Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mass spectrometry imaging: a novel technology in rheumatology

Key Points

  • Mass spectrometry imaging (MSI) enables the determination of the relative abundance and spatial distribution of biomolecules in tissue sections without labelling or staining

  • Studies of joint samples have demonstrated that MSI can provide complementary information to histology and histochemistry for rheumatic disorders

  • MSI has revealed the identity and distribution of several peptides, lipids and chemical elements in cartilage, synovium and bone from patients with rheumatic diseases

  • Although MSI is currently mainly used in research, this technology might soon be introduced into clinical practice owing to rapid technological improvements

Abstract

Mass spectrometry imaging (MSI) is used to determine the relative abundance and spatial distribution of biomolecules such as peptides, proteins, lipids and other organic compounds in tissue sections by their molecular masses. This technique provides a sensitive and label-free approach for high-resolution imaging, and is currently used in an increasing number of biomedical applications such as biomarker discovery, tissue classification and drug monitoring. Owing to technological advances in the past 5 years in diverse MSI strategies, this technology is expected to become a standard tool in clinical practice and provides information complementary to that obtained using existing methods. Given that MSI is able to extract mass-spectral signatures from pathological tissue samples, this technique provides a novel platform to study joint-related tissues affected by rheumatic diseases. In rheumatology, MSI has been performed on articular cartilage, synovium and bone to increase the understanding of articular destruction and to characterize diagnostic and prognostic biomarkers for osteoarthritis, rheumatoid arthritis and osteoporosis. In this Review, we provide an overview of MSI technology and of the studies in which joint tissues have been analysed by use of this methodology. This approach might increase knowledge of rheumatic pathologies and ultimately prompt the development of targeted strategies for their management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of a typical MALDI-MSI workflow.
Figure 2: Representative MSI data obtained from human joints.

Similar content being viewed by others

References

  1. Chaurand, P. Imaging mass spectrometry of thin tissue sections: a decade of collective efforts. J. Proteom. 75, 4883–4892 (2012).

    Article  CAS  Google Scholar 

  2. Gode, D. & Volmer, D. A. Lipid imaging by mass spectrometry - a review. Analyst 138, 1289–1315 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Ferguson, C. N., Fowler, J. W., Waxer, J. F., Gatti, R. A. & Loo, J. A. Mass spectrometry-based tissue imaging of small molecules. Adv. Exp. Med. Biol. 806, 283–299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rial-Otero, R. et al. Sonoreactor-based technology for fast high-throughput proteolytic digestion of proteins. J. Proteome Res. 6, 909–912 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Gagnon, H. et al. Targeted mass spectrometry imaging: specific targeting mass spectrometry imaging technologies from history to perspective. Prog. Histochem. Cytochem. 47, 133–174 (2012).

    Article  PubMed  Google Scholar 

  6. Wu, C., Dill, A. L., Eberlin, L. S., Cooks, R. G. & Ifa, D. R. Mass spectrometry imaging under ambient conditions. Mass Spectrom. Rev. 32, 218–243 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. McDonnell, L. A. & Heeren, R. M. Imaging mass spectrometry. Mass Spectrom. Rev. 26, 606–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Svensson, M. et al. Heat stabilization of the tissue proteome: a new technology for improved proteomics. J. Proteome Res. 8, 974–981 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Groseclose, M. R., Massion, P. P., Chaurand, P. & Caprioli, R. M. High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8, 3715–3724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Casadonte, R. & Caprioli, R. M. Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat. Protoc. 6, 1695–1709 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwartz, S. A., Reyzer, M. L. & Caprioli, R. M. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J. Mass Spectrom. 38, 699–708 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Crecelius, A. C. et al. Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 1093–1099 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Chaurand, P. et al. Integrating histology and imaging mass spectrometry. Anal. Chem. 76, 1145–1155 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Chughtai, K., Jiang, L., Greenwood, T. R., Glunde, K. & Heeren, R. M. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models. J. Lipid Res. 54, 333–344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deutskens, F., Yang, J. & Caprioli, R. M. High spatial resolution imaging mass spectrometry and classical histology on a single tissue section. J. Mass Spectrom. 46, 568–571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seeley, E. H., Oppenheimer, S. R., Mi, D., Chaurand, P. & Caprioli, R. M. Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J. Am. Soc. Mass Spectrom. 19, 1069–1077 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chacon, A. et al. On-tissue chemical derivatization of 3-methoxysalicylamine for MALDI-imaging mass spectrometry. J. Mass Spectrom. 46, 840–846 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaletas, B. K. et al. Sample preparation issues for tissue imaging by imaging MS. Proteomics 9, 2622–2633 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Svara, F. N., Kiss, A., Jaskolla, T. W., Karas, M. & Heeren, R. M. High-reactivity matrices increase the sensitivity of matrix enhanced secondary ion mass spectrometry. Anal. Chem. 83, 8308–8313 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Pan, C. et al. Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS. Anal. Bioanal. Chem. 387, 193–204 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Tholey, A. & Heinzle, E. Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry-applications and perspectives. Anal. Bioanal. Chem. 386, 24–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Passarelli, M. K. & Winograd, N. Lipid imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Biochim. Biophys. Acta 1811, 976–990 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lockyer, N. P. Secondary ion mass spectrometry imaging of biological cells and tissues. Methods Mol. Biol. 1117, 707–732 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Altelaar, A. F. & Piersma, S. R. Cellular imaging using matrix-enhanced and metal-assisted SIMS. Methods Mol. Biol. 656, 197–208 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Northen, T. R. et al. Clathrate nanostructures for mass spectrometry. Nature 449, 1033–1036 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. O'Brien, P. J. et al. Monitoring metabolic responses to chemotherapy in single cells and tumors using nanostructure-initiator mass spectrometry (NIMS) imaging. Cancer Metab. 1, 4 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kurczy, M. E., Northen, T. R., Trauger, S. A. & Siuzdak, G. Nanostructure imaging mass spectrometry: the role of fluorocarbons in metabolite analysis and yoctomole level sensitivity. Methods Mol. Biol. 1203, 141–149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, d. Y. et al. Resolving brain regions using nanostructure initiator mass spectrometry imaging of phospholipids. Integr. Biol. 4, 693–699 (2012).

    Article  CAS  Google Scholar 

  29. Sturm, R. M., Greer, T., Chen, R., Hensen, B. & Li, L. Comparison of NIMS and MALDI platforms for neuropeptide and lipid mass spectrometric imaging in C. borealis brain tissue. Anal. Methods 5, 1623–1628 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ifa, D. R., Gumaelius, L. M., Eberlin, L. S., Manicke, N. E. & Cooks, R. G. Forensic analysis of inks by imaging desorption electrospray ionization (DESI) mass spectrometry. Analyst 132, 461–467 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Campbell, D. I., Ferreira, C. R., Eberlin, L. S. & Cooks, R. G. Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization. Anal. Bioanal. Chem. 404, 389–398 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Wu, C., Ifa, D. R., Manicke, N. E. & Cooks, R. G. Molecular imaging of adrenal gland by desorption electrospray ionization mass spectrometry. Analyst 135, 28–32 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Wiseman, J. M. et al. Desorption electrospray ionization mass spectrometry: Imaging drugs and metabolites in tissues. Proc. Natl Acad. Sci. USA 105, 18120–18125 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eberlin, L. S., Ifa, D. R., Wu, C. & Cooks, R. G. Three-dimensional vizualization of mouse brain by lipid analysis using ambient ionization mass spectrometry. Angew. Chem. Int. Ed. Engl. 49, 873–876 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eberlin, L. S. et al. Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res. 72, 645–654 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Jones, E. A., Deininger, S. O., Hogendoorn, P. C., Deelder, A. M. & McDonnell, L. A. Imaging mass spectrometry statistical analysis. J. Proteom. 75, 4962–4989 (2012).

    Article  CAS  Google Scholar 

  37. McCombie, G., Staab, D., Stoeckli, M. & Knochenmuss, R. Spatial and spectral correlations in MALDI mass spectrometry images by clustering and multivariate analysis. Anal. Chem. 77, 6118–6124 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Klerk, L. A. et al. TOF-secondary ion mass spectrometry imaging of polymeric scaffolds with surrounding tissue after in vivo implantation. Anal. Chem. 82, 4337–4343 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Rocha, B. et al. Characterization of lipidic markers of chondrogenic differentiation using mass spectrometry imaging. Proteomics 15, 702–713 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. McDonnell, L. A. et al. Peptide and protein imaging mass spectrometry in cancer research. J. Proteom. 73, 1921–1944 (2010).

    Article  CAS  Google Scholar 

  41. Djidja, M. C. et al. Novel molecular tumour classification using MALDI-mass spectrometry imaging of tissue micro-array. Anal. Bioanal. Chem. 397, 587–601 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Cillero-Pastor, B., Eijkel, G. B., Kiss, A., Blanco, F. J. & Heeren, R. M. Matrix-assisted laser desorption ionization-imaging mass spectrometry: a new methodology to study human osteoarthritic cartilage. Arthritis Rheum. 65, 710–720 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Yasugi, E. & Watanabe, K. [LIPIDBANK for Web, the newly developed lipid database]. Tanpakushitsu Kakusan Koso 47, 837–841 (2002).

    PubMed  Google Scholar 

  44. Taguchi, R., Nishijima, M. & Shimizu, T. Basic analytical systems for lipidomics by mass spectrometry in Japan. Methods Enzymol. 432, 185–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Fahy, E., Sud, M., Cotter, D. & Subramaniam, S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35, W606–612 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sud, M. et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, D527–D532 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Wishart, D. S. et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 41, D801–D807 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Kind, T. et al. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10, 755–758 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith, C. A. et al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Kanehisa, M. The KEGG database. Novartis Found. Symp. 247, 91–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. McDonnell, L. A., Walch, A., Stoeckli, M. & Corthals, G. L. MSiMass list: a public database of identifications for protein MALDI MS imaging. J. Proteome Res. 13, 1138–1142 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Maier, S. K. et al. Comprehensive identification of proteins from MALDI imaging. Mol. Cell Proteom. 12, 2901–2910 (2013).

    Article  CAS  Google Scholar 

  53. Rebours, V. et al. In situ proteomic analysis by MALDI imaging identifies ubiquitin and thymosin-β4 as markers of malignant intraductal pancreatic mucinous neoplasms. Pancreatology 14, 117–124 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Cillero-Pastor, B., Eijkel, G., Kiss, A., Blanco, F. J. & Heeren, R. M. Time-of-flight secondary ion mass spectrometry-based molecular distribution distinguishing healthy and osteoarthritic human cartilage. Anal. Chem. 84, 8909–8916 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Goldring, M. B. & Goldring, S. R. Osteoarthritis. J. Cell. Physiol. 213, 626–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625–635 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Goldring, M. B. & Berenbaum, F. The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin. Orthop. Relat. Res. 427 (Suppl), S37–S46 (2004).

    Article  Google Scholar 

  58. Peffers, M. J., Cillero-Pastor, B., Eijkel, G. B., Clegg, P. D. & Heeren, R. M. Matrix assisted laser desorption ionization mass spectrometry imaging identifies markers of ageing and osteoarthritic cartilage. Arthritis Res. Ther. 16, R110 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goldring, M. B., Tsuchimochi, K. & Ijiri, K. The control of chondrogenesis. J. Cell. Biochem. 97, 33–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Blanco, F. J. & Ruiz-Romero, C. New targets for disease modifying osteoarthritis drugs: chondrogenesis and Runx1. Ann. Rheum. Dis. 72, 631–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Georgi, N. et al. Differentiation of mesenchymal stem cells under hypoxia and normoxia: lipid profiles revealed by time-of-flight secondary ion mass spectrometry and multivariate analysis. Anal. Chem. 87, 3981–3988 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Scanzello, C. R. Pathologic and pathogenic processes in osteoarthritis: the effects of synovitis. HSS J. 8, 20–22 (2012).

    Article  PubMed  Google Scholar 

  63. Bondeson, J. et al. The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum. 62, 647–657 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Cillero-Pastor, B., Eijkel, G. B., Blanco, F. J. & Heeren, R. M. Protein classification and distribution in osteoarthritic human synovial tissue by matrix-assisted laser desorption ionization mass spectrometry imaging. Anal. Bioanal. Chem. 407, 2213–2222 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Kriegsmann, M. et al. MALDI MS imaging as a powerful tool for investigating synovial tissue. Scand. J. Rheumatol. 41, 305–309 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Berntorp, E. & Shapiro, A. D. Modern haemophilia care. Lancet 379, 1447–1456 (2012).

    Article  PubMed  Google Scholar 

  67. Rodriguez-Merchan, E. C. Cartilage damage in the haemophilic joints: pathophysiology, diagnosis and management. Blood Coagul. Fibrinolysis 23, 179–183 (2012).

    Article  PubMed  Google Scholar 

  68. Roosendaal, G. & Lafeber, F. P. Blood-induced joint damage in hemophilia. Semin. Thromb. Hemost. 29, 37–42 (2003).

    Article  PubMed  Google Scholar 

  69. Roosendaal, G. & Lafeber, F. P. Pathogenesis of haemophilic arthropathy. Haemophilia 12 (Suppl. 3), 117–121 (2006).

    Article  PubMed  Google Scholar 

  70. Valentino, L. A. Blood-induced joint disease: the pathophysiology of hemophilic arthropathy. J. Thromb. Haemost. 8, 1895–1902 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Jansen, N. W. et al. The combination of the biomarkers urinary C-terminal telopeptide of type II collagen, serum cartilage oligomeric matrix protein, and serum chondroitin sulfate 846 reflects cartilage damage in hemophilic arthropathy. Arthritis Rheum. 60, 290–298 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Gerstner, G. et al. Prevalence and risk factors associated with decreased bone mineral density in patients with haemophilia. Haemophilia 15, 559–565 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 285, 785–795 (2001).

  74. Kriegsmann, M. et al. MALDI imaging of predictive ferritin, fibrinogen and proteases in haemophilic arthropathy. Haemophilia 20, 446–453 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Roschger, P., Misof, B., Paschalis, E., Fratzl, P. & Klaushofer, K. Changes in the degree of mineralization with osteoporosis and its treatment. Curr. Osteoporos Rep. 12, 338–350 (2014).

    Article  PubMed  Google Scholar 

  76. Yu, D. G. et al. Dynamic alterations in microarchitecture, mineralization and mechanical property of subchondral bone in rat medial meniscal tear model of osteoarthritis. Chin. Med. J. (Engl.) 128, 2879–2886 (2015).

    Article  Google Scholar 

  77. Costa, A. M. et al. Bone mineralization in Turner syndrome: a transverse study of the determinant factors in 58 patients. J. Bone Miner. Metab. 20, 294–297 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Andrade, A. C. et al. Hormones and genes of importance in bone physiology and their influence on bone mineralization and growth in Turner syndrome. Horm. Res. Paediatr. 73, 161–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Fratzl-Zelman, N., Misof, B. M., Klaushofer, K. & Roschger, P. Bone mass and mineralization in osteogenesis imperfecta. Wien Med. Wochenschr. 165, 271–277 (2015).

    Article  PubMed  Google Scholar 

  80. Schaepe, K. et al. Assessment of different sample preparation routes for mass spectrometric monitoring and imaging of lipids in bone cells via ToF-SIMS. Biointerphases 10, 019016 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Henss, A., Hild, A., Rohnke, M., Wenisch, S. & Janek, J. Time of flight secondary ion mass spectrometry of bone-Impact of sample preparation and measurement conditions. Biointerphases 11, 02A302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Henss, A. et al. Applicability of ToF-SIMS for monitoring compositional changes in bone in a long-term animal model. J. R. Soc. Interface 10, 20130332 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kokesch-Himmelreich, J., Schumacher, M., Rohnke, M., Gelinsky, M. & Janek, J. ToF-SIMS analysis of osteoblast-like cells and their mineralized extracellular matrix on strontium enriched bone cements. Biointerphases 8, 17 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Malmberg, P., Bexell, U., Eriksson, C., Nygren, H. & Richter, K. Analysis of bone minerals by time-of-flight secondary ion mass spectrometry: a comparative study using monoatomic and cluster ions sources. Rapid Commun. Mass Spectrom. 21, 745–749 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Malmberg, P. & Nygren, H. Methods for the analysis of the composition of bone tissue, with a focus on imaging mass spectrometry (TOF-SIMS). Proteomics 8, 3755–3762 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Marie, P. J., Ammann, P., Boivin, G. & Rey, C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif. Tissue Int. 69, 121–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Lazar, A. N. et al. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. Acta Neuropathol. 125, 133–144 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Solé-Domènech, S. et al. Localization of cholesterol, amyloid and glia in Alzheimer's disease transgenic mouse brain tissue using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and immunofluorescence imaging. Acta Neuropathol. 125, 145–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Schwartz, S. A. et al. Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res. 65, 7674–7681 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Schwamborn, K. et al. Identifying prostate carcinoma by MALDI-imaging. Int. J. Mol. Med. 20, 155–159 (2007).

    CAS  PubMed  Google Scholar 

  91. Caprioli, R. M. Deciphering protein molecular signatures in cancer tissues to aid in diagnosis, prognosis, and therapy. Cancer Res. 65, 10642–10645 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Cornett, D. S. et al. A novel histology-directed strategy for MALDI-MS tissue profiling that improves throughput and cellular specificity in human breast cancer. Mol. Cell Proteom. 5, 1975–1983 (2006).

    Article  CAS  Google Scholar 

  93. Frohlich, S. M. et al. Mass spectrometric imaging of in vivo protein and lipid adsorption on biodegradable vascular replacement systems. Analyst 140, 6089–6099 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Pellegatti, M. & Pagliarusco, S. Drug and metabolite concentrations in tissues in relationship to tissue adverse findings: a review. Expert Opin. Drug Metab. Toxicol. 7, 137–146 (2011).

    Article  PubMed  Google Scholar 

  95. Solon, E. G., Schweitzer, A., Stoeckli, M. & Prideaux, B. Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J. 12, 11–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Sugihara, Y. et al. A new look at drugs targeting malignant melanoma—an application for mass spectrometry imaging. Proteomics 14, 1963–1970 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Seeley, E. H. et al. Co-registration of multi-modality imaging allows for comprehensive analysis of tumor-induced bone disease. Bone 61, 208–216 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Patterson, N. H. et al. 3D imaging mass spectrometry of lipids in atherosclerotic plaques: Open-source methods for reconstruction and analysis. Proteomics 16, 1642–1651 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Cole, L. M. & Clench, M. R. Mass spectrometry imaging for the proteomic study of clinical tissue. Proteom. Clin. Appl. 9, 335–341 (2015).

    Article  CAS  Google Scholar 

  100. Levenson, R. M., Borowsky, A. D. & Angelo, M. Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Lab. Invest. 95, 397–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pitzalis, C., Kelly, S. & Humby, F. New learnings on the pathophysiology of RA from synovial biopsies. Curr. Opin. Rheumatol. 25, 334–344 (2013).

    PubMed  Google Scholar 

  104. Astorri, E., Nerviani, A., Bombardieri, M. & Pitzalis, C. Towards a stratified targeted approach with biologic treatments in rheumatoid arthritis: role of synovial pathobiology. Curr. Pharm. Des. 21, 2216–2224 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Humby, F. et al. Use of ultrasound-guided small joint biopsy to evaluate the histopathologic response to rheumatoid arthritis therapy: recommendations for application to clinical trials. Arthritis Rheumatol. 67, 2601–2610 (2015).

    Article  PubMed  Google Scholar 

  106. Louie, K. B. & Northen, T. R. Metabolic imaging using nanostructure-initiator mass spectrometry (NIMS). Methods Mol. Biol. 1198, 313–329 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Nemes, P. & Vertes, A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098–8106 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Nemes, P. & Vertes, A. Laser ablation electrospray ionization for atmospheric pressure molecular imaging mass spectrometry. Methods Mol. Biol. 656, 1 59–171 (2010).

    Google Scholar 

  109. Martin, N. J., Griffiths, R. L., Edwards, R. L. & Cooper, H. J. Native liquid extraction surface analysis mass spectrometry: analysis of noncovalent protein complexes directly from dried substrates. J. Am. Soc. Mass Spectrom. 26, 1320–1327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Himmelsbach, M., Varesio, E. & Hopfgartner, G. Liquid extraction surface analysis (LESA) of hydrophobic TLC plates coupled to chip-based nanoelectrospray high-resolution mass spectrometry. Chimia (Aarau) 68, 150–154 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Berta Cillero-Pastor, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht, Netherlands, for kindly providing the MSI images. This work is funded by grants from Fondo Investigación Sanitaria-Spain (PI12/00329, PI14/01707, CIBER-CB06/01/0040, RETIC-RIER-RD12/0009/0018). B.R. is funded by Xunta de Galicia (IN606B-2016/004), and C.R.R. by the Miguel Servet II program from Fondo Investigación Sanitaria-Spain (CPII15/0013). The Proteomics Unit belongs to ProteoRed, PRB2-ISCIII, supported by grant PT13/0001.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, discussed its content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding authors

Correspondence to Cristina Ruiz-Romero or Francisco J. Blanco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, B., Ruiz-Romero, C. & Blanco, F. Mass spectrometry imaging: a novel technology in rheumatology. Nat Rev Rheumatol 13, 52–63 (2017). https://doi.org/10.1038/nrrheum.2016.184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing