Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases

Key Points

  • Certain autoantibodies specific for G protein-coupled receptors (GPCRs) can regulate the function of these cell surface receptors and are known as functional autoantibodies

  • Functional autoantibodies targeting different GPCRs might influence the outcome of autoimmune diseases

  • Growing evidence points to a pathological role of autoantibodies against endothelin receptor type A (ETAR) and type 1 angiotensin II receptor (AT1R)

  • Anti-AT1R and anti-ETAR autoantibodies can trigger the same signalling pathways as those activated by endogenous ligands, ultimately regulating the same cellular events

  • The concentration of anti-GPCR autoantibodies in the serum of healthy individuals is usually lower than in that of patients with autoimmune disorders

Abstract

G protein-coupled receptors (GPCRs) comprise the largest and most diverse family of integral membrane proteins that participate in different physiological processes such as the regulation of the nervous and immune systems. Besides the endogenous ligands of GPCRs, functional autoantibodies are also able to bind GPCRs to trigger or block intracellular signalling pathways, resulting in agonistic or antagonistic effects, respectively. In this Review, the effects of functional GPCR-targeting autoantibodies on the pathogenesis of autoimmune diseases, including rheumatic diseases, are discussed. Autoantibodies targeting β1 and β2 adrenergic receptors, which are expressed by cardiac and airway smooth muscle cells, respectively, have an important role in the development of asthma and cardiovascular diseases. In addition, high levels of autoantibodies against the muscarinic acetylcholine receptor M3 as well as those targeting endothelin receptor type A and type 1 angiotensin II receptor have several implications in the pathogenesis of rheumatic diseases such as Sjögren syndrome and systemic sclerosis. Expanding the knowledge of the pathophysiological roles of autoantibodies against GPCRs will shed light on the biology of these receptors and open avenues for new therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of GPCRs in the regulation of human physiology.
Figure 2: Pathological effects of anti-GPCRs autoantibodies interfering with neuronal transmission.

Similar content being viewed by others

References

  1. Venkatakrishnan, A. J. et al. Molecular signatures of G-protein-coupled receptors. Nature 494, 185–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Flock, T. et al. Selectivity determinants of GPCR-G-protein binding. Nature 545, 317–322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nomiyama, H., Osada, N. & Yoshie, O. A family tree of vertebrate chemokine receptors for a unified nomenclature. Dev. Comp. Immunol. 35, 705–715 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Bryant, V. L. & Slade, C. A. Chemokines, their receptors and human disease: the good, the bad and the itchy. Immunol. Cell Biol. 93, 364–371 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Enghard, P. et al. CXCR3+CD4+ T cells are enriched in inflamed kidneys and urine and provide a new biomarker for acute nephritis flares in systemic lupus erythematosus patients. Arthritis Rheum. 60, 199–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Ruth, J. H. et al. Selective lymphocyte chemokine receptor expression in the rheumatoid joint. Arthritis Rheum. 44, 2750–2760 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Balashov, K. E., Rottman, J. B., Weiner, H. L. & Hancock, W. W. CCR5+ and CXCR3+ T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc. Natl Acad. Sci. USA 96, 6873–6878 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Donath, J. K. & Landsteiner, K. Uber paroxysmale haemoglobinurie. Munch. Med. Wochenschr. 51, 1590–1593 (1904).

    Google Scholar 

  9. Ludwig, R. J. et al. Mechanisms of autoantibody-induced pathology. Front. Immunol. 8, 603 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Herda, L. R., Felix, S. B. & Boege, F. Drug-like actions of autoantibodies against receptors of the autonomous nervous system and their impact on human heart function. Br. J. Pharmacol. 166, 847–857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gleicher, N., Barad, D. & Weghofer, A. Functional autoantibodies, a new paradigm in autoimmunity? Autoimmun. Rev. 7, 42–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Riemekasten, G. et al. Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann. Rheum. Dis. 70, 530–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Gabrielli, A., Moroncini, G., Svegliati, S. & Avvedimento, E. V. Autoantibodies against the platelet-derived growth factor receptor in scleroderma: comment on the articles by Clessen et al and Loizos et al. Arthritis Rheum. 60, 3521–3522 (2009).

