Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The phenotypic and genetic signatures of common musculoskeletal pain conditions

Abstract

Musculoskeletal pain conditions, such as fibromyalgia and low back pain, tend to coexist in affected individuals and are characterized by a report of pain greater than expected based on the results of a standard physical evaluation. The pathophysiology of these conditions is largely unknown, we lack biological markers for accurate diagnosis, and conventional therapeutics have limited effectiveness. Growing evidence suggests that chronic pain conditions are associated with both physical and psychological triggers, which initiate pain amplification and psychological distress; thus, susceptibility is dictated by complex interactions between genetic and environmental factors. Herein, we review phenotypic and genetic markers of common musculoskeletal pain conditions, selected based on their association with musculoskeletal pain in previous research. The phenotypic markers of greatest interest include measures of pain amplification and 'psychological' measures (such as emotional distress, somatic awareness, psychosocial stress and catastrophizing). Genetic polymorphisms reproducibly linked with musculoskeletal pain are found in genes contributing to serotonergic and adrenergic pathways. Elucidation of the biological mechanisms by which these markers contribute to the perception of pain in these patients will enable the development of novel effective drugs and methodologies that permit better diagnoses and approaches to personalized medicine.

Key Points

  • Musculoskeletal pain conditions such as low back pain, chronic widespread pain, fibromyalgia and temporomandibular joint disorders are highly prevalent

  • These conditions have measurable phenotypic signatures, which are heterogeneous in nature

  • Musculoskeletal pain conditions have a genetic basis, with both common and rare genetic variants contributing to the conditions and associated endophenotypes

  • Physical and psychological environmental exposures can produce epigenetic effects that alter gene expression, biological pathway activity, and thus the manifestation of clinical phenotypes of musculoskeletal pain conditions

  • Genetic association studies combined with in vitro and in vivo follow-up studies can identify effective therapeutic agents for the treatment of large subpopulations of patients with musculoskeletal pain conditions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The translational clock—a schematic representation of a novel and rapid approach to identification of new therapeutic targets in commonly observed persistent pain conditions.
Figure 2: The pathological chronic pain circle.

Similar content being viewed by others

References

  1. Committee on Advancing Pain Research, Care and Education, Institute of Medicine. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research, 1st edn (The National Academies Press, 2011).

  2. McBeth, J. & Jones, K. Epidemiology of chronic musculoskeletal pain. Best Pract. Res. Clin. Rheumatol. 21, 403–425 (2007).

    Article  PubMed  Google Scholar 

  3. Slade, G. D. et al. Study methods, recruitment, sociodemographic findings, and demographic representativeness in the OPPERA study. J. Pain 12 (Suppl.), T12–T26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Maixner, W. et al. Orofacial pain prospective evaluation and risk assessment study—the OPPERA study. J. Pain 12 (11 Suppl.), T4–T11.e2 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Diatchenko, L., Nackley, A. G., Slade, G. D., Fillingim, R. B. & Maixner, W. Idiopathic pain disorders—pathways of vulnerability. Pain 123, 226–230 (2006).

    Article  PubMed  Google Scholar 

  6. Maixner, W., Fillingim, R., Booker, D. & Sigurdsson, A. Sensitivity of patients with painful temporomandibular disorders to experimentally evoked pain. Pain 63, 341–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Maixner, W., Fillingim, R., Sigurdsson, A., Kincaid, S. & Silva, S. Sensitivity of patients with painful temporomandibular disorders to experimentally evoked pain: evidence for altered temporal summation of pain. Pain 76, 71–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Graven-Nielsen, T. & Arendt-Nielsen, L. Assessment of mechanisms in localized and widespread musculoskeletal pain. Nat. Rev. Rheumatol. 6, 599–606 (2010).

    Article  PubMed  Google Scholar 

  9. Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152 (Suppl.), S2–S15 (2011).

    Article  PubMed  Google Scholar 

  10. Fillingim, R. B. et al. Potential psychosocial risk factors for chronic TMD: descriptive data and empirically identified domains from the OPPERA case–control study. J. Pain 12 (Suppl.), T46–T60 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ohrbach, R. et al. Clinical findings and pain symptoms as potential risk factors for chronic TMD: descriptive data and empirically identified domains from the OPPERA case–control study. J. Pain 12 (Suppl.) T27–T45 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Howard, K. J. et al. Fibromyalgia syndrome in chronic disabling occupational musculoskeletal disorders: prevalence, risk factors, and posttreatment outcomes. J. Occup. Environ. Med. 52, 1186–1191 (2010).

    Article  PubMed  Google Scholar 

  13. Jones, G. T. et al. Role of road traffic accidents and other traumatic events in the onset of chronic widespread pain: results from a population-based prospective study. Arthritis Care Res. (Hoboken) 63, 696–701 (2011).

    Article  Google Scholar 

  14. Tchivileva, I. E. et al. Signaling pathways mediating β3-adrenergic receptor-induced production of interleukin-6 in adipocytes. Mol. Immunol. 46, 2256–2266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kehlet, H., Jensen, T. S. & Woolf, C. J. Persistent postsurgical pain: risk factors and prevention. Lancet 367, 1618–1625 (2006).

    Article  PubMed  Google Scholar 

  16. Diatchenko, L. et al. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum. Mol. Genet. 14, 135–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Diatchenko, L., Nackley, A. G., Tchivileva, I. E., Shabalina, S. A. & Maixner, W. Genetic architecture of human pain perception. Trends Genet. 23, 605–613 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry. 160, 636–645 (2003).

    Article  PubMed  Google Scholar 

  19. Turk, D. C. et al. Core outcome domains for chronic pain clinical trials: IMMPACT recommendations. Pain 106, 337–345 (2003).

    Article  PubMed  Google Scholar 

  20. Gracely, R. H. & Dubner, R. Reliability and validity of verbal descriptor scales of painfulness. Pain 29, 175–185 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Jensen, M. P., Karoly, P. & Braver, S. The measurement of clinical pain intensity: a comparison of six methods. Pain 27, 117–126 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Stone, A. A., Broderick, J. E., Schneider, S. & Schwartz, J. E. Expanding options for developing outcome measures from momentary assessment data. Psychosom. Med. 74, 387–397 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Melzack, R. The McGill Pain Questionnaire: major properties and scoring methods. Pain 1, 277–299 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. Mackey, S. et al. Sensory pain qualities in neuropathic pain. J. Pain 13, 58–63 (2012).

    Article  PubMed  Google Scholar 

  25. Younger, J. W., Shen, Y. F., Goddard, G. & Mackey, S. C. Chronic myofascial temporomandibular pain is associated with neural abnormalities in the trigeminal and limbic systems. Pain 149, 222–228 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wand, B. M., Chiffelle, L. A., O'Connell, N. E., McAuley, J. H. & Desouza, L. H. Self-reported assessment of disability and performance-based assessment of disability are influenced by different patient characteristics in acute low back pain. Eur. Spine J. 19, 633–640 (2010).

    Article  PubMed  Google Scholar 

  27. van Abbema, R. et al. Factors associated with functional capacity test results in patients with non-specific chronic low back pain: a systematic review. J. Occup. Rehabil. 21, 455–473 (2011).

    Article  PubMed  Google Scholar 

  28. Durand, M. J., Brassard, B., Hong, Q. N., Lemaire, J. & Loisel, P. Responsiveness of the physical work performance evaluation, a functional capacity evaluation, in patients with low back pain. J. Occup. Rehabil. 18, 58–67 (2008).

    Article  PubMed  Google Scholar 

  29. Valkeinen, H. et al. Physical fitness in postmenopausal women with fibromyalgia. Int. J. Sports Med. 29, 408–413 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. de Bruijn, S. T. et al. Relevance of physical fitness levels and exercise-related beliefs for self-reported and experimental pain in fibromyalgia: an explorative study. J. Clin. Rheumatol. 17, 295–301 (2011).

    Article  PubMed  Google Scholar 

  31. McLoughlin, M. J., Stegner, A. J. & Cook, D. B. The relationship between physical activity and brain responses to pain in fibromyalgia. J. Pain 12, 640–651 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alschuler, K. N., Hoodin, F., Murphy, S. L., Rice, J. & Geisser, M. E. Factors contributing to physical activity in a chronic low back pain clinical sample: A comprehensive analysis using continuous ambulatory monitoring. Pain 152, 2521–2527 (2011).

    Article  PubMed  Google Scholar 

  33. Kashikar-Zuck, S. et al. Actigraphy-based physical activity monitoring in adolescents with juvenile primary fibromyalgia syndrome. J. Pain 11, 885–893 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gatchel, R. J., Peng, Y. B., Peters, M. L., Fuchs, P. N. & Turk, D. C. The biopsychosocial approach to chronic pain: scientific advances and future directions. Psychol. Bull. 133, 581–624 (2007).

    Article  PubMed  Google Scholar 

  35. Turk, D. C., Monarch, E. S. & Williams, A. D. Psychological evaluation of patients diagnosed with fibromyalgia syndrome: a comprehensive approach. Rheum. Dis. Clin. North Am. 28, 219–233 (2002).

    Article  PubMed  Google Scholar 

  36. Harkness, E. F., Macfarlane, G. J., Nahit, E., Silman, A. J. & McBeth, J. Mechanical injury and psychosocial factors in the work place predict the onset of widespread body pain: a two-year prospective study among cohorts of newly employed workers. Arthritis Rheum. 50, 1655–1664 (2004).

    Article  PubMed  Google Scholar 

  37. Linton, S. J. A review of psychological risk factors in back and neck pain. Spine 25, 1148–1156 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Gupta, A. et al. The role of psychosocial factors in predicting the onset of chronic widespread pain: results from a prospective population-based study. Rheumatology (Oxford) 46, 666–671 (2007).

    Article  CAS  Google Scholar 

  39. McBeth, J., Macfarlane, G. J., Benjamin, S. & Silman, A. J. Features of somatization predict the onset of chronic widespread pain: results of a large population-based study. Arthritis Rheum. 44, 940–946 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Jones, G. T., Power, C. & Macfarlane, G. J. Adverse events in childhood and chronic widespread pain in adult life: results from the 1958 British Birth Cohort Study. Pain 143, 92–96 (2009).

    Article  PubMed  Google Scholar 

  41. Aggarwal, V. R., Macfarlane, G. J., Farragher, T. M. & McBeth, J. Risk factors for onset of chronic oro-facial pain--results of the North Cheshire oro-facial pain prospective population study. Pain 149, 354–359 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dunn, K. M., Jordan, K. P., Mancl, L., Drangsholt, M. T. & Le, R. L. Trajectories of pain in adolescents: a prospective cohort study. Pain 152, 66–73 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Epker, J., Gatchel, R. J. & Ellis, E. 3rd. A model for predicting chronic TMD: practical application in clinical settings. J. Am. Dent. Assoc. 130, 1470–1475 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Jones, G. T. et al. Predicting persistent disabling low back pain in general practice: a prospective cohort study. Br. J. Gen. Pract. 56, 334–341 (2006).

    PubMed  PubMed Central  Google Scholar 

  45. Rolke, R. et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur. J. Pain 10, 77–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Maier, C. et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1,236 patients with different neuropathic pain syndromes. Pain 150, 439–450 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Rehm, S. E. et al. A cross-sectional survey of 3,035 patients with fibromyalgia: subgroups of patients with typical comorbidities and sensory symptom profiles. Rheumatology (Oxford). 49, 1146–1152 (2010).

    Article  PubMed  Google Scholar 

  48. Pfau, D. B., Rolke, R., Nickel, R., Treede, R. D. & Daublaender, M. Somatosensory profiles in subgroups of patients with myogenic temporomandibular disorders and fibromyalgia syndrome. Pain 147, 72–83 (2009).

    Article  PubMed  Google Scholar 

  49. Egloff, N., Sabbioni, M. E., Salathe, C., Wiest, R. & Juengling, F. D. Nondermatomal somatosensory deficits in patients with chronic pain disorder: clinical findings and hypometabolic pattern in FDG-PET. Pain 145, 252–258 (2009).

    Article  PubMed  Google Scholar 

  50. Leffler, A. S., Hansson, P. & Kosek, E. Somatosensory perception in patients suffering from long-term trapezius myalgia at the site overlying the most painful part of the muscle and in an area of pain referral. Eur. J. Pain 7, 267–276 (2003).

    Article  PubMed  Google Scholar 

  51. Wallin, M., Liedberg, G., Borsbo, B. & Gerdle, B. Thermal detection and pain thresholds but not pressure pain thresholds are correlated with psychological factors in women with chronic whiplash-associated pain. Clin. J. Pain 28, 211–221 (2012).

    Article  PubMed  Google Scholar 

  52. Staud, R., Weyl, E. E., Price, D. D. & Robinson, M. E. Mechanical and heat hyperalgesia highly predict clinical pain intensity in patients with chronic musculoskeletal pain syndromes. J. Pain 13, 725–735 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Edwards, R. R., Sarlani, E., Wesselmann, U. & Fillingim, R. B. Quantitative assessment of experimental pain perception: multiple domains of clinical relevance. Pain 114, 315–319 (2005).

    Article  PubMed  Google Scholar 

  54. Arendt-Nielsen, L. & Petersen-Felix, S. Wind-up and neuroplasticity: is there a correlation to clinical pain? Eur. J. Anaesthesiol. Suppl. 10, 1–7 (1995).

    CAS  PubMed  Google Scholar 

  55. Eide, P. K. Wind-up and the NMDA receptor complex from a clinical perspective. Eur. J. Pain 4, 5–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Price, D. D. et al. Enhanced temporal summation of second pain and its central modulation in fibromyalgia patients. Pain 99, 49–59 (2002).

    Article  PubMed  Google Scholar 

  57. Yarnitsky, D. et al. Recommendations on terminology and practice of psychophysical DNIC testing. Eur. J. Pain 14, 339 (2010).

    Article  PubMed  Google Scholar 

  58. King, C. D. et al. Deficiency in endogenous modulation of prolonged heat pain in patients with irritable bowel syndrome and temporomandibular disorder. Pain 143, 172–178 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Staud, R., Robinson, M. E., Vierck, C. J. Jr & Price, D. D. Diffuse noxious inhibitory controls (DNIC) attenuate temporal summation of second pain in normal males but not in normal females or fibromyalgia patients. Pain 101, 167–174 (2003).

    Article  PubMed  Google Scholar 

  60. Staud, R. Autonomic dysfunction in fibromyalgia syndrome: postural orthostatic tachycardia. Curr. Rheumatol. Rep. 10, 463–466 (2008).

    Article  PubMed  Google Scholar 

  61. Light, K. C. et al. Adrenergic dysregulation and pain with and without acute beta-blockade in women with fibromyalgia and temporomandibular disorder. J. Pain 10, 542–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Giske, L. et al. Attenuated adrenergic responses to exercise in women with fibromyalgia—a controlled study. Eur. J. Pain 12, 351–360 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Martinez-Lavin, M. Biology and therapy of fibromyalgia. Stress, the stress response system, and fibromyalgia. Arthritis Res. Ther. 9, 216 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Perry, F., Heller, P. H., Kamiya, J. & Levine, J. D. Altered autonomic function in patients with arthritis or with chronic myofascial pain. Pain 39, 77–84 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. Kelemen, J., Lang, E., Balint, G., Trocsanyi, M. & Muller, W. Orthostatic sympathetic derangement of baroreflex in patients with fibromyalgia. J. Rheumatol. 25, 823–825 (1998).

    CAS  PubMed  Google Scholar 

  66. Reyes del Paso, G. A., Garrido, S., Pulgar, A. & Duschek, S. Autonomic cardiovascular control and responses to experimental pain stimulation in fibromyalgia syndrome. J. Psychosom. Res. 70, 125–134 (2011).

    Article  PubMed  Google Scholar 

  67. Gockel, M., Lindholm, H., Niemisto, L. & Hurri, H. Perceived disability but not pain is connected with autonomic nervous function among patients with chronic low back pain. J. Rehabil. Med. 40, 355–358 (2008).

    Article  PubMed  Google Scholar 

  68. Furlan, R. et al. Abnormalities of cardiovascular neural control and reduced orthostatic tolerance in patients with primary fibromyalgia. J. Rheumatol. 32, 1787–1793 (2005).

    PubMed  Google Scholar 

  69. Hamaty, D. et al. The plasma endorphin, prostaglandin and catecholamine profile of patients with fibrositis treated with cyclobenzaprine and placebo: a 5-month study. J. Rheumatol. Suppl. 19, 164–168 (1989).

    CAS  PubMed  Google Scholar 

  70. Legangneux, E. et al. Cerebrospinal fluid biogenic amine metabolites, plasma-rich platelet serotonin and [3H]imipramine reuptake in the primary fibromyalgia syndrome. Rheumatology (Oxford) 40, 290–296 (2001).

    Article  CAS  Google Scholar 

  71. Yunus, M. B., Dailey, J. W., Aldag, J. C., Masi, A. T. & Jobe, P. C. Plasma and urinary catecholamines in primary fibromyalgia: a controlled study. J. Rheumatol. 19, 95–97 (1992).

    CAS  PubMed  Google Scholar 

  72. Maixner, W. et al. Potential autonomic risk factors for chronic TMD: descriptive data and empirically identified domains from the OPPERA case–control study. J. Pain 12 (Suppl.), T75–T91 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hastie, B. A. et al. Cluster analysis of multiple experimental pain modalities. Pain 116, 227–237 (2005).

    Article  PubMed  Google Scholar 

  74. Scholz, J. et al. A novel tool for the assessment of pain: validation in low back pain. PLoS Med. 6, e1000047 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Suvinen, T. I., Reade, P. C., Hanes, K. R., Kononen, M. & Kemppainen, P. Temporomandibular disorder subtypes according to self-reported physical and psychosocial variables in female patients: a re-evaluation. J. Oral Rehabil. 32, 166–173 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Velly, A. M., Philippe, P. & Gornitsky, M. Heterogeneity of temporomandibular disorders: cluster and case–control analyses. J. Oral Rehabil. 29, 969–979 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Wilson, H. D., Starz, T. W., Robinson, J. P. & Turk, D. C. Heterogeneity within the fibromyalgia population: theoretical implications of variable tender point severity ratings. J. Rheumatol. 36, 2795–2801 (2009).

    Article  PubMed  Google Scholar 

  78. Giesecke, T. et al. Subgrouping of fibromyalgia patients on the basis of pressure-pain thresholds and psychological factors. Arthritis Rheum. 48, 2916–2922 (2003).

    Article  PubMed  Google Scholar 

  79. Loevinger, B. L., Shirtcliff, E. A., Muller, D., Alonso, C. & Coe, C. L. Delineating psychological and biomedical profiles in a heterogeneous fibromyalgia population using cluster analysis. Clin. Rheumatol. 31, 677–685 (2012).

    Article  PubMed  Google Scholar 

  80. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd edn (Springer, New York, 2009).

    Book  Google Scholar 

  81. Kato, K., Sullivan, P. F. & Pedersen, N. L. Latent class analysis of functional somatic symptoms in a population-based sample of twins. J. Psychosom. Res. 68, 447–453 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fejer, R., Hartvigsen, J. & Kyvik, K. O. Heritability of neck pain: a population-based study of 33,794 Danish twins. Rheumatology (Oxford) 45, 589–594 (2006).

    Article  CAS  Google Scholar 

  83. Williams, F. M., Spector, T. D. & Macgregor, A. J. Pain reporting at different body sites is explained by a single underlying genetic factor. Rheumatology (Oxford) 49, 1753–1755 (2010).

    Article  CAS  Google Scholar 

  84. Markkula, R. et al. Clustering of symptoms associated with fibromyalgia in a Finnish Twin Cohort. Eur. J. Pain 13, 744–750 (2009).

    Article  PubMed  Google Scholar 

  85. Vargas-Alarcon, G. et al. Catechol-O-methyltransferase gene haplotypes in Mexican and Spanish patients with fibromyalgia. Arthritis Res. Ther. 9, R110 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gursoy, S. et al. Significance of catechol-O-methyltransferase gene polymorphism in fibromyalgia syndrome. Rheumatol. Int. 23, 104–107 (2003).

    Article  PubMed  CAS  Google Scholar 

  87. Matsuda, J. B. et al. Serotonin receptor (5-HT 2A) and catechol-O-methyltransferase (COMT) gene polymorphisms: triggers of fibromyalgia? Rev. Bras. Reumatol. 50, 141–149 (2010).

    Article  PubMed  Google Scholar 

  88. Barbosa, F. R. et al. Influence of catechol-O-methyltransferase (COMT) gene polymorphisms in pain sensibility of Brazilian fibromialgia patients. Rheumatol. Int. 32, 427–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Cohen, H., Neumann, L., Glazer, Y., Ebstein, R. P. & Buskila, D. The relationship between a common catechol-O-methyltransferase (COMT) polymorphism val(158) met and fibromyalgia. Clin. Exp. Rheumatol. 27 (Suppl. 56), S51–S56 (2009).

    CAS  PubMed  Google Scholar 

  90. Martínez-Jauand, M. et al. Pain sensitivity in fibromyalgia is associated with catechol-O-methyltransferase (COMT) gene. Eur. J. Pain 17, 16–27 (2013).

    Article  PubMed  CAS  Google Scholar 

  91. Smith, S. B. et al. Potential genetic risk factors for chronic TMD: genetic associations from the OPPERA case–control study. J. Pain 12 (Suppl.), T92–T101 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hocking, L. J. et al. Genetic variation in the β2-adrenergic receptor but not catecholamine-O-methyltransferase predisposes to chronic pain: results from the 1958 British Birth Cohort Study. Pain 149, 143–151 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Xiao, Y., He, W. & Russell, I. J. Genetic polymorphisms of the β2-adrenergic receptor relate to guanosine protein-coupled stimulator receptor dysfunction in fibromyalgia syndrome. J. Rheumatol. 38, 1095–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Diatchenko, L. et al. Three major haplotypes of the β2 adrenergic receptor define psychological profile, blood pressure, and the risk for development of a common musculoskeletal pain disorder. Am. J. Med. Genet. B, Neuropsychiatr. Genet. 141B, 449–462 (2006).

    Article  CAS  Google Scholar 

  95. Offenbaecher, M. et al. Possible association of fibromyalgia with a polymorphism in the serotonin transporter gene regulatory region. Arthritis Rheum. 42, 2482–2488 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Cohen, H., Buskila, D., Neumann, L. & Ebstein, R. P. Confirmation of an association between fibromyalgia and serotonin transporter promoter region (5-HTTLPR) polymorphism, and relationship to anxiety-related personality traits. Arthritis Rheum. 46, 845–847 (2002).

    Article  PubMed  Google Scholar 

  97. Carvalho, L. S. et al. May genetic factors in fibromyalgia help to identify patients with differentially altered frequencies of immune cells? Clin. Exp. Immunol. 154, 346–352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ojima, K., Watanabe, N., Narita, N. & Narita, M. Temporomandibular disorder is associated with a serotonin transporter gene polymorphism in the Japanese population. Biopsychosoc. Med. 1, 3 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Herken, H. et al. Possible association of temporomandibular joint pain and dysfunction with a polymorphism in the serotonin transporter gene. Am. J. Orthod. Dentofacial Orthop. 120, 308–313 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Bondy, B. et al. The T102C polymorphism of the 5-HT2A-receptor gene in fibromyalgia. Neurobiol. Dis. 6, 433–439 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Mergener, M., Becker, R. M., dos Santos, A. F., dos Santos, G. A. & de Andrade, F. M. Influence of the interaction between environmental quality and T102C SNP in the HTR2A gene on fibromyalgia susceptibility. Rev. Bras. Reumatol. 51, 594–602 (2011).

    Article  PubMed  Google Scholar 

  102. Mutlu, N., Erdal, M. E., Herken, H., Oz, G. & Bayazit, Y. A. T102C polymorphism of the 5-HT2A receptor gene may be associated with temporomandibular dysfunction. Oral Dis. 10, 349–352 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Burda, C., Cox, F. & Osborne, P. Histocompatibility antigens in the fibrositis (fibromyalgia) syndrome. Clin. Exp. Rheumatol. 4, 355–358 (1986).

    CAS  PubMed  Google Scholar 

  104. Branco, J. C., Tavares, V., Abreu, I., Correia, M. M. & Caetano, J. A. M. HLA studies in fibromyalgia. J. Muscoskelet. Pain 4, 21–27 (1996).

    Article  Google Scholar 

  105. Horven, S., Stiles, T. C., Holst, A. & Moen, T. HLA antigens in primary fibromyalgia syndrome. J. Rheumatol. 19, 1269–1270 (1992).

    CAS  PubMed  Google Scholar 

  106. Blanco, I. et al. α1-antitrypsin polymorphism in fibromyalgia syndrome patients from the Asturias province in Northern Spain: a significantly higher prevalence of the PI*Z deficiency allele in patients than in the general population. J. Muscoskelet. Pain 14, 5–12 (2006).

    Article  Google Scholar 

  107. Schmechel, D. E. & Edwards, C. L. Fibromyalgia, mood disorders, and intense creative energy: A1AT polymorphisms are not always silent. Neurotoxicology 33, 1454–1472 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Vossen, H. et al. The genetic influence on the cortical processing of experimental pain and the moderating effect of pain status. PLoS ONE 5, e13641 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Desmeules, J. et al. Psychological distress in fibromyalgia patients: a role for catechol-O-methyl-transferase Val158met polymorphism. Health Psychol. 31, 242–249 (2012).

    Article  PubMed  Google Scholar 

  110. Gursoy, S., Erdal, E., Herken, H., Madenci, E. & Alasehirli, B. Association of T102C polymorphism of the 5-HT2A receptor gene with pyschiatric status in fibromyalgia syndrome. Rheumatol. Int. 21, 58–61 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Feng, J. et al. Missense mutations in the MEFV gene are associated with fibromyalgia syndrome and correlate with elevated IL-1β plasma levels. PLoS ONE 4, e8480 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Slade, G. D. et al. Study methods, recruitment, sociodemographic findings, and demographic representativeness in the OPPERA study. J. Pain 12 (Suppl.), T12–T26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kathiresan, S. & Srivastava, D. Genetics of human cardiovascular disease. Cell 148, 1242–1257 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Diatchenko, L. et al. Catechol-O-methyltransferase gene polymorphisms are associated with multiple pain-evoking stimuli. Pain 125, 216–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Segall, S. K. et al. Comt1 genotype and expression predicts anxiety and nociceptive sensitivity in inbred strains of mice. Genes Brain Behav. 9, 933–946 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nackley, A. et al. Catechol-O-methyltransferase inhibition increases pain sensitivity through activation of both β2- and β3-adrenergic receptors. Pain 128, 199–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Tchivileva, I. E. et al. Effect of catechol-O-methyltransferase polymorphism on response to propranolol therapy in chronic musculoskeletal pain: a randomized, double-blind, placebo-controlled, crossover pilot study. Pharmacogenet. Genomics 20, 239–248 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Nackley, A. et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314, 1930–1933 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Kambur, O. & Mannisto, P. T. Catechol-O-methyltransferase and pain. Int. Rev. Neurobiol. 95, 227–279 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Vargas-Alarcon, G. et al. Association of adrenergic receptor gene polymorphisms with different fibromyalgia syndrome domains. Arthritis Rheum. 60, 2169–2173 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Diatchenko, L. et al. Three major haplotypes of the β2 adrenergic receptor define psychological profile, blood pressure, and the risk for development of a common musculoskeletal pain disorder. Am. J. Med. Genet. Part B 141B, 449–462 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Finan, P. H. et al. COMT moderates the relation of daily maladaptive coping and pain in fibromyalgia. Pain 152, 300–307 (2011).

    Article  PubMed  Google Scholar 

  124. Finan, P. H. et al. Genetic influences on the dynamics of pain and affect in fibromyalgia. Health Psychol. 29, 134–142 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Jacobsen, L. M. et al. The COMT rs4680 Met allele contributes to long-lasting low back pain, sciatica and disability after lumbar disc herniation. Eur. J. Pain. 16, 1064–1069 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Dai, F. et al. Association of catechol-O-methyltransferase genetic variants with outcome in patients undergoing surgical treatment for lumbar degenerative disc disease. Spine J. 10, 949–957 (2010).

    Article  PubMed  Google Scholar 

  127. Omair, A., Lie, B., Reikeras, O., Holden, M. & Brox, J. Genetic contribution of catechol-O-methyltransferase variants in treatment outcome of low back pain: a prospective genetic association study. BMC Musculoskelet. Disord. 13, 76 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Slade, G., Diatchenko, L., Ohrbach, R. & Maixner, W. Orthodontic treatment, genetic factors, and risk of temporomandibular disorder. Semin. Orthod. 14, 146–156 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Yunus, M. B. Genetic factors in fibromyalgia syndrome. Z. Rheumatol. 57 (Suppl. 2), S61–S62 (1998).

    Article  Google Scholar 

  130. Holliday, K. L. et al. Genetic variation in neuroendocrine genes associates with somatic symptoms in the general population: results from the EPIFUND study. J. Psychosom. Res. 68, 469–474 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work is supported in part by grants from NIDCR, NIA and NINDS, R01-DE16558, U01-DE017018, 1K12DSE022793, AG033906, and P01 NS045685. The authors are grateful to Kirsten Ambrose for assistance with preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to each stage of the preparation of this manuscript for publication.

Corresponding author

Correspondence to Luda Diatchenko.

Ethics declarations

Competing interests

L. Diatchenko, R. B. Fillingim, S. B. Smith and W. Maixner are consultants for and shareholders in Algynomics.

Supplementary information

Supplementary Table 1

Methods of clinical phenotyping and QST endophenotyping in musculoskeletal pain conditions (DOCX 26 kb)

Supplementary Table 2

Genes implicated in human musculoskeletal pain conditions (DOC 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diatchenko, L., Fillingim, R., Smith, S. et al. The phenotypic and genetic signatures of common musculoskeletal pain conditions. Nat Rev Rheumatol 9, 340–350 (2013). https://doi.org/10.1038/nrrheum.2013.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing