Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perception of self: distinguishing autoimmunity from autoinflammation

Key Points

  • Autoimmunity and autoinflammatory disorders are distinct in terms of the predominance of underlying innate or adaptive immune mechanisms, therapeutic responses to biologic agents and cytokine gene expression patterns (signatures) in blood

  • When not leading to autoimmunity, autoinflammatory diseases have an IL-1β/IL-18-dominated signature, whereas autoimmune diseases are driven by type I interferon (IFN)

  • IL-1β and type I IFN counter-regulate each other by activating selective metabolic signalling pathways that interfere with adaptive immune responses

  • Hypotheses that have been proposed to explain autoimmunity initiation include molecular mimicry, for which data are limited, and conformational changes in native proteins, which can drive immunogenic self-peptide presentation

  • The current 'immunoediting' hypothesis suggests that cancer cells harbouring somatic mutations trigger adaptive immunity, including cross-reactive antibody responses

  • In addition to somatic mutations, conformational changes in proteins can result from alternative reading frames and post-translational modifications, thereby adjusting the immunogenicity of T-cell responses

Abstract

Rheumatic diseases can be divided in two groups, autoinflammatory and autoimmune disorders. The clinical presentation of both types of diseases overlap, but the pathological pathways underlying rheumatic autoinflammation and autoimmunity are distinct and are the subject of ongoing research. There are a number of ways in which these groups of diseases differ in terms of disease mechanisms and therapeutic responses. First, autoinflammatory diseases are driven by endogenous danger signals, metabolic mediators and cytokines, whereas autoimmunity involves the activation of T and B cells, the latter requiring V-(D)-J recombination of receptor-chain gene segments for maturation. Second, the efficacy of biologic agents directed against proinflammatory cytokines (for example IL-1β and TNF) also highlights differences between autoinflammatory and autoimmune processes. Finally, whereas autoinflammatory diseases are mostly driven by inflammasome-induced IL-1β and IL-18 production, autoimmune diseases are associated with type I interferon (IFN) signatures in blood. In this Review, we provide an overview of the monocyte intracellular pathways that drive autoinflammation and autoimmunity. We convey recent findings on how the type I IFN pathway can modulate IL-1β signalling (and vice versa), and discuss why IL-1β-mediated autoinflammatory diseases do not perpetuate into autoimmunity. The origins of intracellular autoantigens in autoimmune disorders are also discussed. Finally, we suggest how new mechanistic knowledge of autoinflammatory and autoimmune diseases might help improve treatment strategies to benefit patient care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stratification of autoimmune and autoinflammatory diseases based on cytokine signature.
Figure 2: NLRP3 inflammasome activation and the reciprocal interference of type I IFN on acute inflammasome-dependent IL-1β production (signal 1 and 2).
Figure 3: MAVS in the NLRP3 inflammasome and the RIG-I signalling cascade.
Figure 4: NLRP3 inflammasome activation and the reciprocal interference of type I IFN on chronic inflammasome-dependent IL-1β production (signal 3).

Similar content being viewed by others

References

  1. McGonagle, D. & McDermott, M. F. A proposed classification of the immunological diseases. PLoS Med. 3, e297 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maria, A. T. et al. Adult onset Still's disease (AOSD) in the era of biologic therapies: dichotomous view for cytokine and clinical expressions. Autoimmun. Rev. 13, 1149–1159 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Correll, C. K. & Binstadt, B. A. Advances in the pathogenesis and treatment of systemic juvenile idiopathic arthritis. Pediatr. Res. 75, 176–183 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Singh, J. A. et al. A network meta-analysis of randomized controlled trials of biologics for rheumatoid arthritis: a Cochrane overview. CMAJ 181, 787–796 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Quartier, P. et al. A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann. Rheum. Dis. 70, 747–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Higgs, B. W. et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann. Rheum. Dis. 70, 2029–2036 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Lubbers, J. et al. The type I IFN signature as a biomarker of preclinical rheumatoid arthritis. Ann. Rheum. Dis. 72, 776–780 (2013).

    Article  PubMed  CAS  Google Scholar 

  8. Church, L. D., Cook, G. P. & McDermott, M. F. Primer: inflammasomes and interleukin 1β in inflammatory disorders. Nat. Clin. Pract. Rheumatol. 4, 34–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Richez, C. et al. TLR4 ligands induce IFN-α production by mouse conventional dendritic cells and human monocytes after IFN-β priming. J. Immunol. 182, 820–828 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Wright, H. L., Moots, R. J. & Edwards, S. W. The multifactorial role of neutrophils in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 593–601 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Lech, M. et al. NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-β receptor signalling. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-205496.

  13. Yang, Q. et al. Deregulated NLRP3 and NLRP1 inflammasomes and their correlations with disease activity in systemic lupus erythematosus. J. Rheumatol. 41, 444–452 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. van der Burgh, R. et al. Defects in mitochondrial clearance predispose human monocytes to interleukin-1β hypersecretion. J. Biol. Chem. 289, 5000–5012 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Lane, N. Energetics and genetics across the prokaryote-eukaryote divide. Biol. Direct 6, 35 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pallen, M. J. Time to recognise that mitochondria are bacteria? Trends Microbiol. 19, 58–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Allam, R. et al. Cutting edge: cyclic polypeptide and aminoglycoside antibiotics trigger IL-1β secretion by activating the NLRP3 inflammasome. J. Immunol. 186, 2714–2718 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dinarello, C. A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Hornung, V., Hartmann, R., Ablasser, A. & Hopfner, K. P. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat. Rev. Immunol. 14, 521–528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Honda, K., Yanai, H., Takaoka, A. & Taniguchi, T. Regulation of the type I IFN induction: a current view. Int. Immunol. 17, 1367–1378 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34, 213–223 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Radwan, M. et al. Tyrosine kinase 2 controls IL-1β production at the translational level. J. Immunol. 185, 3544–3553 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511, 99–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chiu, Y. H., Macmillan, J. B. & Chen, Z. J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mitoma, H. et al. The DHX33 RNA helicase senses cytosolic RNA and activates the NLRP3 inflammasome. Immunity 39, 123–135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kowalinski, E. et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147, 423–435 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Peisley, A., Wu, B., Xu, H., Chen, Z. J. & Hur, S. Structural basis for ubiquitin-mediated antiviral signal activation by RIG.-I. Nature 509, 110–114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Tschopp, J. & Schroder, K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Py, B. F., Kim, M. S., Vakifahmetoglu-Norberg, H. & Yuan, J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol. Cell 49, 331–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Juliana, C. et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem. 287, 36617–36622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cai, X. et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156, 1207–1222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Subramanian, N., Natarajan, K., Clatworthy, M. R., Wang, Z. & Germain, R. N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 153, 348–361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Park, S. et al. The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. J. Immunol. 191, 4358–4366 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Rodgers, M. A. et al. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J. Exp. Med. 211, 1333–1347 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, S. et al. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2, e00785 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wynne, C. et al. TRIM68 negatively regulates IFN-β production by degrading TRK fused gene, a novel driver of IFN-β downstream of anti-viral detection systems. PLoS ONE 9, e101503 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Shao W, H. B., Shu, D. H., Priest, S. O. & Cohen, P. L. Aggregation of MAVS antiviral protein suggests a mechanism for increased type I interferon production in SLE. Arthritis Res. Ther. 16 (Suppl. 1), 23 (2014).

    Google Scholar 

  46. Sanz, J. M. & Di Virgilio, F. Kinetics and mechanism of ATP-dependent IL-1β release from microglial cells. J. Immunol. 164, 4893–4898 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Ouyang, X. et al. Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway. Nat. Commun. 4, 2909 (2013).

    Article  PubMed  CAS  Google Scholar 

  48. Wynosky-Dolfi, M. A. et al. Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome. J. Exp. Med. 211, 653–668 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rodriguez-Prados, J. C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Pearce, E. L. & Pearce, E. J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ruiz-Garcia, A. et al. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J. Biol. Chem. 286, 19247–19258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, S. et al. Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis. PLoS ONE 9, e97501 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gao, W. et al. Hypoxia and STAT3 signalling interactions regulate pro-inflammatory pathways in rheumatoid arthritis. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2013-204105.

  54. Hollander, A. P., Corke, K. P., Freemont, A. J. & Lewis, C. E. Expression of hypoxia-inducible factor 1α by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum. 44, 1540–1544 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Koivunen, P. et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J. Biol. Chem. 282, 4524–4532 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Boyle, D. L. et al. The JAK inhibitor tofacitinib suppresses synovial JAK1–STAT signalling in rheumatoid arthritis. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-20602.

  57. Pontillo, A., Paoluzzi, E. & Crovella, S. The inhibition of mevalonate pathway induces upregulation of NALP3 expression: new insight in the pathogenesis of mevalonate kinase deficiency. Eur. J. Hum. Genet. 18, 844–847 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dennis, E. A. et al. A mouse macrophage lipidome. J. Biol. Chem. 285, 39976–39985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cotter, D. G., Schugar, R. C. & Crawford, P. A. Ketone body metabolism and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 304, H1060–H1076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151, 138–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reboldi, A. et al. Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science 345, 679–684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cyster, J. G., Dang, E. V., Reboldi, A. & Yi, T. 25-Hydroxycholesterols in innate and adaptive immunity. Nat. Rev. Immunol. 14, 731–743 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Briggs, T. A. et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat. Genet. 43, 127–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Cuadrado, E. et al. Aicardi-Goutieres syndrome harbours abundant systemic and brain-reactive autoantibodies. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-205396.

  65. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sokolovska, A. et al. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat. Immunol. 14, 543–553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van Deventer, H. W. et al. The inflammasome component NLRP3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res. 70, 10161–10169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Neumann, S. et al. Activation of the NLRP3 inflammasome is not a feature of all particulate vaccine adjuvants. Immunol. Cell Biol. 92, 535–542 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, M., Wang, H., Chen, W. & Meng, G. Regulation of adaptive immunity by the NLRP3 inflammasome. Int. Immunopharmacol. 11, 549–554 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Fuertes, M. B., Woo, S. R., Burnett, B., Fu, Y. X. & Gajewski, T. F. Type I interferon response and innate immune sensing of cancer. Trends Immunol. 34, 67–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Cusick, M. F., Libbey, J. E. & Fujinami, R. S. Molecular mimicry as a mechanism of autoimmune disease. Clin. Rev. Allergy Immunol. 42, 102–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Bach, J. F. Infections and autoimmune diseases. J. Autoimmun. 25 (Suppl.), 74–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Joseph, C. G. et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343, 152–157 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Kreier, J. Infection, resistance, and immunity, 2nd Edition (Taylor & Francis, 2001).

    Google Scholar 

  75. de Graaf, K. L., Albert, M. & Weissert, R. Autoantigen conformation influences both B- and T-cell responses and encephalitogenicity. J. Biol. Chem. 287, 17206–17213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. de Laat, B. et al. Immune responses against domain I of β2-glycoprotein I are driven by conformational changes: domain I of β2-glycoprotein I harbors a cryptic immunogenic epitope. Arthritis Rheum. 63, 3960–3968 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Plotz, P. H. The autoantibody repertoire: searching for order. Nat. Rev. Immunol. 3, 73–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Backes, C. et al. Immunogenicity of autoantigens. BMC Genomics 12, 340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hayter, S. M. & Cook, M. C. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun. Rev. 11, 754–765 (2012).

    Article  PubMed  Google Scholar 

  80. Stadler, M. B., Arnold, D., Frieden, S., Luginbuhl, S. & Stadler, B. M. Single nucleotide polymorphisms as a prerequisite for autoantigens. Eur. J. Immunol. 35, 371–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Yamanishi, Y. et al. p53 tumor suppressor gene mutations in fibroblast-like synoviocytes from erosion synovium and non-erosion synovium in rheumatoid arthritis. Arthritis Res. Ther. 7, R12–R18 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Tak, P. P. et al. p53 overexpression in synovial tissue from patients with early and longstanding rheumatoid arthritis compared with patients with reactive arthritis and osteoarthritis. Arthritis Rheum. 42, 948–953 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Lee, S. H. et al. Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis. J. Immunol. 170, 2214–2220 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Singh, N. et al. Genomic alterations in abnormal neutrophils isolated from adult patients with systemic lupus erythematosus. Arthritis Res. Ther. 16, R165 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ekstrom, K. et al. Risk of malignant lymphomas in patients with rheumatoid arthritis and in their first-degree relatives. Arthritis Rheum. 48, 963–970 (2003).

    Article  PubMed  Google Scholar 

  86. Bernatsky, S., Ramsey-Goldman, R. & Clarke, A. Malignancy and autoimmunity. Curr. Opin. Rheumatol. 18, 129–134 (2006).

    Article  PubMed  Google Scholar 

  87. Mariette, X. et al. Anti-p53 antibodies are rarely detected in serum of patients with rheumatoid arthritis and Sjogren's syndrome. J. Rheumatol. 26, 1672–1675 (1999).

    CAS  PubMed  Google Scholar 

  88. Chauhan, R., Handa, R., Das, T. P. & Pati, U. Over-expression of TATA binding protein (TBP) and p53 and autoantibodies to these antigens are features of systemic sclerosis, systemic lupus erythematosus and overlap syndromes. Clin. Exp. Immunol. 136, 574–584 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hansen, J. E. et al. Targeting cancer with a lupus autoantibody. Sci. Transl. Med. 4, 157ra142 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yewdell, J. W., Anton, L. C. & Bennink, J. R. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J. Immunol. 157, 1823–1826 (1996).

    CAS  PubMed  Google Scholar 

  91. Rock, K. L., Farfan-Arribas, D. J., Colbert, J. D. & Goldberg, A. L. Re-examining class-I presentation and the DRiP hypothesis. Trends Immunol. 35, 144–152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Michel, A. M. et al. Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Res. 22, 2219–2229 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Saulquin, X. et al. +1 Frameshifting as a novel mechanism to generate a cryptic cytotoxic T lymphocyte epitope derived from human interleukin 10. J. Exp. Med. 195, 353–358 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zook, M. B., Howard, M. T., Sinnathamby, G., Atkins, J. F. & Eisenlohr, L. C. Epitopes derived by incidental translational frameshifting give rise to a protective CTL response. J. Immunol. 176, 6928–6934 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Berger, C. T. et al. Viral adaptation to immune selection pressure by HLA class I-restricted CTL responses targeting epitopes in HIV frameshift sequences. J. Exp. Med. 207, 61–75 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Koenig, P. A. & Ploegh, H. L. Protein quality control in the endoplasmic reticulum. F1000Prime Rep. 6, 49 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Feige, M. J. & Hendershot, L. M. Quality control of integral membrane proteins by assembly-dependent membrane integration. Mol. Cell 51, 297–309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang, L., Kuhls, M. C. & Eisenlohr, L. C. Hydrophobicity as a driver of MHC class I antigen processing. EMBO J. 30, 1634–1644 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bergès, J., Trouillas, P. & Houée-Levin, C. Oxidation of protein tyrosine or methionine residues: From the amino acid to the peptide. J. Phys. Conf. Ser. 261, 8 (2011).

    Article  CAS  Google Scholar 

  100. Hsu, H. T. et al. Endoplasmic reticulum targeting alters regulation of expression and antigen presentation of proinsulin. J. Immunol. 192, 4957–4966 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Granados, D. P. et al. ER stress affects processing of MHC class I-associated peptides. BMC Immunol. 10, 10 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Herzog, J., Maekawa, Y., Cirrito, T. P., Illian, B. S. & Unanue, E. R. Activated antigen-presenting cells select and present chemically modified peptides recognized by unique CD4 T cells. Proc. Natl Acad. Sci. USA 102, 7928–7933 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, G., Pierangeli, S. S., Papalardo, E., Ansari, G. A. & Khan, M. F. Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. Arthritis Rheum. 62, 2064–2072 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Martinon, F. & Aksentijevich, I. New players driving inflammation in monogenic autoinflammatory diseases. Nat. Rev. Rheumatol. 11, 11–20 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.S.v.K researched data for the article. T.S.v.K., T.R.D.J.R and M.B. wrote the manuscript. All authors made a substantial contribution to the discussion of the review and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Timothy R. D. J. Radstake.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Kempen, T., Wenink, M., Leijten, E. et al. Perception of self: distinguishing autoimmunity from autoinflammation. Nat Rev Rheumatol 11, 483–492 (2015). https://doi.org/10.1038/nrrheum.2015.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.60

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing