Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Update on the genetic architecture of rheumatoid arthritis

Key Points

  • The highly polygenic aetiology of rheumatoid arthritis (RA) is well characterized in population genetic studies, with >100 susceptibility loci reported

  • Genetic variants affecting the structure of epitope-binding sites of HLA molecules exhibit the strongest contributions to RA development; log-additive and non-log-additive effects of HLA alleles explain HLA–RA associations

  • The majority of non-HLA associations are mapped at noncoding variants that colocalize with cell-type-specific characteristics (for example, histone markers or enhancers) in CD4+ T cells

  • Pinpointing a single causal gene in a locus that contains multiple genes usually requires additional 'omics' data

  • RA-risk loci generally contain genes related to T-cell and B-cell pathways, cytokine signalling pathways, proliferation and/or impaired haematopoietic and immune systems

  • Many proteins encoded within RA-risk loci, and their interaction partners, are the targets of currently approved therapies, implicating a potential guiding role for human RA genetics data in drug discovery and repurposing

Abstract

Human genetic studies into rheumatoid arthritis (RA) have uncovered more than 100 genetic loci associated with susceptibility to RA and have refined the RA-association model for HLA variants. The majority of RA-risk variants are highly shared across multiple ancestral populations and are located in noncoding elements that might have allele-specific regulatory effects in relevant tissues. Emerging multi-omics data, high-density genotype data and bioinformatic approaches are enabling researchers to use RA-risk variants to identify functionally relevant cell types and biological pathways that are involved in impaired immune processes and disease phenotypes. This Review summarizes reported RA-risk loci and the latest insights from human genetic studies into RA pathogenesis, including how genetic data has helped to identify currently available drugs that could be repurposed for patients with RA and the role of genetics in guiding the development of new drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of HLA variants known to be associated with anti-citrullinated protein autoantibody-positive rheumatoid arthritis risk.
Figure 2: Interaction effects between heterozygous HLA-DRB1 alleles on anti-citrullinated protein autoantibody-positive rheumatoid arthritis risk.
Figure 3: Example of how a noncoding regulatory rheumatoid arthritis-associated single nucleotide polymorphism might result in a rheumatoid arthritis phenotype.
Figure 4: Simplified T cell and antigen presenting cell pathways involving rheumatoid arthritis-risk loci gene products.
Figure 5: Simplified T-cell differentiation pathways involving rheumatoid arthritis-risk loci gene products.

Similar content being viewed by others

References

  1. Aho, K., Koskenvuo, M., Tuominen, J. & Kaprio, J. Occurrence of rheumatoid arthritis in a nationwide series of twins. J. Rheumatol. 13, 899–902 (1986).

    CAS  PubMed  Google Scholar 

  2. Silman, A. J. et al. Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br. J. Rheumatol. 32, 903–907 (1993).

    CAS  PubMed  Google Scholar 

  3. MacGregor, A. J. et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43, 30–37 (2000).

    CAS  PubMed  Google Scholar 

  4. van der Woude, D. et al. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum. 60, 916–923 (2009).

    PubMed  Google Scholar 

  5. Terao, C. et al. A twin study of rheumatoid arthritis in the Japanese population. Mod. Rheumatol. 26, 685–689 (2016).

    PubMed  Google Scholar 

  6. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    CAS  PubMed  Google Scholar 

  7. Lenz, T. L. et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat. Genet. 47, 1085–1090 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Horton, R. et al. Gene map of the extended human MHC. Nat. Rev. Genet. 5, 889–899 (2004).

    CAS  PubMed  Google Scholar 

  10. Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    CAS  PubMed  Google Scholar 

  11. Bang, S. Y., Lee, H. S., Lee, K. W. & Bae, S. C. Interaction of HLA-DRB1*09:01 and *04:05 with smoking suggests distinctive mechanisms of rheumatoid arthritis susceptibility beyond the shared epitope. J. Rheumatol. 40, 1054–1062 (2013).

    PubMed  Google Scholar 

  12. Shimane, K. et al. An association analysis of HLA-DRB1 with systemic lupus erythematosus and rheumatoid arthritis in a Japanese population: effects of *09:01 allele on disease phenotypes. Rheumatology (Oxford) 52, 1172–1182 (2013).

    CAS  Google Scholar 

  13. Reynolds, R. J. et al. HLA-DRB1-associated rheumatoid arthritis risk at multiple levels in African Americans: hierarchical classification systems, amino acid positions, and residues. Arthritis Rheumatol. 66, 3274–3282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, H. S. et al. Increased susceptibility to rheumatoid arthritis in Koreans heterozygous for HLA-DRB1*0405 and *0901. Arthritis Rheum. 50, 3468–3475 (2004).

    PubMed  Google Scholar 

  15. Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE 8, e64683 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, K. et al. Imputing variants in HLA-DR beta genes reveals that HLA-DRB1 is solely associated with rheumatoid arthritis and systemic lupus erythematosus. PLoS ONE 11, e0150283 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Okada, Y. et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum. Mol. Genet. 23, 6916–6926 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Han, B. et al. Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. Am. J. Hum. Genet. 94, 522–532 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson, K. M. et al. A molecular analysis of the shared epitope hypothesis binding of arthritogenic peptides to DRB1*04 alleles. Arthritis Rheumatol. 68, 1627–1636 (2016).

    CAS  PubMed  Google Scholar 

  21. Hu, X. et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 47, 898–905 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, K. et al. Interactions between amino acid-defined major histocompatibility complex class II variants and smoking in seropositive rheumatoid arthritis. Arthritis Rheumatol. 67, 2611–2623 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Kurreeman, F. et al. Genetic basis of autoantibody positive and negative rheumatoid arthritis risk in a multi-ethnic cohort derived from electronic health records. Am. J. Hum. Genet. 88, 57–69 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Terao, C. et al. A large-scale association study identified multiple HLA-DRB1 alleles associated with ACPA-negative rheumatoid arthritis in Japanese subjects. Ann. Rheum. Dis. 70, 2134–2139 (2011).

    CAS  PubMed  Google Scholar 

  25. Viatte, S. et al. Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients. Ann. Rheum. Dis. 71, 1984–1990 (2012).

    CAS  PubMed  Google Scholar 

  26. Bossini-Castillo, L. et al. A genome-wide association study of rheumatoid arthritis without antibodies against citrullinated peptides. Ann. Rheum. Dis. 74, e15 (2015).

    CAS  PubMed  Google Scholar 

  27. Wagner, C. A. et al. Identification of anticitrullinated protein antibody reactivities in a subset of anti-CCP-negative rheumatoid arthritis: association with cigarette smoking and HLA-DRB1 'shared epitope' alleles. Ann. Rheum. Dis. 74, 579–586 (2015).

    CAS  PubMed  Google Scholar 

  28. Kim, K. et al. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci. Ann. Rheum. Dis. 74, e13 (2015).

    PubMed  Google Scholar 

  29. Cobb, J. E. et al. Identification of the tyrosine-protein phosphatase non-receptor type 2 as a rheumatoid arthritis susceptibility locus in Europeans. PLoS ONE 8, e66456 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McAllister, K. et al. Identification of BACH2 and RAD51B as rheumatoid arthritis susceptibility loci in a meta-analysis of genome-wide data. Arthritis Rheum. 65, 3058–3062 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Orozco, G. et al. Novel rheumatoid arthritis susceptibility locus at 22q12 identified in an extended UK genome-wide association study. Arthritis Rheumatol. 66, 24–30 (2014).

    CAS  PubMed  Google Scholar 

  32. Okada, Y. et al. Significant impact of miRNA-target gene networks on genetics of human complex traits. Sci. Rep. 6, 22223 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, K. et al. Association-heterogeneity mapping identifies and Asian-spcific association of the GTF2I locus with rheumatoid arthritis. Sci. Rep. 6, 27563 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fortune, M. D. et al. Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls. Nat. Genet. 47, 839–846 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gusev, A. et al. Quantifying missing heritability at known GWAS loci. PLoS Genet. 9, e1003993 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Okada, Y. et al. Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat. Genet. 44, 511–516 (2012).

    CAS  PubMed  Google Scholar 

  37. Kurreeman, F. A. et al. Use of a multiethnic approach to identify rheumatoid- arthritis-susceptibility loci, 1p36 and 17q12. Am. J. Hum. Genet. 90, 524–532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    CAS  PubMed  Google Scholar 

  39. Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am. J. Hum. Genet. 97, 260–271 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    CAS  PubMed  Google Scholar 

  41. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    CAS  PubMed  Google Scholar 

  42. Trynka, G. et al. Disentangling the effects of colocalizing genomic annotations to functionally prioritize non-coding variants within complex-trait loci. Am. J. Hum. Genet. 97, 139–152 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Freudenberg, J., Gregersen, P. & Li, W. Enrichment of genetic variants for rheumatoid arthritis within T-cell and NK-cell enhancer regions. Mol. Med. 21, 180–184 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vahedi, G. et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520, 558–562 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hrdlickova, B. et al. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity. Genome Med. 6, 88 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Carpenter, S. et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science 341, 789–792 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hyatt, G. et al. Gene expression microarrays: glimpses of the immunological genome. Nat. Immunol. 7, 686–691 (2006).

    CAS  PubMed  Google Scholar 

  50. Hu, X. et al. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am. J. Hum. Genet. 89, 496–506 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  52. Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu, X. et al. Regulation of gene expression in autoimmune disease loci and the genetic basis of proliferation in CD4+ effector memory T cells. PLoS Genet. 10, e1004404 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stratigopoulos, G., LeDuc, C. A., Cremona, M. L., Chung, W. K. & Leibel, R. L. Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa GTPase regulator-interacting protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. J. Biol. Chem. 286, 2155–2170 (2011).

    CAS  PubMed  Google Scholar 

  56. Stratigopoulos, G. et al. Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab. 19, 767–779 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin, P. et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat. Commun. 6, 10069 (2015).

    CAS  PubMed  Google Scholar 

  58. Segre, A. V. et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).

    PubMed  PubMed Central  Google Scholar 

  59. Eppig, J. T. et al. The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse. Nucleic Acids Res. 40, D881–D886 (2012).

    CAS  PubMed  Google Scholar 

  60. de Rooy, D. P. et al. Genetic studies on components of the Wnt signalling pathway and the severity of joint destruction in rheumatoid arthritis. Ann. Rheum. Dis. 72, 769–775 (2013).

    CAS  PubMed  Google Scholar 

  61. Yarwood, A. et al. Enrichment of vitamin D response elements in RA-associated loci supports a role for vitamin D in the pathogenesis of RA. Genes Immun. 14, 325–329 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, G. et al. Measles contributes to rheumatoid arthritis: evidence from pathway and network analyses of genome-wide association studies. PLoS ONE 8, e75951 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Andreassen, O. A. et al. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms. PLoS ONE 10, e0123057 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Buchel, F. et al. Integrative pathway-based approach for genome-wide association studies: identification of new pathways for rheumatoid arthritis and type 1 diabetes. PLoS ONE 8, e78577 (2013).

    PubMed  PubMed Central  Google Scholar 

  65. Maggadottir, S. M. & Sullivan, K. E. The intersection of immune deficiency and autoimmunity. Curr. Opin. Rheumatol. 26, 570–578 (2014).

    CAS  PubMed  Google Scholar 

  66. Timmons, J. A., Szkop, K. J. & Gallagher, I. J. Multiple sources of bias confound functional enrichment analysis of global-omics data. Genome Biol. 16, 186 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Atzeni, F. et al. Different effects of biological drugs in rheumatoid arthritis. Autoimmun. Rev. 12, 575–579 (2013).

    CAS  PubMed  Google Scholar 

  68. Grover, M. P. et al. Identification of novel therapeutics for complex diseases from genome-wide association data. BMC Med. Genomics 7 (Suppl. 1), S8 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Maloney, D. G. et al. IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 90, 2188–2195 (1997).

    CAS  PubMed  Google Scholar 

  70. Edwards, J. C. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    CAS  PubMed  Google Scholar 

  71. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013).

    CAS  PubMed  Google Scholar 

  72. Li, G. et al. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway. PLoS Genet. 9, e1003487 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ekwall, A. K. et al. The rheumatoid arthritis risk gene LBH regulates growth in fibroblast-like synoviocytes. Arthritis Rheumatol. 67, 1193–1202 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Giles, J. L., Choy, E., van den Berg, C., Morgan, B. P. & Harris, C. L. Functional analysis of a complement polymorphism (rs17611) associated with rheumatoid arthritis. J. Immunol. 194, 3029–3034 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Schuster, C. et al. The autoimmunity-associated gene CLEC16A modulates thymic epithelial cell autophagy and alters T cell selection. Immunity 42, 942–952 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chang, H. H., Dwivedi, N., Nicholas, A. P. & Ho, I. C. The W620 polymorphism in PTPN22 disrupts its interaction with peptidylarginine deiminase type 4 and enhances citrullination and NETosis. Arthritis Rheumatol. 67, 2323–2334 (2015).

    CAS  PubMed  Google Scholar 

  77. Spurlock, C. F. III, Tossberg, J. T., Olsen, N. J. & Aune, T. M. Cutting edge: chronic NF-κB activation in CD4+ T Cells in rheumatoid arthritis is genetically determined by HLA risk alleles. J. Immunol. 195, 791–795 (2015).

    CAS  PubMed  Google Scholar 

  78. Muthana, M. et al. C5orf30 is a negative regulator of tissue damage in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 112, 11618–11623 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Messemaker, T. C. et al. A novel long non-coding RNA in the rheumatoid arthritis risk locus TRAF1-C5 influences C5 mRNA levels. Genes Immun. 17, 85–92 (2015).

    PubMed  Google Scholar 

  80. de la Puerta, M. L. et al. The autoimmunity risk variant LYP-W620 cooperates with CSK in the regulation of TCR signaling. PLoS ONE 8, e54569 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Han, T. U. et al. Association of an activity-enhancing variant of IRAK1 and an MECP2-IRAK1 haplotype with increased susceptibility to rheumatoid arthritis. Arthritis Rheum. 65, 590–598 (2013).

    CAS  PubMed  Google Scholar 

  82. Ferreira, R. C. et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 9, e1003444 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lewis, M. J. et al. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am. J. Hum. Genet. 96, 221–234 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Suzuki, A. & Yamamoto, K. From genetics to functional insights into rheumatoid arthritis. Clin. Exp. Rheumatol. 33 (4 Suppl. 92), S40–S43 (2015).

    PubMed  Google Scholar 

  85. Viatte, S. et al. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA 313, 1645–1656 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era — concepts and misconceptions. Nat. Rev. Genet. 9, 255–266 (2008).

    CAS  PubMed  Google Scholar 

  87. Svendsen, A. J. et al. On the origin of rheumatoid arthritis: the impact of environment and genes — a population based twin study. PLoS ONE 8, e57304 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Diogo, D. et al. Rare, low-frequency, and common variants in the protein-coding sequence of biological candidate genes from GWASs contribute to risk of rheumatoid arthritis. Am. J. Hum. Genet. 92, 15–27 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Diogo, D. et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS ONE 10, e0122271 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Bang, S. Y. et al. Targeted exon sequencing fails to identify rare coding variants with large effect in rheumatoid arthritis. Arthritis Res. Ther. 16, 447 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Okada, Y. et al. Integration of sequence data from a consanguineous family with genetic data from an outbred population identifies PLB1 as a candidate rheumatoid arthritis risk gene. PLoS ONE 9, e87645 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Veal, C. D. et al. A 129-kb deletion on chromosome 12 confers substantial protection against rheumatoid arthritis, implicating the gene SLC2A3. Hum. Mutat. 35, 248–256 (2014).

    CAS  PubMed  Google Scholar 

  93. Du, Y. et al. Contribution of functional LILRA3, but not nonfunctional LILRA3, to sex bias in susceptibility and severity of anti-citrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheumatol. 66, 822–830 (2014).

    CAS  PubMed  Google Scholar 

  94. Chen, J. Y. et al. Association of FCGR3A and FCGR3B copy number variations with systemic lupus erythematosus and rheumatoid arthritis in Taiwanese patients. Arthritis Rheumatol. 66, 3113–3121 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Franke, L. et al. Association analysis of copy numbers of FC-gamma receptor genes for rheumatoid arthritis and other immune-mediated phenotypes. Eur. J. Hum. Genet. 24, 263–270 (2016).

    CAS  PubMed  Google Scholar 

  96. Wu, C. C. et al. Whole-genome detection of disease-associated deletions or excess homozygosity in a case–control study of rheumatoid arthritis. Hum. Mol. Genet. 22, 1249–1261 (2013).

    CAS  PubMed  Google Scholar 

  97. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.K. and S.C.B. are funded by the Korea Healthcare Technology R&D Project from the Ministry for Health and Welfare, Republic of Korea, grant numbers HI15C3182 (K.K) and HI13C2124 (S.C.B.).

Author information

Authors and Affiliations

Authors

Contributions

K.K. and S.C.B. collected data for the article and wrote the manuscript. All authors provided substantial contributions to the discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Sang-Cheol Bae.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (figure)

Reported rheumatoid arthritis (RA) loci. (PDF 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Bang, SY., Lee, HS. et al. Update on the genetic architecture of rheumatoid arthritis. Nat Rev Rheumatol 13, 13–24 (2017). https://doi.org/10.1038/nrrheum.2016.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing