberg, D. A. & Machin, S. J. Increased circulating platelet-leucocyte complexes and platelet activation in patients with antiphospholipid syndrome, systemic lupus erythematosus and rheumatoid arthritis. Br. J. Haematol. 115, 451–459 (2001).

    CAS  PubMed  Google Scholar 

  264. Hirahashi, J. et al. Mac-1 (CD11b/CD18) links inflammation and thrombosis after glomerular injury. Circulation 120, 1255–1265 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Mejia-Vilet, J. M., Cordova-Sanchez, B. M., Uribe-Uribe, N. O., Correa-Rotter, R. & Morales-Buenrostro, L. E. Prognostic significance of renal vascular pathology in lupus nephritis. Lupus 26, 1042–1050 (2017).

    CAS  PubMed  Google Scholar 

  266. Tektonidou, M. G., Sotsiou, F., Nakopoulou, L., Vlachoyiannopoulos, P. G. & Moutsopoulos, H. M. Antiphospholipid syndrome nephropathy in patients with systemic lupus erythematosus and antiphospholipid antibodies: prevalence, clinical associations, and long-term outcome. Arthritis Rheum. 50, 2569–2579 (2004).

    PubMed  Google Scholar 

  267. Daugas, E. et al. Antiphospholipid syndrome nephropathy in systemic lupus erythematosus. J. Am. Soc. Nephrol. 13, 42–52 (2002).

    PubMed  Google Scholar 

  268. Petri, B. et al. von Willebrand factor promotes leukocyte extravasation. Blood 116, 4712–4719 (2010).

    CAS  PubMed  Google Scholar 

  269. van Spriel, A. B. et al. Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood 97, 2478–2486 (2001).

    CAS  PubMed  Google Scholar 

  270. Galindo, M. et al. Immunohistochemical detection of intravascular platelet microthrombi in patients with lupus nephritis and anti-phospholipid antibodies. Rheumatology (Oxford) 48, 1003–1007 (2009).

    Google Scholar 

  271. ElGendi, S. S. & El-Sherif, W. T. Anti-C1q antibodies, sCD40L, TWEAK and CD4/CD8 ratio in systemic lupus erythematosus and their relations to disease activity and renal involvement. Egypt. J. Immunol. 16, 135–148 (2009).

    PubMed  Google Scholar 

  272. Yellin, M. J. et al. Immunohistologic analysis of renal CD40 and CD40L expression in lupus nephritis and other glomerulonephritides. Arthritis Rheum. 40, 124–134 (1997).

    CAS  PubMed  Google Scholar 

  273. Delmas, Y. et al. Activation of mesangial cells by platelets in systemic lupus erythematosus via a CD154-dependent induction of CD40. Kidney Int. 68, 2068–2078 (2005).

    CAS  PubMed  Google Scholar 

  274. de Jong, E. C. et al. Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse Th cell-polarizing signals. J. Immunol. 168, 1704–1709 (2002).

    CAS  PubMed  Google Scholar 

  275. Wu, T. et al. Elevated urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC chemokine ligand 16 in multiple murine lupus strains and human lupus nephritis. J. Immunol. 179, 7166–7175 (2007).

    CAS  PubMed  Google Scholar 

  276. Ruiz-Irastorza, G. et al. Effect of antimalarials on thrombosis and survival in patients with systemic lupus erythematosus. Lupus 15, 577–583 (2006).

    CAS  PubMed  Google Scholar 

  277. Ho, K. T. et al. Systemic lupus erythematosus in a multiethnic cohort (LUMINA): XXVIII. Factors predictive of thrombotic events. Rheumatology (Oxford) 44, 1303–1307 (2005).

    CAS  Google Scholar 

  278. Siso, A. et al. Previous antimalarial therapy in patients diagnosed with lupus nephritis: influence on outcomes and survival. Lupus 17, 281–288 (2008).

    CAS  PubMed  Google Scholar 

  279. Espinola, R. G., Pierangeli, S. S., Gharavi, A. E. & Harris, E. N. Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb. Haemost. 87, 518–522 (2002).

    CAS  PubMed  Google Scholar 

  280. Johansson, E., Forsberg, K. & Johnsson, H. Clinical and experimental evaluation of the thromboprophylactic effect of hydroxychloroquine sulfate after total hip replacement. Haemostasis 10, 89–96 (1981).

    CAS  PubMed  Google Scholar 

  281. Cooke, E. D. et al. Failure of orally administered hydroxychloroquine sulphate to prevent venous thromboembolism following elective hip operations. J. Bone Joint Surg. Am. 59, 496–500 (1977).

    CAS  PubMed  Google Scholar 

  282. Fox, R. Anti-malarial drugs: possible mechanisms of action in autoimmune disease and prospects for drug development. Lupus 5 (Suppl. 1), S4–S10 (1996).

    CAS  PubMed  Google Scholar 

  283. Kyburz, D., Brentano, F. & Gay, S. Mode of action of hydroxychloroquine in RA — evidence of an inhibitory effect on Toll-like receptor signaling. Nat. Clin. Pract. Rheumatol. 2, 458–459 (2006).

    PubMed  Google Scholar 

  284. Bertolaccini, M. L. et al. Complement inhibition by hydroxychloroquine prevents placental and fetal brain abnormalities in antiphospholipid syndrome. J. Autoimmun. 75, 30–38 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Goldman, F. D. et al. Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties. Blood 95, 3460–3466 (2000).

    CAS  PubMed  Google Scholar 

  286. Lopez, P., Rodriguez-Carrio, J. & Suarez, A. Antimalarial drugs inhibit IFNα-enhanced TNFα and STAT4 expression in monocytes: implication for systemic lupus erythematosus. Cytokine 67, 13–20 (2014).

    CAS  PubMed  Google Scholar 

  287. Prowse, C., Pepper, D. & Dawes, J. Prevention of the platelet α-granule release reaction by membrane-active drugs. Thromb. Res. 25, 219–227 (1982).

    CAS  PubMed  Google Scholar 

  288. McCrea, J. M., Robinson, P. & Gerrard, J. M. Mepacrine (quinacrine) inhibition of thrombin-induced platelet responses can be overcome by lysophosphatidic acid. Biochim. Biophys. Acta 842, 189–194 (1985).

    CAS  PubMed  Google Scholar 

  289. Peters, A. L., Stunz, L. L. & Bishop, G. A. CD40 and autoimmunity: the dark side of a great activator. Semin. Immunol. 21, 293–300 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Mohan, C., Shi, Y., Laman, J. D. & Datta, S. K. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J. Immunol. 154, 1470–1480 (1995).

    CAS  PubMed  Google Scholar 

  291. Early, G. S., Zhao, W. & Burns, C. M. Anti-CD40 ligand antibody treatment prevents the development of lupus-like nephritis in a subset of New Zealand black x New Zealand white mice. Response correlates with the absence of an anti-antibody response. J. Immunol. 157, 3159–3164 (1996).

    CAS  PubMed  Google Scholar 

  292. Wang, X. et al. Effects of anti-CD154 treatment on B cells in murine systemic lupus erythematosus. Arthritis Rheum. 48, 495–506 (2003).

    CAS  PubMed  Google Scholar 

  293. Quezada, S. A. et al. Distinct mechanisms of action of anti-CD154 in early versus late treatment of murine lupus nephritis. Arthritis Rheum. 48, 2541–2554 (2003).

    CAS  PubMed  Google Scholar 

  294. Boumpas, D. T. et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 48, 719–727 (2003).

    CAS  PubMed  Google Scholar 

  295. Huang, W. et al. The effect of anti-CD40 ligand antibody on B cells in human systemic lupus erythematosus. Arthritis Rheum. 46, 1554–1562 (2002).

    CAS  PubMed  Google Scholar 

  296. Law, C. L. & Grewal, I. S. Therapeutic interventions targeting CD40L (CD154) and CD40: the opportunities and challenges. Adv. Exp. Med. Biol. 647, 8–36 (2009).

    CAS  PubMed  Google Scholar 

  297. Kalunian, K. C. et al. Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 3251–3258 (2002).

    CAS  PubMed  Google Scholar 

  298. Chamberlain, C. et al. Repeated administration of dapirolizumab pegol in a randomised phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles. Ann. Rheum. Dis. 76, 1837–1844 (2017).

    CAS  PubMed  Google Scholar 

  299. Bishop-Bailey, D. The platelet as a model system for the acute actions of nuclear receptors. Steroids 75, 570–575 (2010).

    CAS  PubMed  Google Scholar 

  300. Liverani, E., Banerjee, S., Roberts, W., Naseem, K. M. & Perretti, M. Prednisolone exerts exquisite inhibitory properties on platelet functions. Biochem. Pharmacol. 83, 1364–1373 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Dinarello, C. A. Anti-inflammatory agents: present and future. Cell 140, 935–950 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Jain, M. K. & Ridker, P. M. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat. Rev. Drug Discov. 4, 977–987 (2005).

    CAS  PubMed  Google Scholar 

  303. Artola, R. T., Mihos, C. G. & Santana, O. Effects of statin therapy in patients with systemic lupus erythematosus. South. Med. J. 109, 705–711 (2016).

    CAS  PubMed  Google Scholar 

  304. Cipollone, F. et al. Association between enhanced soluble CD40L and prothrombotic state in hypercholesterolemia: effects of statin therapy. Circulation 106, 399–402 (2002).

    CAS  PubMed  Google Scholar 

  305. Semb, A. G. et al. Raised serum levels of soluble CD40 ligand in patients with familial hypercholesterolemia: downregulatory effect of statin therapy. J. Am. Coll. Cardiol. 41, 275–279 (2003).

    CAS  PubMed  Google Scholar 

  306. Sanguigni, V. et al. Short-term treatment with atorvastatin reduces platelet CD40 ligand and thrombin generation in hypercholesterolemic patients. Circulation 111, 412–419 (2005).

    CAS  PubMed  Google Scholar 

  307. Ferroni, P., Basili, S., Santilli, F. & Davi, G. Low-density lipoprotein-lowering medication and platelet function. Pathophysiol Haemost. Thromb. 35, 346–354 (2006).

    CAS  PubMed  Google Scholar 

  308. Watanabe, T. et al. Effects of statins on thrombosis development in patients with systemic lupus erythematosus and antiphospholipid antibodies. Lupus 27, 225–234 (2017).

    PubMed  Google Scholar 

  309. de Abajo, F. J. Effects of selective serotonin reuptake inhibitors on platelet function: mechanisms, clinical outcomes and implications for use in elderly patients. Drugs Aging 28, 345–367 (2011).

    CAS  PubMed  Google Scholar 

  310. Krishnadas, R. & Cavanagh, J. Sustained remission of rheumatoid arthritis with a specific serotonin reuptake inhibitor antidepressant: a case report and review of the literature. J. Med. Case Rep. 5, 112 (2011).

    PubMed  PubMed Central  Google Scholar 

  311. Cloutier, N. et al. Platelets can enhance vascular permeability. Blood 120, 1334–1343 (2012).

    CAS  PubMed  Google Scholar 

  312. Thomas, M. R. & Storey, R. F. Effect of P2Y12 inhibitors on inflammation and immunity. Thromb. Haemost. 114, 490–497 (2015).

    PubMed  Google Scholar 

  313. Wang, L. et al. Transcriptional down-regulation of the platelet ADP receptor P2Y(12) and clusterin in patients with systemic lupus erythematosus. J. Thromb. Haemost. 2, 1436–1442 (2004).

    CAS  PubMed  Google Scholar 

  314. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02320357 (2017).

  315. Valdes, V., Nardi, M. A., Elbaum, L. & Berger, J. S. Reproducibility over time and effect of low-dose aspirin on soluble P-selectin and soluble CD40 ligand. J. Thromb. Thrombolysis 40, 83–87 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Iudici, M. et al. Low-dose aspirin as primary prophylaxis for cardiovascular events in systemic lupus erythematosus: a long-term retrospective cohort study. Rheumatology (Oxford) 55, 1623–1630 (2016).

    CAS  Google Scholar 

  317. Fasano, S. et al. Primary prevention of cardiovascular disease in patients with systemic lupus erythematosus: case series and literature review. Lupus 26, 1463–1472 (2017).

    CAS  PubMed  Google Scholar 

  318. Lit, L. C., Wong, C. K., Tam, L. S., Li, E. K. & Lam, C. W. Raised plasma concentration and ex vivo production of inflammatory chemokines in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 65, 209–215 (2006).

    CAS  PubMed  Google Scholar 

  319. Robak, E., Kulczycka, L., Sysa-Jedrzejowska, A., Wierzbowska, A. & Robak, T. Circulating proangiogenic molecules PIGF, SDF-1 and sVCAM-1 in patients with systemic lupus erythematosus. Eur. Cytokine Netw. 18, 181–187 (2007).

    CAS  PubMed  Google Scholar 

  320. Vakkalanka, R. K. et al. Elevated levels and functional capacity of soluble CD40 ligand in systemic lupus erythematosus sera. Arthritis Rheum. 42, 871–881 (1999).

    CAS  PubMed  Google Scholar 

  321. Lee, Y. H. & Bae, S. C. Association between circulating transforming growth factor-β1 level and polymorphisms in systemic lupus erythematosus and rheumatoid arthritis: a meta-analysis. Cell. Mol. Biol. 63, 53–59 (2017).

    CAS  PubMed  Google Scholar 

  322. Becker-Merok, A., Eilertsen, G. O. & Nossent, J. C. Levels of transforming growth factor-β are low in systemic lupus erythematosus patients with active disease. J. Rheumatol. 37, 2039–2045 (2010).

    CAS  PubMed  Google Scholar 

  323. Abdulahad, D. A. et al. High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthritis Res. Ther. 13, R71 (2011).

    PubMed  PubMed Central  Google Scholar 

  324. Li, J. et al. Expression of high mobility group box chromosomal protein 1 and its modulating effects on downstream cytokines in systemic lupus erythematosus. J. Rheumatol. 37, 766–775 (2010).

    CAS  PubMed  Google Scholar 

  325. Lee, Y. H., Choi, S. J., Ji, J. D. & Song, G. G. Association between Toll-like receptor polymorphisms and systemic lupus erythematosus: a meta-analysis update. Lupus 25, 593–601 (2016).

    CAS  PubMed  Google Scholar 

  326. Enevold, C. et al. Single nucleotide polymorphisms in genes encoding Toll-like receptors 7, 8 and 9 in Danish patients with systemic lupus erythematosus. Mol. Biol. Rep. 41, 5755–5763 (2014).

    CAS  PubMed  Google Scholar 

  327. Karassa, F. B., Trikalinos, T. A. & Ioannidis, J. P. A. Role of the Fcγ receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Arthritis Rheum. 46, 1563–1571 (2002).

    CAS  PubMed  Google Scholar 

  328. Patrono, C., Garcia Rodriguez, L. A., Landolfi, R. & Baigent, C. Low-dose aspirin for the prevention of atherothrombosis. N. Engl. J. Med. 353, 2373–2383 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.B. and C.P.L. researched data for the article. E.B., C.P.L. and C.J.L. wrote the article. All authors made substantial contributions to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Eric Boilard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linge, P., Fortin, P., Lood, C. et al. The non-haemostatic role of platelets in systemic lupus erythematosus. Nat Rev Rheumatol 14, 195–213 (2018). https://doi.org/10.1038/nrrheum.2018.38

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2018.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing