Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cushioning the cartilage: a canonical Wnt restricting matter

Key Points

  • Wnt signalling is essential for joint health: loss of and excessive activation of the canonical signalling pathway are both deleterious for articular cartilage

  • In cartilage, Wnt ligands have distinct effects on the activation of downstream cascades; Wnt16 seems to be a partial agonist that protects against excessive cascade activation

  • Ligand–receptor, ligand–antagonist and receptor–antagonist interactions, as well as the establishment of concentration gradients by cell surface and extracellular matrix molecules, all contribute to the regulation of Wnt pathway activation

  • Intracellularly, β-catenin forms complexes with the T cell factor and lymphoid enhancer-binding factor family of transcription factors, and the composition of these complexes determines the resulting transcriptional response

  • Histone modifications further regulate the activity of canonical Wnt signalling in cartilage; DOT1L limits excessive activation of Wnt signalling and protects the cartilage against osteoarthritis

  • Increasing insights into specific mechanisms that regulate Wnt signalling in the joint such as histone modification might reveal unexpected opportunities in achieving tissue-specific effects and developing targeted therapies

Abstract

Wnt signalling pathways have key roles in joint development, homeostasis and disease, particularly in osteoarthritis. New data is starting to reveal the importance of tightly regulating canonical Wnt signalling pathway activation to maintain homeostasis and health in articular cartilage. In addition to the presence of different Wnt antagonists that limit pathway activation in articular cartilage, the reciprocal crosstalk between the canonical and non-canonical cascades and competitive antagonism between different Wnt ligands seem to be critical in restraining excessive Wnt pathway activation. Changes in transcriptional complex assembly upon Wnt pathway activation, epigenetic modulation of target gene transcription, in particular through histone modifications, and complex interactions between the Wnt signalling pathway and other signalling pathways, are also instrumental in adjusting Wnt signalling. In this Review, the cellular and molecular mechanisms involved in fine-tuning canonical Wnt signalling in the joint are updated, with a focus on the articular cartilage. The interventions for preventing or treating osteoarthritis are also discussed, which should aim to limit disease-associated excessive canonical Wnt activity to avoid joint damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ligand-dependent activation of the Wnt signalling cascade.
Figure 2: Tight regulation of canonical Wnt signalling is critical to maintaining cartilage health.
Figure 3: Diverse effects of secreted frizzled-related proteins sFRP1 and sFRP3.
Figure 4: Transcriptional and epigenetic regulation of Wnt signalling in articular cartilage.

Similar content being viewed by others

References

  1. Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Lefebvre, V. & Bhattaram, P. Vertebrate skeletogenesis. Curr. Top. Dev. Biol. 90, 291–317 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lories, R. J., Corr, M. & Lane, N. E. To Wnt or not to Wnt: the bone and joint health dilemma. Nat. Rev. Rheumatol 9, 328–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhu, M. et al. Activation of β-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult β-catenin conditional activation mice. J. Bone Miner. Res. 24, 12–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Zhu, M. et al. Inhibition of β-catenin signaling in articular chondrocytes results in articular cartilage destruction. Arthritis Rheum. 58, 2053–2064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matzelle, M. M. et al. Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum. 64, 1540–1550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03122860 (2017).

  9. van Amerongen, R. Alternative Wnt pathways and receptors. Cold Spring Harb. Perspect. Biol. 4, a007914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grumolato, L. et al. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 24, 2517–2530 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takada, S., Fujimori, S., Shinozuka, T., Takada, R. & Mii, Y. Differences in the secretion and transport of Wnt proteins. J. Biochem. 161, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Tabata, T. & Takei, Y. Morphogens, their identification and regulation. Development 131, 703–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Nalesso, G. et al. WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann. Rheum. Dis. 76, 218–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Dell'Accio, F., De Bari, C., Eltawil, N. M., Vanhummelen, P. & Pitzalis, C. Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum. 58, 1410–1421 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Dell'Accio, F. et al. Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res. Ther. 8, R139 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo, X. et al. Wnt/β-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 18, 2404–2417 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yasuhara, R. et al. Roles of β-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab. Invest. 91, 1739–1752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Waller, K. A. et al. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc. Natl Acad. Sci. USA 110, 5852–5857 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iwakura, T., Inui, A. & Reddi, A. H. Stimulation of superficial zone protein accumulation by hedgehog and Wnt signaling in surface zone bovine articular chondrocytes. Arthritis Rheum. 65, 408–417 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nalesso, G. et al. WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. J. Cell Biol. 193, 551–564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi, G. X., Mao, W. W., Zheng, X. F. & Jiang, L. S. The role of R-spondins and their receptors in bone metabolism. Prog. Biophys. Mol. Biol. 122, 93–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Knight, M. N. & Hankenson, K. D. R-Spondins: novel matricellular regulators of the skeleton. Matrix Biol. 37, 157–161 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Kronke, G. et al. R-Spondin 1 protects against inflammatory bone damage during murine arthritis by modulating the Wnt pathway. Arthritis Rheum. 62, 2303–2312 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Lu, W. et al. R-Spondin1 synergizes with Wnt3A in inducing osteoblast differentiation and osteoprotegerin expression. FEBS Lett. 582, 643–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Takegami, Y. et al. R-Spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification. Biochem. Biophys. Res. Commun. 473, 255–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Lacour, F. et al. R-Spondin1 controls muscle cell fusion through dual regulation of antagonistic Wnt signaling pathways. Cell Rep. 18, 2320–2330 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lodewyckx, L., Luyten, F. P. & Lories, R. J. Genetic deletion of low-density lipoprotein receptor-related protein 5 increases cartilage degradation in instability-induced osteoarthritis. Rheumatology (Oxford) 51, 1973–1978 (2012).

    Article  CAS  Google Scholar 

  28. Shin, Y. et al. Low-density lipoprotein receptor-related protein 5 governs Wnt-mediated osteoarthritic cartilage destruction. Arthritis Res. Ther. 16, R37 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schumacher, C. A., Joiner, D. M., Less, K. D., Drewry, M. O. & Williams, B. O. Characterization of genetically engineered mouse models carrying Col2a1-cre-induced deletions of Lrp5 and/or Lrp6. Bone Res. 4, 15042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barik, A., Zhang, B., Sohal, G. S., Xiong, W. C. & Mei, L. Crosstalk between Agrin and Wnt signaling pathways in development of vertebrate neuromuscular junction. Dev. Neurobiol. 74, 828–838 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Eldridge, S. et al. Agrin mediates chondrocyte homeostasis and requires both LRP4 and α-dystroglycan to enhance cartilage formation in vitro and in vivo. Ann. Rheum. Dis. 75, 1228–1235 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Asai, N. et al. LRP4 induces extracellular matrix productions and facilitates chondrocyte differentiation. Biochem. Biophys. Res. Commun. 451, 302–307 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Gorny, A. K., Kaufmann, L. T., Swain, R. K. & Steinbeisser, H. A secreted splice variant of the Xenopus frizzled-4 receptor is a biphasic modulator of Wnt signalling. Cell Commun. Signal. 11, 89 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Uren, A. et al. Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J. Biol. Chem. 275, 4374–4382 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E. & Lopez-Rios, J. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J. Cell Sci. 121, 737–746 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Leijten, J. C. et al. GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors. Arthritis Res. Ther. 15, R126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leijten, J. C. et al. Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum. 64, 3302–3312 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Gao, S. G. et al. Association between Wnt inhibitory factor-1 expression levels in articular cartilage and the disease severity of patients with osteoarthritis of the knee. Exp. Ther. Med. 11, 1405–1409 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Loughlin, J. et al. Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc. Natl Acad. Sci. USA 101, 9757–9762 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Evangelou, E. et al. Large-scale analysis of association between GDF5 and FRZB variants and osteoarthritis of the hip, knee, and hand. Arthritis Rheum. 60, 1710–1721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hall, K. C. et al. ADAM17 controls endochondral ossification by regulating terminal differentiation of chondrocytes. Mol. Cell. Biol. 33, 3077–3090 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lories, R. J. & Luyten, F. P. The bone-cartilage unit in osteoarthritis. Nat. Rev. Rheumatol 7, 43–49 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Oldefest, M. et al. Secreted Frizzled-related protein 3 (sFRP3)-mediated suppression of interleukin-6 receptor release by a disintegrin and metalloprotease 17 (ADAM17) is abrogated in the osteoarthritis-associated rare double variant of sFRP3. Biochem. J. 468, 507–518 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Bodine, P. V. et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol. Endocrinol. 18, 1222–1237 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Lories, R. J. et al. Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum. 56, 4095–4103 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Thysen, S., Luyten, F. P. & Lories, R. J. Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis. Osteoarthritis Cartilage 23, 275–279 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Pasold, J. et al. Reduced expression of Sfrp1 during chondrogenesis and in articular chondrocytes correlates with osteoarthritis in STR/ort mice. Exp. Cell Res. 319, 649–659 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, Y. S. et al. The Wnt inhibitor secreted Frizzled-Related Protein 1 (sFRP1) promotes human Th17 differentiation. Eur. J. Immunol. 42, 2564–2573 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Weivoda, M. M., Youssef, S. J. & Oursler, M. J. Sclerostin expression and functions beyond the osteocyte. Bone 96, 45–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Roudier, M. et al. Sclerostin is expressed in articular cartilage but loss or inhibition does not affect cartilage remodeling during aging or following mechanical injury. Arthritis Rheum. 65, 721–731 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Chan, B. Y. et al. Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthritis Cartilage 19, 874–885 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Papathanasiou, I., Kostopoulou, F., Malizos, K. N. & Tsezou, A. DNA methylation regulates sclerostin (SOST) expression in osteoarthritic chondrocytes by bone morphogenetic protein 2 (BMP-2) induced changes in Smads binding affinity to the CpG region of SOST promoter. Arthritis Res. Ther. 17, 160 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Staines, K. A. et al. Endochondral growth defect and deployment of transient chondrocyte behaviors underlie osteoarthritis onset in a natural murine model. Arthritis Rheumatol. 68, 880–891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bouaziz, W. et al. Loss of sclerostin promotes osteo-arthritis in mice via β-catenin-dependent and -independent Wnt pathways. Arthritis Res. Ther. 17, 24 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Florio, M. et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat. Commun. 7, 11505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, J., Ma, L., Wu, L. & Jin, Q. Wnt-β-catenin signaling pathway inhibition by sclerostin may protect against degradation in healthy but not osteoarthritic cartilage. Mol. Med. Rep. 15, 2423–2432 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma, B., Zhong, L., van Blitterswijk, C. A., Post, J. N. & Karperien, M. T cell factor 4 is a pro-catabolic and apoptotic factor in human articular chondrocytes by potentiating nuclear factor κB signaling. J. Biol. Chem. 288, 17552–17558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bouaziz, W. et al. Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice. Proc. Natl Acad. Sci. USA 113, 5453–5458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mirzamohammadi, F. et al. Polycomb repressive complex 2 regulates skeletal growth by suppressing Wnt and TGF-β signalling. Nat. Commun. 7, 12047 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cadigan, K. M. & Waterman, M. L. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb. Perspect. Biol. 4, a007906 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pal, S. & Tyler, J.K. Epigenetics and aging. Sci. Adv. 2, e1600584 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reynard, L. N. Analysis of genetics and DNA methylation in osteoarthritis: what have we learnt about the disease? Semin. Cell Dev. Biol. 62, 57–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Garcia-Ibarbia, C. et al. Contribution of genetic and epigenetic mechanisms to Wnt pathway activity in prevalent skeletal disorders. Gene 532, 165–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Nguyen, A. T. & Zhang, Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev. 25, 1345–1358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Castano Betancourt, M. C. et al. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc. Natl Acad. Sci. USA 109, 8218–8223 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Monteagudo, S. et al. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nat. Commun. 8, 15889 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Feige, J. N. & Auwerx, J. Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr. Opin. Cell Biol. 20, 303–309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, L. et al. The inhibition of EZH2 ameliorates osteoarthritis development through the Wnt/β-catenin pathway. Sci. Rep. 6, 29176 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Le, L. T. et al. The microRNA-29 family in cartilage homeostasis and osteoarthritis. J. Mol. Med. (Berl.) 94, 583–596 (2016).

    Article  CAS  Google Scholar 

  70. Luyten, F. P. Cartilage-derived morphogenetic protein-1. Int. J. Biochem. Cell Biol. 29, 1241–1244 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Valdes, A. M. et al. The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann. Rheum. Dis. 70, 873–875 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Miyamoto, Y. et al. A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat. Genet. 39, 529–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Thomas, J. T. et al. Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat. Genet. 17, 58–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Polinkovsky, A. et al. Mutations in CDMP1 cause autosomal dominant brachydactyly type C. Nat. Genet. 17, 18–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Daans, M., Luyten, F. P. & Lories, R. J. GDF5 deficiency in mice is associated with instability-driven joint damage, gait and subchondral bone changes. Ann. Rheum. Dis. 70, 208–213 (2011).

    Article  PubMed  Google Scholar 

  76. Enochson, L., Stenberg, J., Brittberg, M. & Lindahl, A. GDF5 reduces MMP13 expression in human chondrocytes via DKK1 mediated canonical Wnt signaling inhibition. Osteoarthritis Cartilage 22, 566–577 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Bougault, C. et al. Protective role of frizzled-related protein B on matrix metalloproteinase induction in mouse chondrocytes. Arthritis Res. Ther. 16, R137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rockel, J. S. et al. Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis. J. Clin. Invest. 126, 1649–1663 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Beales, P. L. et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat. Genet. 39, 727–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Cavalcanti, D. P. et al. Mutation in IFT80 in a fetus with the phenotype of Verma-Naumoff provides molecular evidence for Jeune-Verma-Naumoff dysplasia spectrum. J. Med. Genet. 48, 88–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, C., Yuan, X. & Yang, S. IFT80 is essential for chondrocyte differentiation by regulating Hedgehog and Wnt signaling pathways. Exp. Cell Res. 319, 623–632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yuan, X. et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat. Commun. 7, 11024 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yuan, X. & Yang, S. Deletion of IFT80 impairs epiphyseal and articular cartilage formation due to disruption of chondrocyte differentiation. PLoS ONE 10, e0130618 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Landman, E. B., Miclea, R. L., van Blitterswijk, C. A. & Karperien, M. Small molecule inhibitors of WNT/β-catenin signaling block IL-1β- and TNFα-induced cartilage degradation. Arthritis Res. Ther. 15, R93 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. van den Bosch, M. H. et al. Induction of canonical Wnt signaling by the alarmins S100A8/A9 in murine knee joints: implications for osteoarthritis. Arthritis Rheumatol. 68, 152–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Yan, H. et al. Suppression of NF-κB activity via nanoparticle-based siRNA delivery alters early cartilage responses to injury. Proc. Natl Acad. Sci. USA 113, E6199–E6208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. van den Bosch, M. H. et al. Induction of canonical Wnt signaling by synovial overexpression of selected Wnts leads to protease activity and early osteoarthritis-like cartilage damage. Am. J. Pathol. 185, 1970–1980 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Huang, G., Chubinskaya, S., Liao, W. & Loeser, R. F. Wnt5a induces catabolic signaling and matrix metalloproteinase production in human articular chondrocytes. Osteoarthritis Cartilage 25, 1505–1515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Blom, A. B. et al. Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1. Arthritis Rheum. 60, 501–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. van den Bosch, M. H. et al. WISP1/CCN4 aggravates cartilage degeneration in experimental osteoarthritis. Osteoarthritis Cartilage http://dx.doi.org/10.1016/j.joca.2017.07.012 (2017).

  92. Funck-Brentano, T. et al. Dkk-1-mediated inhibition of Wnt signaling in bone ameliorates osteoarthritis in mice. Arthritis Rheumatol. 66, 3028–3039 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Kobayashi, Y., Uehara, S., Udagawa, N. & Takahashi, N. Regulation of bone metabolism by Wnt signals. J. Biochem. 159, 387–392 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Abed, E. et al. Low sirtuin 1 levels in human osteoarthritis subchondral osteoblasts lead to abnormal sclerostin expression which decreases Wnt/β-catenin activity. Bone 59, 28–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Lories, R. J., Peeters, J., Szlufcik, K., Hespel, P. & Luyten, F. P. Deletion of frizzled-related protein reduces voluntary running exercise performance in mice. Osteoarthritis Cartilage 17, 390–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Yazici, Y. et al. A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate to severe osteoarthritis of the knee: results of a 24-week, randomized, controlled, phase I study. Osteoarthritis Cartilage 25, 1598–1606 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Deshmukh, V. et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage http://dx.doi.org/10.1016/j.joca.2017.08.015 (2017).

  98. Bastakoty, D. et al. Inhibition of Wnt/β-catenin pathway promotes regenerative repair of cutaneous and cartilage injury. FASEB J. 29, 4881–4892 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Takamatsu, A. et al. Verapamil protects against cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling. PLoS ONE 9, e92699 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou, X. et al. Tetrandrine inhibits the Wnt/β-catenin signalling pathway and alleviates osteoarthritis: an in vitro and in vivo study. Evid. Based Complement. Alternat. Med. 2013, 809579 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. Weng, X. et al. Achyranthes bidentata polysaccharides activate the Wnt/β-catenin signaling pathway to promote chondrocyte proliferation. Int. J. Mol. Med. 34, 1045–1050 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Zhou, Y. et al. Berberine promotes proliferation of sodium nitroprusside-stimulated rat chondrocytes and osteoarthritic rat cartilage via Wnt/β-catenin pathway. Eur. J. Pharmacol. 789, 109–118 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Zhou, X. et al. Chondroprotective effects of palmatine on osteoarthritis in vivo and in vitro: a possible mechanism of inhibiting the Wnt/β-catenin and Hedgehog signaling pathways. Int. Immunopharmacol. 34, 129–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, J., Sun, H., Fu, Z. & Liu, M. Chondroprotective effects of alpha-lipoic acid in a rat model of osteoarthritis. Free Radic. Res. 50, 767–780 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Lin, Y. et al. Molecular hydrogen suppresses activated Wnt/β-catenin signaling. Sci. Rep. 6, 31986 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Original research on Wnt signalling in the Laboratory of Tissue Homeostasis and Disease is supported by grants from the Flanders Research Foundation (FWO Vlaanderen), a C1 grant from KU Leuven and an unrestricted grant from Celgene (to S.M.). S.M. was the recipient of a Marie-Curie fellowship named “DOTOS”.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Rik J. Lories.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Canonical Wnt signalling pathway

The best-characterized signalling cascade triggered by Wnts that functions through regulation of intracellular β-catenin levels.

Non-canonical Wnt signalling pathways

Alternatively activated signalling cascades that function via Wnt–frizzled receptor interactions resulting in activation of mitogen activated protein kinases such as c-Jun N-terminal kinase and in intracellular calcium release.

Joint interzone

The area in the developing limb where the joints will be formed; joint interzone cells are progenitors of the cells of the synovium, articular cartilage and ligaments.

Superficial zone chondrocytes

Flat-appearing lubricin-producing cells in the superficial zone of the articular cartilage.

Articular chondrocytes

A unique population of chondrocytes in the articular cartilage, embedded in a self-produced water-rich extracellular matrix.

Kyphosis

Abnormal curvature of the spine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteagudo, S., Lories, R. Cushioning the cartilage: a canonical Wnt restricting matter. Nat Rev Rheumatol 13, 670–681 (2017). https://doi.org/10.1038/nrrheum.2017.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing