Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Fine tuning of immunometabolism for the treatment of rheumatic diseases

Abstract

All immune cells depend on specific and efficient metabolic pathways to mount an appropriate response. Over the past decade, the field of immunometabolism has expanded our understanding of the various means by which cells modulate metabolism to achieve the effector functions necessary to fight infection or maintain homeostasis. Harnessing these metabolic pathways to manipulate inappropriate immune responses as a therapeutic strategy in cancer and autoimmunity has received increasing scrutiny by the scientific community. Fine tuning immunometabolism to provide the desired response, or prevent a deleterious response, is an attractive alternative to chemotherapy or overt immunosuppression. The various metabolic pathways used by immune cells in rheumatoid arthritis, systemic lupus erythematosus and osteoarthritis offer numerous opportunities for selective targeting of specific immune cell subsets to manipulate cellular metabolism for therapeutic benefit in these rheumatologic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic reprogramming of immune cell populations matches immunological function.
Figure 2: Metabolic processes to target in the treatment of rheumatologic diseases.

Similar content being viewed by others

References

  1. Yildirim-Toruner, C. & Diamond, B. Current and novel therapeutics in the treatment of systemic lupus erythematosus. J. Allergy Clin. Immunol. 127, 303–312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kahlenberg, J. M. & Fox, D. A. Advances in the medical treatment of rheumatoid arthritis. Hand Clin. 27, 11–20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sokolove, J. & Lepus, C. M. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther. Adv. Musculoskelet. Dis. 5, 77–94 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hirahara, K., Schwartz, D., Gadina, M., Kanno, Y. & O'Shea, J. J. Targeting cytokine signaling in autoimmunity: back to the future and beyond. Curr. Opin. Immunol. 43, 89–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka, Y., Nakayamada, S. & Okada, Y. Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr. Drug Targets Inflamm. Allergy 4, 325–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Ikeda, K. & Takeshita, S. The role of osteoclast differentiation and function in skeletal homeostasis. J. Biochem. 159, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. O'Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buck, M. D., O'Sullivan, D. & Pearce, E. L. T cell metabolism drives immunity. J. Exp. Med. 212, 1345–1360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Knowles, H. J. Hypoxic regulation of osteoclast differentiation and bone resorption activity. Hypoxia (Auckl.) 3, 73–82 (2015).

    Article  Google Scholar 

  10. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Sukumar, M. et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab. 23, 63–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Moreau, H. D. & Bousso, P. Visualizing how T cells collect activation signals in vivo. Curr. Opin. Immunol. 26, 56–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Jacobs, S. R. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476–4486 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    Article  PubMed  Google Scholar 

  20. Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patsoukis, N. et al. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci. Signal. 5, ra46 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Perl, A. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat. Rev. Rheumatol. 12, 169–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Caro-Maldonado, A. et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 192, 3626–3636 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Blair, D., Dufort, F. J. & Chiles, T. C. Protein kinase Cβ is critical for the metabolic switch to glycolysis following B-cell antigen receptor engagement. Biochem. J. 448, 165–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Cho, S. H. et al. Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537, 234–238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iwata, T. N. et al. Conditional disruption of Raptor reveals an essential role for mTORC1 in B cell development, survival, and metabolism. J. Immunol. 197, 2250–2260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jellusova, J. & Rickert, R. C. The PI3K pathway in B cell metabolism. Crit. Rev. Biochem. Mol. Biol. 51, 359–378 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14, 1064–1072 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Na, Y. R. et al. GM-CSF induces inflammatory macrophages by regulating glycolysis and lipid metabolism. J. Immunol. 197, 4101–4109 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Semba, H. et al. HIF-1α–PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat. Commun. 7, 11635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O'Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pearce, E. J. & Everts, B. Dendritic cell metabolism. Nat. Rev. Immunol. 15, 18–29 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krawczyk, C. M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vats, D. et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johnson, A. R. et al. Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation. Mol. Metab. 5, 506–526 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Burr, D. B. & Gallant, M. A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8, 665–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Indo, Y. et al. Metabolic regulation of osteoclast differentiation and function. J. Bone Miner. Res. 28, 2392–2399 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Morten, K. J., Badder, L. & Knowles, H. J. Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts. J. Pathol. 229, 755–764 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nasi, A. et al. Dendritic cell reprogramming by endogenously produced lactic acid. J. Immunol. 191, 3090–3099 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Waickman, A. T. & Powell, J. D. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol. Rev. 249, 43–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boothby, M. Signaling in T cells — is anything the m(a)TOR with the picture(s)? F1000Res. 5, 191 (2016).

    Article  Google Scholar 

  50. McDonald, G. et al. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J. Clin. Invest. 124, 712–724 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Basu, S., Hubbard, B. & Shevach, E. M. Foxp3-mediated inhibition of Akt inhibits Glut1 (glucose transporter 1) expression in human T regulatory cells. J. Leukoc. Biol. 97, 279–283 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Beier, U. H. et al. Essential role of mitochondrial energy metabolism in Foxp3+ T-regulatory cell function and allograft survival. FASEB J. 29, 2315–2326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zeng, H. & Chi, H. Metabolic control of regulatory T cell development and function. Trends Immunol. 36, 3–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Procaccini, C. et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33, 929–941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. De Rosa, V. et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat. Immunol. 16, 1174–1184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shrestha, S. et al. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat. Immunol. 16, 178–187 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huynh, A. et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol. 16, 188–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Park, Y. et al. TSC1 regulates the balance between effector and regulatory T cells. J. Clin. Invest. 123, 5165–5178 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ray, J. P. et al. The interleukin-2–mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity 43, 690–702 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zeng, H. et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45, 540–554 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Covarrubias, A. J., Aksoylar, H. I. & Horng, T. Control of macrophage metabolism and activation by mTOR and Akt signaling. Semin. Immunol. 27, 286–296 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weichhart, T., Hengstschlager, M. & Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 15, 599–614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bengsch, B. et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. Immunity 45, 358–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yan, B. et al. Serum metabolomic profiling in patients with systemic lupus erythematosus by GC/MS. Mod. Rheumatol. 26, 914–922 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Guleria, A. et al. NMR based serum metabolomics reveals a distinctive signature in patients with lupus nephritis. Sci. Rep. 6, 35309 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, T. et al. Metabolic disturbances associated with systemic lupus erythematosus. PLoS ONE 7, e37210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wahl, D. R. et al. Characterization of the metabolic phenotype of chronically activated lymphocytes. Lupus 19, 1492–1501 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Nagy, G., Koncz, A. & Perl, A. T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+- and redox-dependent production of nitric oxide. J. Immunol. 171, 5188–5197 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Nagy, G., Koncz, A., Fernandez, D. & Perl, A. Nitric oxide, mitochondrial hyperpolarization, and T cell activation. Free Radic. Biol. Med. 42, 1625–1631 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gergely, P. Jr et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum. 46, 175–190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Morel, L., Blenman, K. R., Croker, B. P. & Wakeland, E. K. The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc. Natl Acad. Sci. USA 98, 1787–1792 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Perry, D. J. et al. Murine lupus susceptibility locus Sle1c2 mediates CD4+ T cell activation and maps to estrogen-related receptor γ. J. Immunol. 189, 793–803 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Eichner, L. J. et al. miR-378* mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway. Cell Metab. 12, 352–361 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Bensinger, S. J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kidani, Y. & Bensinger, S. J. LXR and PPAR as integrators of lipid homeostasis and immunity. Immunol. Rev. 249, 72–83 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tso, T. K., Huang, H. Y., Chang, C. K., Liao, Y. J. & Huang, W. N. Clinical evaluation of insulin resistance and β-cell function by the homeostasis model assessment in patients with systemic lupus erythematosus. Clin. Rheumatol. 23, 416–420 (2004).

    Article  PubMed  Google Scholar 

  82. Gabriel, C. L. et al. Autoimmune-mediated glucose intolerance in a mouse model of systemic lupus erythematosus. Am. J. Physiol. Endocrinol. Metab. 303, E1313–E1324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wilhelm, A. J. & Major, A. S. Accelerated atherosclerosis in SLE: mechanisms and prevention approaches. Int. J. Clin. Rheumtol. 7, 527–539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saucillo, D. C., Gerriets, V. A., Sheng, J., Rathmell, J. C. & Maciver, N. J. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J. Immunol. 192, 136–144 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Gerriets, V. A. et al. Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. Eur. J. Immunol. 46, 1970–1983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lourenco, E. V., Liu, A., Matarese, G. & La Cava, A. Leptin promotes systemic lupus erythematosus by increasing autoantibody production and inhibiting immune regulation. Proc. Natl Acad. Sci. USA 113, 10637–10642 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang, Z., Fujii, H., Mohan, S. V., Goronzy, J. J. & Weyand, C. M. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 210, 2119–2134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, Z. et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci. Transl Med. 8, 331ra38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fearon, U., Canavan, M., Biniecka, M. & Veale, D. J. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 385–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Hong, Y. H. & Kong, E. J. (18F)Fluoro-deoxy-D-glucose uptake of knee joints in the aspect of age-related osteoarthritis: a case-control study. BMC Musculoskelet. Disord. 14, 141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Courties, A., Gualillo, O., Berenbaum, F. & Sellam, J. Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthritis Cartilage 23, 1955–1965 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Franke, S. et al. Advanced glycation end products affect growth and function of osteoblasts. Clin. Exp. Rheumatol. 29, 650–660 (2011).

    CAS  PubMed  Google Scholar 

  94. Martinez-Calatrava, M. J. et al. RANKL synthesized by articular chondrocytes contributes to juxta-articular bone loss in chronic arthritis. Arthritis Res. Ther. 14, R149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jin, Z., Wei, W., Yang, M., Du, Y. & Wan, Y. Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab. 20, 483–498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lemma, S. et al. Energy metabolism in osteoclast formation and activity. Int. J. Biochem. Cell Biol. 79, 168–180 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Vander Heiden, M. G. Exploiting tumor metabolism: challenges for clinical translation. J. Clin. Invest. 123, 3648–3651 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. O'Sullivan, D. & Pearce, E. L. Targeting T cell metabolism for therapy. Trends Immunol. 36, 71–80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wheaton, W. W. et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 3, e02242 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Son, H. J. et al. Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediators Inflamm. 2014, 973986 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bian, L. et al. Dichloroacetate alleviates development of collagen II-induced arthritis in female DBA/1 mice. Arthritis Res. Ther. 11, R132 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ostroukhova, M. et al. The role of low-level lactate production in airway inflammation in asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L300–L307 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Eleftheriadis, T. et al. Dichloroacetate at therapeutic concentration alters glucose metabolism and induces regulatory T-cell differentiation in alloreactive human lymphocytes. J. Basic Clin. Physiol. Pharmacol. 24, 271–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Thomas, S. et al. Methotrexate is a JAK/STAT pathway inhibitor. PLoS ONE 10, e0130078 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shuvalov, O. et al. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget http://dx.doi.org/10.18632/oncotarget.15053 (2017).

  106. Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl Med. 7, 274ra18 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sener, Z., Cederkvist, F. H., Volchenkov, R., Holen, H. L. & Skalhegg, B. S. T helper cell activation and expansion is sensitive to glutaminase inhibition under both hypoxic and normoxic conditions. PLoS ONE 11, e0160291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee, C. F. et al. Preventing allograft rejection by targeting immune metabolism. Cell Rep. 13, 760–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Johnson, K. M. et al. Identification and validation of the mitochondrial F1F0-ATPase as the molecular target of the immunomodulatory benzodiazepine Bz-423. Chem. Biol. 12, 485–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Gatza, E. et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci. Transl Med. 3, 67ra8 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bednarski, J. J. et al. Attenuation of autoimmune disease in Fas-deficient mice by treatment with a cytotoxic benzodiazepine. Arthritis Rheum. 48, 757–766 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Buskiewicz, I. A. et al. Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Sci. Signal. 9, ra115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hua, S. & Dias, T. H. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis. Front. Pharmacol. 7, 184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Telang, S. et al. Small molecule inhibition of 6-phosphofructo-2-kinase suppresses T cell activation. J. Transl Med. 10, 95 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Rathmell and Major labs for their contributions and intellectual input. The authors' work is supported by the Alliance for Lupus Research (J.C.R.), NIH National Institute of Diabetes and Digestive and Kidney Diseases grant R01DK105550 (J.C.R.), the Lupus Research Alliance (A.S.M.), U.S. Department of Veterans Affairs Merit Award I0BX002968 (A.S.M.) and NIH National Heart, Lung, and Blood Institute grant F31 HL128040 (J.P.R.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided a substantial contribution to discussions of the content and contributed to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Jeffrey C. Rathmell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhoads, J., Major, A. & Rathmell, J. Fine tuning of immunometabolism for the treatment of rheumatic diseases. Nat Rev Rheumatol 13, 313–320 (2017). https://doi.org/10.1038/nrrheum.2017.54

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.54

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research