    Article  PubMed  Google Scholar 

  14. Venter, J. C., Fraser, C. M. & Harrison, L. C. Autoantibodies to beta 2-adrenergic receptors: a possible cause of adrenergic hyporesponsiveness in allergic rhinitis and asthma. Science 207, 1361–1363 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Gleicher, N., Harlow, L. & Zilberstein, M. Regulatory effect of antiphospholipid antibodies on signal transduction: a possible model for autoantibody-induced reproductive failure. Am. J. Obstet. Gynecol. 167, 637–642 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Lunardi, C. et al. Antibodies against human cytomegalovirus in the pathogenesis of systemic sclerosis: a gene array approach. PLoS Med. 3, e2 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wolf, S. I., Howat, S., Abraham, D. J., Pearson, J. D. & Lawson, C. Agonistic anti-ICAM-1 antibodies in scleroderma: activation of endothelial pro-inflammatory cascades. Vascul. Pharmacol. 59, 19–26 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cabral-Marques, O. & Riemekasten, G. Vascular hypothesis revisited: role of stimulating antibodies against angiotensin and endothelin receptors in the pathogenesis of systemic sclerosis. Autoimmun. Rev. 15, 690–694 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Dragun, D. et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N. Engl. J. Med. 352, 558–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Baroni, S. et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N. Engl. J. Med. 354, 2667–2676 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Matsui, S. et al. Dilated cardiomyopathy defines serum autoantibodies against G-protein-coupled cardiovascular receptors. Autoimmunity 21, 85–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Jo, M. & Jung, S. T. Engineering therapeutic antibodies targeting G-protein–coupled receptors. Exp. Mol. Med. 48, e207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21, 90–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Johnson, M. Molecular mechanisms of β2-adrenergic receptor function, response, and regulation. J. Allergy Clin. Immunol. 117, 18–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. McCorry, L. K. Physiology of the autonomic nervous system. Am. J. Pharm. Educ. 71, 78 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. McGraw, D. W. & Liggett, S. B. Molecular mechanisms of beta2-adrenergic receptor function and regulation. Proc. Am. Thorac. Soc. 2, 292–296 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Strosberg, A. D. Structure, function, and regulation of adrenergic receptors. Protein Sci. 2, 1198–1209 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lorton, D. & Bellinger, D. L. Molecular mechanisms underlying β-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells. Int. J. Mol. Sci. 16, 5635–5665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Turki, J. & Liggett, S. B. Receptor-specific functional properties of beta 2-adrenergic receptor autoantibodies in asthma. Am. J. Respir. Cell Mol. Biol. 12, 531–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Loebel, M. et al. Antibodies to β adrenergic and muscarinic cholinergic receptors in patients with chronic fatigue syndrome. Brain Behav. Immun. 52, 32–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Kohr, D. et al. Autoimmunity against the β2 adrenergic receptor and muscarinic-2 receptor in complex regional pain syndrome. Pain 152, 2690–2700 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Segovia, M., Ganzinelli, S., Reina, S., Borda, E. & Sterin-Borda, L. Role of anti-β1 adrenergic antibodies from patients with periodontitis in cardiac dysfunction. J. Oral Pathol. Med. 41, 242–248 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Zuo, L. et al. Long-term active immunization with a synthetic peptide corresponding to the second extracellular loop of β1-adrenoceptor induces both morphological and functional cardiomyopathic changes in rats. Int. J. Cardiol. 149, 89–94 (2011).

    Article  PubMed  Google Scholar 

  34. Borda, E. et al. A circulating IgG in Chagas' disease which binds to beta-adrenoceptors of myocardium and modulates their activity. Clin. Exp. Immunol. 57, 679–686 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Limas, C. J., Goldenberg, I. F. & Limas, C. Autoantibodies against beta-adrenoceptors in human idiopathic dilated cardiomyopathy. Circ. Res. 64, 97–103 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Tate, K. et al. Epitope analysis of T and B-cell response against the human beta 1-adrenoceptor. Biochimie 76, 159–164 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Tutor, A. S., Penela, P. & Mayor, F. Anti-beta1-adrenergic receptor autoantibodies are potent stimulators of the ERK1/2 pathway in cardiac cells. Cardiovasc. Res. 76, 51–60 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Magnusson, Y., Wallukat, G., Guillet, J. G., Hjalmarson, A. & Hoebeke, J. Functional analysis of rabbit anti-peptide antibodies which mimic autoantibodies against the beta 1-adrenergic receptor in patients with idiopathic dilated cardiomyopathy. J. Autoimmun. 4, 893–905 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Williams, L. T., Mullikin, D. & Lefkowitz, R. J. Magnesium dependence of agonist binding to adenylate cyclase-coupled hormone receptors. J. Biol. Chem. 253, 2984–2989 (1978).

    CAS  PubMed  Google Scholar 

  40. Gong, Y. et al. Autoantibodies against β1-adrenoceptor induce blood glucose enhancement and insulin insufficient via T lymphocytes. Immunol. Res. 64, 584–593 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Scanzano, A. & Cosentino, M. Adrenergic regulation of innate immunity: a review. Front. Pharmacol. 6, 171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Du, Y. et al. β1-adrenergic receptor autoantibodies from heart failure patients enhanced TNF-α secretion in RAW264.7 macrophages in a largely PKA-dependent fashion. J. Cell. Biochem. 113, 3218–3228 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Du, Y. et al. β1-adrenoceptor autoantibodies from DCM patients enhance the proliferation of T lymphocytes through the β1-AR/cAMP/PKA and p38 MAPK pathways. PLoS ONE 7, e52911 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schulze-Koops, H. & Kalden, J. R. The balance of Th1/Th2 cytokines in rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 15, 677–691 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Kalliolias, G. D. & Ivashkiv, L. B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 12, 49–62 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kruse, A. C. et al. Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat. Rev. Drug Discov. 13, 549–560 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wessler, I. & Kirkpatrick, C. J. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br. J. Pharmacol. 154, 1558–1571 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Razani-Boroujerdi, S. et al. Role of muscarinic receptors in the regulation of immune and inflammatory responses. J. Neuroimmunol. 194, 83–88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kovács, L. et al. Clinical associations of autoantibodies to human muscarinic acetylcholine receptor 3213–3228 in primary Sjögren's syndrome. Rheumatology 44, 1021–1025 (2005).

    Article  PubMed  Google Scholar 

  50. Tsuboi, H. et al. New epitopes and function of anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren's syndrome. Clin. Exp. Immunol. 162, 53–61 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park, K., Haberberger, R. V., Gordon, T. P. & Jackson, M. W. Antibodies interfering with the type 3 muscarinic receptor pathway inhibit gastrointestinal motility and cholinergic neurotransmission in Sjögren's syndrome. Arthritis Rheum. 63, 1426–1434 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Takeuchi, T., Tanaka, K., Nakajima, H., Matsui, M. & Azuma, Y. T. M2 and M3 muscarinic receptors are involved in enteric nerve-mediated contraction of the mouse ileum: findings obtained with muscarinic-receptor knockout mouse. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G154–G164 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Wess, J., Eglen, R. M. & Gautam, D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat. Rev. Drug Discov. 6, 721–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Unno, T. et al. Roles of M2 and M3 muscarinic receptors in cholinergic nerve-induced contractions in mouse ileum studied with receptor knockout mice. Br. J. Pharmacol. 149, 1022–1030 (2009).

    Article  CAS  Google Scholar 

  55. Kuriyama, H., Kitamura, K., Itoh, T. & Inoue, R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol. Rev. 78, 811–920 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Scarselli, M., Li, B., Kim, S. K. & Wess, J. Multiple residues in the second extracellular loop are critical for M3 muscarinic acetylcholine receptor activation. J. Biol. Chem. 282, 7385–7396 (2006).

    Article  CAS  Google Scholar 

  57. Preuss, B., Tunaru, S., Henes, J., Offermanns, S. & Klein, R. A novel luminescence-based method for the detection of functionally active antibodies to muscarinic acetylcholine receptors of the M3 type (mAchR3) in patients' sera. Clin. Exp. Immunol. 177, 179–189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Watson, E. L. et al. Identification of muscarinic receptor subtypes in mouse parotid gland. Am. J. Physiol. 271, C905–C913 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Goldblatt, F., Gordon, T. P. & Waterman, S. A. Antibody-mediated gastrointestinal dysmotility in scleroderma. Gastroenterology 123, 1144–1150 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Kawaguchi, Y. et al. Muscarinic-3 acetylcholine receptor autoantibody in patients with systemic sclerosis: contribution to severe gastrointestinal tract dysmotility. Ann. Rheum. Dis. 68, 710–714 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Shreiner, A. B., Murray, C., Denton, C. & Khanna, D. Gastrointestinal manifestations of systemic sclerosis. J. Scleroderma Relat. Disord. 1, 247–256 (2016).

    Article  PubMed  Google Scholar 

  62. Günther, J. et al. Angiotensin receptor type 1 and endothelin receptor type A on immune cells mediate migration and the expression of IL-8 and CCL18 when stimulated by autoantibodies from systemic sclerosis patients. Arthritis Res. Ther. 16, R65 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kill, A. et al. Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis. Arthritis Res. Ther. 16, R29 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yamin, R. & Morgan, K. G. Deciphering actin cytoskeletal function in the contractile vascular smooth muscle cell. J. Physiol. 590, 4145–4154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ishida, T., Ishida, M., Suero, J., Takahashi, M. & Berk, B. C. Agonist-stimulated cytoskeletal reorganization and signal transduction at focal adhesions in vascular smooth muscle cells require c-Src. J. Clin. Invest. 103, 789–797 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schappi, J. M., Krbanjevic, A. & Rasenick, M. M. Tubulin, actin and heterotrimeric G proteins: coordination of signaling and structure. Biochim. Biophys. Acta 1838, 674–681 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Tang, D. D. & Anfinogenova, Y. Physiologic properties and regulation of the actin cytoskeleton in vascular smooth muscle. J. Cardiovasc. Pharmacol. Ther. 13, 130–140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Drawnel, F. M., Archer, C. R. & Roderick, H. L. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br. J. Pharmacol. 168, 296–317 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. de Frutos, S., Ramiro Diaz, J. M., Nitta, C. H., Sherpa, M. L. & Gonzalez Bosc, L. V. Endothelin-1 contributes to increased NFATc3 activation by chronic hypoxia in pulmonary arteries. Am. J. Cell Physiol. 301, C441–C450 (2011).

    Article  CAS  Google Scholar 

  70. Kawaguchi, Y. et al. Angiotensin II in the lesional skin of systemic sclerosis patients contributes to tissue fibrosis via angiotensin II type 1 receptors. Arthritis Rheum. 50, 216–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Kawaguchi, Y. et al. Increased endothelin-1 production in fibroblasts derived from patients with systemic sclerosis. Ann. Rheum. Dis. 53, 506–510 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ruiz-Ortega, M. et al. Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms. Circ. Res. 86, 1266–1272 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Harrison, J. G., Sugden, P. H. & Clerk, A. Endothelin-1 promotes phosphorylation of CREB transcription factor in primary cultures of neonatal rat cardiac myocytes: implications for the regulation of c-jun expression. Biochim. Biophys. Acta 1644, 17–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Gallois, C. et al. Role of NF-kappaB in the antiproliferative effect of endothelin-1 and tumor necrosis factor-alpha in human hepatic stellate cells. Involvement of cyclooxygenase-2. J. Biol. Chem. 273, 23183–23190 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Guo, L. et al. Anti-endothelin receptor type A autoantibodies in systemic lupus erythematosus-associated pulmonary arterial hypertension. Arthritis Rheumatol. 67, 2394–2402 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Xiong, J., Liang, Y., Yang, H., Zhu, F. & Wang, Y. The role of angiotensin II type 1 receptor-activating antibodies in patients with lupus nephritis. Int. J. Clin. Pract. 67, 1066–1067 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Elferink, J. G. & de Koster, B. M. The stimulation of human neutrophil migration by angiotensin IL: its dependence on Ca2+ and the involvement of cyclic GMP. Br. J. Pharmacol. 121, 643–648 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. József, L., Khreiss, T., Fournier, A., Chan, J. S. D. & Filep, J. G. Extracellular signal-regulated kinase plays an essential role in endothelin-1-induced homotypic adhesion of human neutrophil granulocytes. Br. J. Pharmacol. 135, 1167–1174 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zouki, C., Baron, C., Fournier, A. & Filep, J. G. Endothelin-1 enhances neutrophil adhesion to human coronary artery endothelial cells: role of ET(A) receptors and platelet-activating factor. Br. J. Pharmacol. 127, 969–979 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Achmad, T. H. & Rao, G. S. Chemotaxis of human blood monocytes toward endothelin-1 and the influence of calcium channel blockers. Biochem. Biophys. Res. Commun. 189, 994–1000 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Kintscher, U. et al. Angiotensin II induces migration and Pyk2/paxillin phosphorylation of human monocytes. Hypertension 37, 587–593 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Kranzhöfer, R. et al. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19, 1623–1629 (1999).

    Article  PubMed  Google Scholar 

  83. Browatzki, M., Schmidt, J., Kübler, W. & Kranzhöfer, R. Endothelin-1 induces interleukin-6 release via activation of the transcription factor NF-kappaB in human vascular smooth muscle cells. Basic Res. Cardiol. 95, 98–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Elferink, J. G. & De Koster, B. M. The involvement of protein kinase G in stimulation of neutrophil migration by endothelins. Eur. J. Pharmacol. 350, 285–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Ruiz-Ortega, M., Lorenzo, O. & Egido, J. Angiotensin III increases MCP-1 and activates NF-κB and AP-1 in cultured mesangial and mononuclear cells. Kidney Int. 57, 2285–2298 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Ruiz-Ortega, M. et al. Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int. 62, S12–S22 (2002).

    Article  Google Scholar 

  87. Sampaio, A. L. F., Rae, G. A. & Henriques, M. G. Effects of endothelin ETA receptor antagonism on granulocyte and lymphocyte accumulation in LPS-induced inflammation. J. Leukoc. Biol. 76, 210–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Hofman, F. M. et al. Endothelin-1 induces production of the neutrophil chemotactic factor interleukin-8 by human brain-derived endothelial cells. Blood 92, 3064–3072 (1998).

    CAS  PubMed  Google Scholar 

  89. Koyama, Y. et al. Different actions of endothelin-1 on chemokine production in rat cultured astrocytes: reduction of CX3CL1/fractalkine and an increase in CCL2/MCP-1 and CXCL1/CINC-1. J. Neuroinflamm. 10, 51 (2013).

    Article  CAS  Google Scholar 

  90. Kill, A. & Riemekasten, G. Functional autoantibodies in systemic sclerosis pathogenesis. Curr. Rheumatol. Rep. 17, 34 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Rabquer, B. J. et al. The proadhesive phenotype of systemic sclerosis skin promotes myeloid cell adhesion via ICAM-1 and VCAM-1. Rheumatology (Oxford) 48, 734–740 (2009).

    Article  CAS  Google Scholar 

  92. Krohn, S., Garin, A., Gabay, C. & Proudfoot, A. E. I. The activity of CCL18 is principally mediated through interaction with glycosaminoglycans. Front. Immunol. 4, 193 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Islam, S. A., Ling, M. F., Leung, J., Shreffler, W. G. & Luster, A. D. Identification of human CCR8 as a CCL18 receptor. J. Exp. Med. 210, 1889–1898 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rademacher, J. et al. Monocytic angiotensin and endothelin receptor imbalance modulate secretion of the profibrotic chemokine ligand 18. J. Rheumatol. 43, 587–591 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Schupp, J. et al. Serum CCL18 is predictive for lung disease progression and mortality in systemic sclerosis. Eur. Respir. J. 43, 1530–1532 (2014).

    Article  PubMed  Google Scholar 

  96. Shi-wen, X. et al. Focal adhesion kinase and reactive oxygen species contribute to the persistent fibrotic phenotype of lesional scleroderma fibroblasts. Rheumatology 51, 2146–2154 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Becker, M. O. et al. Vascular receptor autoantibodies in pulmonary arterial hypertension associated with systemic sclerosis. Am. J. Respir. Crit. Care Med. 190, 808–817 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Tomar, N., Gupta, N. & Goswami, R. Calcium-sensing receptor autoantibodies and idiopathic hypoparathyroidism. J. Clin. Endocrinol. Metab. 98, 3884–3891 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Kifor, O. et al. Activating antibodies to the calcium-sensing receptor in two patients with autoimmune hypoparathyroidism. J. Clin. Endocrinol. Metab. 89, 548–556 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Minich, W. B., Lenzner, C. & Morgenthaler, N. G. Antibodies to TSH-receptor in thyroid autoimmune disease interact with monoclonal antibodies whose epitopes are broadly distributed on the receptor. Clin. Exp. Immunol. 136, 129–136 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Riccardi, D. & Valenti, G. Localization and function of the renal calcium-sensing receptor. Nat. Rev. Nephrol. 12, 414–425 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Harris, H. E., Kemp, E. H., Brown, E. M., Weetman, A. P. & Swaminathan, K. First report of anti-calcium-sensing receptor antibodies in a patient with Sjogren's syndrome and primary hypoparathyroidism. Rheumatology (Oxford) 50, 1173–1175 (2011).

    Article  Google Scholar 

  103. Dutta, D., Das, R. N., Ghosh, S., Mukhopadhyay, S. & Chowdhury, S. Idiopathic hypoparathyroidism and systemic sclerosis: an association likely missed. Indian J. Endocrinol. Metab. 16, S396–398 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Attout, H. et al. Hypoparathyroidism in systemic lupus erythematosus. Joint Bone Spine 74, 282–284 (2007).

    Article  PubMed  Google Scholar 

  105. Biró, E. et al. Association of systemic and thyroid autoimmune diseases. Clin. Rheumatol. 25, 240–245 (2006).

    Article  PubMed  Google Scholar 

  106. Marker, M., Derfler, K., Monshi, B. & Rappersberger, K. Successful immunoapheresis of bullous autoimmune diseases: pemphigus vulgaris and pemphigoid gestationis. J. Dtsch. Dermatol. Ges. 9, 27–31 (2011).

    PubMed  Google Scholar 

  107. Riemekasten, G. & Cabral-Marques, O. Antibodies against angiotensin II type 1 receptor (AT1R) and endothelin receptor type A (ETAR) in systemic sclerosis (SSc)-response. Autoimmun. Rev. 15, 935 (2016).

    Article  PubMed  Google Scholar 

  108. Stummvoll, G. Immunoadsorption (IAS) for systemic lupus erythematosus. Lupus 20, 115–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Wallukat, G. et al. Aptamer BC007 for neutralization of pathogenic autoantibodies directed against G-protein coupled receptors: a vision of future treatment of patients with cardiomyopathies and positivity for those autoantibodies. Atherosclerosis 244, 44–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Rajagopal, S., Rajagopal, K. & Lefkowitz, R. J. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov. 9, 373–386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Boerrigter, G., Soergel, D. G., Violin, J. D., Lark, M. W. & Burnett, J. C. TRV120027, a novel β-arrestin biased ligand at the angiotensin II type I receptor, unloads the heart and maintains renal function when added to furosemide in experimental heart failure. Circ. Heart Fail. 5, 627–634 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Pang, P. S. et al. Biased ligand of the angiotensin II type 1 receptor in patients with acute heart failure: a randomized, double-blind, placebo-controlled, phase IIB, dose ranging trial (BLAST-AHF). Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehx196 (2017).

  113. Soergel, D. G., Subach, R. A., Cowan, C. L., Violin, J. D. & Lark, M. W. First clinical experience with TRV027: pharmacokinetics and pharmacodynamics in healthy volunteers. J. Clin. Pharmacol. 53, 892–899 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Newman, J. H., Kar, S. & Kirkpatrick, P. Ambrisentan. Nat. Rev. Drug Discov. 6, 697–698 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Denton, C. P. et al. Long-term effects of bosentan on quality of life, survival, safety and tolerability in pulmonary arterial hypertension related to connective tissue diseases. Ann. Rheum. Dis. 67, 1222–1228 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Lopez-Ovejero, J. A. et al. Reversal of vascular and renal crises of scleroderma by oral angiotensin-converting-enzyme blockade. N. Engl. J. Med. 300, 1417–1419 (1979).

    Article  CAS  PubMed  Google Scholar 

  118. Liu, H. R., Zhao, R. R., Zhi, J. M., Wu, B. W. & Fu, M. L. Screening of serum autoantibodies to cardiac beta1-adrenoceptors and M2-muscarinic acetylcholine receptors in 408 healthy subjects of varying ages. Autoimmunity 29, 43–51 (1999).

    Article  PubMed  Google Scholar 

  119. Sitaru, C., Mihai, S. & Zillikens, D. The relevance of the IgG subclass of autoantibodies for blister induction in autoimmune bullous skin diseases. Arch. Dermatol. Res. 299, 1–8 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Roescher, N., Kingman, A., Shirota, Y., Chiorini, J. A. & Illei, G. G. Peptide-based ELISAs are not sensitive and specific enough to detect muscarinic receptor type 3 autoantibodies in serum from patients with Sjogren's syndrome. Ann. Rheum. Dis. 70, 235–236 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Park, K., Park, S. & Jackson, M. W. The inhibitory effects of antimuscarinic autoantibodies in the sera of primary Sjogren syndrome patients on the gastrointestinal motility. Mol. Immunol. 56, 583–587 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Lena F Schimke-Marques and Dr. Antje Müller from the Department of Rheumatology, University of Lübeck for her critical reading of the manuscript. We would also like to acknowledge the support and funding from the intramural grant of the University of Lübeck, German Systemic Sclerosis Network (DNSS), DFG grant RI 1056-11-1/2, Actelion Pharmaceutical GmbH Germany, GSK, CellTrend, Scleroderma Foundation, and Mirjam Lichy Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Gabriela Riemekasten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral-Marques, O., Riemekasten, G. Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases. Nat Rev Rheumatol 13, 648–656 (2017). https://doi.org/10.1038/nrrheum.2017.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing