Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coeliac disease and rheumatoid arthritis: similar mechanisms, different antigens

Key Points

  • Coeliac disease and rheumatoid arthritis are multifactorial HLA-associated diseases

  • Immune responses to enzymatically modified protein antigens are a hallmark of both these diseases

  • Environmental insults are probably key to breaking of immune tolerance to enzymatically modified protein antigens

  • B-cell to T-cell presentation of target enzymatically modified protein antigens provides a powerful amplification loop sustaining the autoimmune disease process

  • This paradigm provides multiple targets for specific interventions aimed at reinstating immune tolerance to enzymatically modified protein antigens

Abstract

Rheumatoid arthritis (RA) and coeliac disease are inflammatory diseases that both have a strong association with class II HLAs: individuals carrying HLA-DQ2.5 and/or HLA-DQ8 alleles have an increased risk of developing coeliac disease, whereas those carrying HLA-DR shared epitope alleles exhibit an increased risk of developing RA. Although the molecular basis of the association with specific HLA molecules in RA remains poorly defined, an immune response against post-translationally modified protein antigens is a hallmark of each disease. In RA, understanding of the pathogenetic role of B-cell responses to citrullinated antigens, including vimentin, fibrinogen and α-enolase, is rapidly growing. Moreover, insight into the role of HLAs in the pathogenesis of coeliac disease has been considerably advanced by the identification of T-cell responses to deamidated gluten antigens presented in conjunction with predisposing HLA-DQ2.5 molecules. This article briefly reviews these advances and draws parallels between the immune mechanisms leading to RA and coeliac disease, which point to a crucial role for T-cell–B-cell cooperation in the development of full-blown disease. Finally, the ways in which these novel insights are being exploited therapeutically to re-establish tolerance in patients with RA and coeliac disease are described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of modified peptides to MHC class II molecules and their interactions with T cells in coeliac disease and RA.
Figure 2: Recognition of HLA-DQ2.5–α2-gliadin complexes by the S16 TCR, which consists of TCR α-chain V (TRAV) 26-1 and TCR β-chain V (TRBV) 7-2 subunits.
Figure 3: A two-hit model for the development of ACPA-positive RA.
Figure 4: T cells and B cells in coeliac disease and RA.

Similar content being viewed by others

References

  1. Thorsby, E. Invited anniversary review: HLA associated diseases. Hum. Immunol. 53, 1–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Stastny, P. Association of the B-cell alloantigen DRW4 with rheumatoid arthritis. N. Engl. J. Med. 298, 869–871 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chicz, R. M. et al. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J. Exp. Med. 178, 27–47 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Kirschmann, D. A. et al. Naturally processed peptides from rheumatoid arthritis associated and non-associated HLA-DR alleles. J. Immunol. 155, 5655–5662 (1995).

    CAS  PubMed  Google Scholar 

  7. Scally, S. W. et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med. 210, 2569–2582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huizinga, T. W. et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum. 52, 3433–3438 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. van Venrooij, W. J., van Beers, J. J. & Pruijn, G. J. Anti-CCP antibodies: the past, the present and the future. Nat. Rev. Rheumatol. 7, 391–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki, A. et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34, 395–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Plenge, R. M. et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am. J. Hum. Genet. 77, 1044–1060 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van der Woude, D. et al. Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann. Rheum. Dis. 69, 1554–1561 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. He, X. et al. T cell receptors recognizing type II collagen in HLA-DR-transgenic mice characterized by highly restricted V β usage. Arthritis Rheum. 50, 1996–2004 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Fritsch, R. et al. Characterization of autoreactive T cells to the autoantigens heterogeneous nuclear ribonucleoprotein A2 (RA33) and filaggrin in patients with rheumatoid arthritis. J. Immunol. 169, 1068–1076 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Blass, S. et al. The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum. 44, 761–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Verpoort, K. N. et al. Association of HLA-DR3 with anti-cyclic citrullinated peptide antibody-negative rheumatoid arthritis. Arthritis Rheum. 52, 3058–3062 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Irigoyen, P. et al. Regulation of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: contrasting effects of HLA-DR3 and the shared epitope alleles. Arthritis Rheum. 52, 3813–3818 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Oka, S. et al. Protective effect of the HLA-DRB1*13:02 allele in Japanese rheumatoid arthritis patients. PLoS ONE 9, e99453 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. van der Woude, D. et al. Protection against anti-citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA-DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheum. 62, 1236–1245 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Tjon, J. M., van Bergen, J. & Koning, F. Celiac disease: how complicated can it get? Immunogenetics 62, 641–651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abadie, V., Sollid, L. M., Barreiro, L. B. & Jabri, B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu. Rev. Immunol. 29, 493–525 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Vader, W. et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc. Natl Acad. Sci. USA 100, 12390–12395 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar, V., Wijmenga, C. & Withoff, S. From genome-wide association studies to disease mechanisms: celiac disease as a model for autoimmune diseases. Semin. Immunopathol. 34, 567–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sollid, L. M., Qiao, S. W., Anderson, R. P., Gianfrani, C. & Koning, F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64, 455–460 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Anderson, R. P. et al. T cells in peripheral blood after gluten challenge in coeliac disease. Gut 54, 1217–1223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tye-Din, J. A. et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci. Transl. Med. 2, 41ra51 (2010).

    Article  PubMed  CAS  Google Scholar 

  27. Fina, D. et al. Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut 57, 887–892 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Bodd, M. et al. HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal Immunol. 3, 594–601 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. van Leeuwen, M. A. et al. Increased production of interleukin-21, but not interleukin-17A, in the small intestine characterizes pediatric celiac disease. Mucosal Immunol. 6, 1202–1213 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Shan, L. et al. Structural basis for gluten intolerance in celiac sprue. Science 297, 2275–2279 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Vader, L. W. et al. Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J. Exp. Med. 195, 643–649 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van de Wal, Y. et al. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J. Immunol. 161, 1585–1588 (1998).

    CAS  PubMed  Google Scholar 

  33. Molberg, O. et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med. 4, 713–717 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Henderson, K. N. et al. A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 27, 23–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Petersen, J., Purcell, A. W. & Rossjohn, J. Post-translationally modified T cell epitopes: immune recognition and immunotherapy. J. Mol. Med. (Berl.) 87, 1045–1051 (2009).

    Article  CAS  Google Scholar 

  36. Kim, C. Y., Quarsten, H., Bergseng, E., Khosla, C. & Sollid, L. M. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc. Natl Acad. Sci. USA 101, 4175–4179 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fallang, L. E. et al. Differences in the risk of celiac disease associated with HLA-DQ2.5 or HLA-DQ2.2 are related to sustained gluten antigen presentation. Nat. Immunol. 10, 1096–1101 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Vader, W. et al. The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 122, 1729–1737 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Arentz-Hansen, H. et al. The intestinal T cell response to α-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J. Exp. Med. 191, 603–612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson, R. P., Degano, P., Godkin, A. J., Jewell, D. P. & Hill, A. V. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat. Med. 6, 337–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Vader, L. W. et al. Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology 125, 1105–1113 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Turner, S. J., Doherty, P. C., McCluskey, J. & Rossjohn, J. Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 6, 883–894 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Petersen, J. et al. T-cell receptor recognition of HLA-DQ2–gliadin complexes associated with celiac disease. Nat. Struct. Mol. Biol. 21, 480–488 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Broughton, S. E. et al. Biased T cell receptor usage directed against human leukocyte antigen DQ8-restricted gliadin peptides is associated with celiac disease. Immunity 37, 611–621 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Qiao, S. W., Christophersen, A., Lundin, K. E. & Sollid, L. M. Biased usage and preferred pairing of α- and β-chains of TCRs specific for an immunodominant gluten epitope in coeliac disease. Int. Immunol. 26, 13–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Qiao, S. W. et al. Posttranslational modification of gluten shapes TCR usage in celiac disease. J. Immunol. 187, 3064–3071 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Gras, S. et al. A structural voyage toward an understanding of the MHC-I-restricted immune response: lessons learned and much to be learned. Immunol. Rev. 250, 61–81 (2012).

    Article  PubMed  CAS  Google Scholar 

  48. Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. http://dx.doi.org/10.1146/annurev-immunol-032414-112334.

  49. Yin, Y., Li, Y. & Mariuzza, R. A. Structural basis for self-recognition by autoimmune T-cell receptors. Immunol. Rev. 250, 32–48 (2012).

    Article  PubMed  CAS  Google Scholar 

  50. Quarsten, H. et al. Staining of celiac disease-relevant T cells by peptide–DQ2 multimers. J. Immunol. 167, 4861–4868 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Bodd, M. et al. Direct cloning and tetramer staining to measure the frequency of intestinal gluten-reactive T cells in celiac disease. Eur. J. Immunol. 43, 2605–2612 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Law, S. C., Benham, H., Reid, H. H., Rossjohn, J. & Thomas, R. Identification of self-antigen-specific T cells reflecting loss of tolerance in autoimmune disease underpins preventative immunotherapeutic strategies in rheumatoid arthritis. Rheum. Dis. Clin. North Am. 40, 735–752 (2014).

    Article  PubMed  Google Scholar 

  53. Verpoort, K. N. et al. Isotype distribution of anti-cyclic citrullinated peptide antibodies in undifferentiated arthritis and rheumatoid arthritis reflects an ongoing immune response. Arthritis Rheum. 54, 3799–3808 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Amara, K. et al. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J. Exp. Med. 210, 445–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Verpoort, K. N. et al. Fine specificity of the anti-citrullinated protein antibody response is influenced by the shared epitope alleles. Arthritis Rheum. 56, 3949–3952 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. van der Helm-van Mil, A. H. et al. The HLA-DRB1 shared epitope alleles are primarily a risk factor for anti-cyclic citrullinated peptide antibodies and are not an independent risk factor for development of rheumatoid arthritis. Arthritis Rheum. 54, 1117–1121 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. McDevitt, H. The discovery of linkage between the MHC and genetic control of the immune response. Immunol. Rev. 185, 78–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Feitsma, A. L. et al. Identification of citrullinated vimentin peptides as T cell epitopes in HLA-DR4-positive patients with rheumatoid arthritis. Arthritis Rheum. 62, 117–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. James, E. et al. Citrulline specific TH1 cells are increased in rheumatoid arthritis and their frequency is influenced by disease duration and therapy. Arthritis Rheumatol. 66, 1712–1722 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Law, S. C. et al. T-cell autoreactivity to citrullinated autoantigenic peptides in rheumatoid arthritis patients carrying HLA-DRB1 shared epitope alleles. Arthritis Res. Ther. 14, R118 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stadinski, B. D. et al. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc. Natl Acad. Sci. USA 107, 10978–10983 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, G. Y. et al. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3, 407–415 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Salmond, R. J., Brownlie, R. J., Morrison, V. L. & Zamoyska, R. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals. Nat. Immunol. 15, 875–883 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maine, C. J., Marquardt, K., Cheung, J. & Sherman, L. A. PTPN22 controls the germinal center by influencing the numbers and activity of T follicular helper cells. J. Immunol. 192, 1415–1424 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Deshpande, P. et al. IL-7- and IL-15-mediated TCR sensitization enables T cell responses to self-antigens. J. Immunol. 190, 1416–1423 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Han, B. et al. Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. Am. J. Hum. Genet. 94, 522–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Klarenbeek, P. L. et al. Inflamed target tissue provides a specific niche for highly expanded T-cell clones in early human autoimmune disease. Ann. Rheum. Dis. 71, 1088–1093 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Ioan-Facsinay, A. et al. Anti-cyclic citrullinated peptide antibodies are a collection of anti-citrullinated protein antibodies and contain overlapping and non-overlapping reactivities. Ann. Rheum. Dis. 70, 188–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. van de Stadt, L. A. et al. Monoclonal anti-citrullinated protein antibodies selected on citrullinated fibrinogen have distinct targets with different cross-reactivity patterns. Rheumatology (Oxford) 52, 631–635 (2013).

    Article  CAS  Google Scholar 

  70. van Bilsen, J. H. et al. Functional regulatory immune responses against human cartilage glycoprotein-39 in health vs. proinflammatory responses in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 101, 17180–17185 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Snir, O. et al. Multifunctional T cell reactivity with native and glycosylated type II collagen in rheumatoid arthritis. Arthritis Rheum. 64, 2482–2488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Corrigall, V. M., Bodman-Smith, M. D., Brunst, M., Cornell, H. & Panayi, G. S. Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum. 50, 1164–1171 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Zou, J. et al. Predominant cellular immune response to the cartilage autoantigenic G1 aggrecan in ankylosing spondylitis and rheumatoid arthritis. Rheumatology (Oxford) 42, 846–855 (2003).

    Article  CAS  Google Scholar 

  74. Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004).

    Article  PubMed  Google Scholar 

  75. Linn-Rasker, S. P. et al. Smoking is a risk factor for anti-CCP antibodies only in rheumatoid arthritis patients who carry HLA-DRB1 shared epitope alleles. Ann. Rheum. Dis. 65, 366–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Ioan-Facsinay, A. et al. Marked differences in fine specificity and isotype usage of the anti-citrullinated protein antibody in health and disease. Arthritis Rheum. 58, 3000–3008 (2008).

    Article  PubMed  Google Scholar 

  78. van de Stadt, L. A. et al. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 63, 3226–3233 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. van de Stadt, L. A. et al. The extent of the anti-citrullinated protein antibody repertoire is associated with arthritis development in patients with seropositive arthralgia. Ann. Rheum. Dis. 70, 128–133 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Hensvold, A. H. et al. Environmental and genetic factors in the development of anticitrullinated protein antibodies (ACPAs) and ACPA-positive rheumatoid arthritis: an epidemiological investigation in twins. Ann. Rheum. Dis. 74, 375–380 (2013).

    Article  PubMed  Google Scholar 

  81. Terao, C. et al. Effects of smoking and shared epitope on the production of anti-citrullinated peptide antibody in a Japanese adult population. Arthritis Care Res. (Hoboken) 66, 1818–1827 (2014).

    Article  CAS  Google Scholar 

  82. Dieterich, W. et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 3, 797–801 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Osman, A. A. et al. B cell epitopes of gliadin. Clin. Exp. Immunol. 121, 248–254 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Prause, C. et al. Antibodies against deamidated gliadin as new and accurate biomarkers of childhood coeliac disease. J. Pediatr. Gastroenterol. Nutr. 49, 52–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Di Niro, R. et al. High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat. Med. 18, 441–445 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Steinsbø, Ø. et al. Restricted VH/VL usage and limited mutations in gluten-specific IgA of coeliac disease lesion plasma cells. Nat. Commun. 5, 4041 (2014).

    Article  PubMed  CAS  Google Scholar 

  87. Matysiak-Budnik, T. et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J. Exp. Med. 205, 143–154 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sardy, M., Karpati, S., Merkl, B., Paulsson, M. & Smyth, N. Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J. Exp. Med. 195, 747–757 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Edwards, J. C. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Conrad, K., Roggenbuck, D., Reinhold, D. & Dorner, T. Profiling of rheumatoid arthritis associated autoantibodies. Autoimmun. Rev. 9, 431–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Shi, J. et al. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc. Natl Acad. Sci. USA 108, 17372–17377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Willemze, A., Trouw, L. A., Toes, R. E. & Huizinga, T. W. The influence of ACPA status and characteristics on the course of RA. Nat. Rev. Rheumatol. 8, 144–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Laurent, L. et al. IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2013-204543.

  94. Laurent, L. et al. Fcγ receptor profile of monocytes and macrophages from rheumatoid arthritis patients and their response to immune complexes formed with autoantibodies to citrullinated proteins. Ann. Rheum. Dis. 70, 1052–1059 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Trouw, L. A. et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum. 60, 1923–1931 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Uysal, H. et al. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. J. Exp. Med. 206, 449–462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kuhn, K. A. et al. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J. Clin. Invest. 116, 961–973 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra40 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Landmann, T., Kehl, G. & Bergner, R. The continuous measurement of anti-CCP-antibodies does not help to evaluate the disease activity in anti-CCP-antibody-positive patients with rheumatoid arthritis. Clin. Rheumatol. 29, 1449–1453 (2010).

    Article  PubMed  Google Scholar 

  101. Chang, C. The pathogenesis of neonatal autoimmune and autoinflammatory diseases: a comprehensive review. J. Autoimmun. 41, 100–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Abdullah, S. N., Farmer, E. A., Spargo, L., Logan, R. & Gully, N. Porphyromonas gingivalis peptidylarginine deiminase substrate specificity. Anaerobe 23, 102–108 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Kerkman, P. F. et al. Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis. Ann. Rheum. Dis. 72, 1259–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Nissinen, R. et al. Peptidylarginine deiminase, the arginine to citrulline converting enzyme, is frequently recognized by sera of patients with rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren syndrome. Scand. J. Rheumatol. 32, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Halvorsen, E.H. et al. Serum IgG antibodies to peptidylarginine deiminase 4 in rheumatoid arthritis and associations with disease severity. Ann Rheum Dis. 67, 414–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Darrah, E. et al. Erosive rheumatoid arthritis is associated with antibodies that activate PAD4 by increasing calcium sensitivity. Sci. Transl. Med. 5, 186ra65 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ciccocioppo, R. et al. Gliadin and tissue transglutaminase complexes in normal and coeliac duodenal mucosa. Clin. Exp. Immunol. 134, 516–524 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Palazzo, C., Nicaise-Roland, P. & Palazzo, E. Rituximab: an effective treatment for rheumatologic and digestive symptoms of celiac disease? Joint Bone Spine 79, 422–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Nikiphorou, E. & Hall, F. C. First report of improvement of coeliac disease in a patient with Sjögren's syndrome treated with rituximab. Rheumatology (Oxford) 53, 1906–1907 (2014).

    Article  CAS  Google Scholar 

  110. Thurlings, R. M. et al. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. Ann. Rheum. Dis. 67, 917–925 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Willis, V. C. et al. N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J. Immunol. 186, 4396–4404 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Michels, A. W. et al. Structure-based selection of small molecules to alter allele-specific MHC class II antigen presentation. J. Immunol. 187, 5921–5930 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Thomas, R. Dendritic cells as targets or therapeutics in rheumatic autoimmune disease. Curr. Opin. Rheumatol. 26, 211–218 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Giannoukakis, N., Phillips, B., Finegold, D., Harnaha, J. & Trucco, M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care 34, 2026–2032 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Roep, B. O. et al. Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8+ T cells in type 1 diabetes. Sci. Transl. Med. 5, 191ra82 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Wherrett, D. K. et al. Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet 378, 319–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Christophersen, A. et al. Tetramer-visualized gluten-specific CD4+ T cells in blood as a potential diagnostic marker for coeliac disease without oral gluten challenge. United European Gastroenterol. J. 2, 268–278 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Amir el-A. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013).

    Article  CAS  Google Scholar 

  120. Su, L. F. et al. The promised land of human immunology. Cold Spring Harb. Symp. Quant. Biol. 78, 203–213 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research work is supported by the Australian Research Council, the National Health and Medical Research Council (NHMRC) of Australia and the Dutch Arthritis foundation. R.T. is supported by an NHMRC Research fellowship and Arthritis Queensland, J.R. by an NHMRC Australia Fellowship, and R.E.T. by a Vici fellowship from Nederlandse Organizatie voor Wetenschappelijk Onderzoek (NWO). The authors thank Jan Petersen for help with the drafting of the original figures.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript: researching data for the article, discussions of its content, writing and review or editing of the manuscript before submission.

Corresponding author

Correspondence to Frits Koning.

Ethics declarations

Competing interests

R.T. has filed patent applications (PCT/AU2007/001555: Compositions and methods for modulating immune responses, USA; PCT/AU2013/000303: Citrullinated aggrecan peptides for immunotherapy in rheumatoid arthritis, USA) related to technology for targeting dendritic cells to achieve antigen-specific tolerance, and is a director of Dendright, a spin-off company developing commercial vaccines that target dendritic cells to suppress autoimmune diseases. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koning, F., Thomas, R., Rossjohn, J. et al. Coeliac disease and rheumatoid arthritis: similar mechanisms, different antigens. Nat Rev Rheumatol 11, 450–461 (2015). https://doi.org/10.1038/nrrheum.2015.59

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.59

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing