Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Autoantibodies and SLE—the threshold for disease

Abstract

The presence of autoantibodies in apparently healthy individuals has been increasingly recognized. Although some of these individuals are in preclinical stages of a disease such as systemic lupus erythematosus (SLE), many will not develop SLE or any other autoimmune disorder. The high prevalence of autoreactivity in the population in fact suggests that autoantibodies are expressed as part of a healthy immune response, and other data have clearly shown that some autoantibodies have important immune regulatory functions. These observations leave open questions regarding when and how benign autoimmunity develops into disease. If the transition from preclinical autoimmunity to a clinical disorder such as SLE could be predicted, early and thus potentially more effective intervention might be possible and cures might even become a reality. Furthermore, increased understanding of mechanisms by which autoantibodies are kept in check can identify new approaches to aborting or preventing disease transformations. In this article, we summarize the current findings regarding the presence of SLE-associated antibodies in apparently healthy individuals, and provide our opinions on what such discoveries might tell us about the roles of autoantibodies in the development of disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors influencing progression from serological autoimmunity to stages of clinically manifested symptoms.
Figure 2: Schematic presentation of the progression from benign preclinical autoimmunity to organ involvement in SLE, outlining key pathogenetic processes and clinical features.

Similar content being viewed by others

References

  1. Lateef, A. & Petri, M. Unmet medical needs in systemic lupus erythematosus. Arthritis Res. Ther. 14 (Suppl. 4), S4 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rahman, A. & Isenberg, D. A. Systemic lupus erythematosus. N. Engl. J. Med. 358, 929–939 (2008).

    CAS  PubMed  Google Scholar 

  3. Nossent, J. et al. Disease activity and damage accrual during the early disease course in a multinational inception cohort of patients with systemic lupus erythematosus. Lupus 19, 949–956 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Friou, G. J., Finch, S. C. & Detre, K. D. Interaction of nuclei and globulin from lupus erythematosis serum demonstrated with fluorescent antibody. J. Immunol. 80, 324–329 (1958).

    CAS  PubMed  Google Scholar 

  5. Meroni, P. & Schur, P. ANA screening: an old test with new recommendations. Ann. Rheum. Dis. 69, 1420–1422 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Arbuckle, M. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Sokolove, J. et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS ONE 7, e35296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arend, W. P. & Firestein, G. S. Pre-rheumatoid arthritis: predisposition and transition to clinical synovitis. Nat. Rev. Rheumatol. 8, 573–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Bluestone, J. A., Herold, K. & Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464, 1293–1300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wandstrat, A. et al. Autoantibody profiling to identify individuals at risk for systemic lupus erythematosus. J. Autoimmun. 27, 153–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Feldman, C. H. et al. Epidemiology and sociodemographics of systemic lupus erythematosus and lupus nephritis among US adults with Medicaid coverage, 2000–2004. Arthritis Rheum. 65, 753–763 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li, Q. Z. et al. Risk factors for ANA positivity in healthy persons. Arthritis Res. Ther. 13, R38 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fritzler, M. J. Toward a new autoantibody diagnostic orthodoxy: understanding the bad, good and indifferent. Autoimmun. Highlights 3, 51–58 (2012).

    Article  CAS  Google Scholar 

  14. Fernandez, S. et al. Prevalence of antinuclear autoantibodies in the serum of normal blood dornors. Rev. Hosp. Clin. Fac. Med. Sao Paulo 58, 315–319 (2003).

    Article  PubMed  Google Scholar 

  15. Tan, E. M. et al. Range of antinuclear antibodies in “healthy” individuals. Arthritis Rheum. 40, 1601–1611 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Greer, J. M. & Panush, R. S. Incomplete lupus erythematosus. Arch. Intern. Med. 149, 2473–2476 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Marin, G. G., Cardiel, M. H., Cornejo, H. & Viveros, M. E. Prevalence of antinuclear antibodies in 3 groups of healthy individuals: blood donors, hospital personnel, and relatives of patients with autoimmune diseases. J. Clin. Rheumatol. 15, 325–329 (2009).

    Article  PubMed  Google Scholar 

  18. Eriksson, C. et al. Autoantibodies predate the onset of systemic lupus erythematosus in northern Sweden. Arthritis Res. Ther. 13, R30 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mahler, M. et al. Anti-DFS70/LEDGF antibodies are more prevalent in healthy individuals compared to patients with systemic autoimmune rheumatic diseases. J. Rheumatol. 39, 2104–2110 (2012).

    Article  PubMed  Google Scholar 

  20. Satoh, M. et al. Prevalence and sociodemographic correlates of antinuclear antibodies in the United States. Arthritis Rheum. 64, 2319–2327 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sherer, Y., Gorstein, A., Fritzler, M. J. & Shoenfeld, Y. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin. Arthritis Rheum. 34, 501–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Kumar, S. et al. Lupus autoantibodies to native DNA preferentially bind DNA presented on PolIV. Immunology 114, 418–427 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xia, Y. et al. The constant region contributes to the antigenic specificity and renal pathogenicity of murine anti-DNA antibodies. J. Autoimmun. 39, 398–411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Popovic, K., Brauner, S., Ek, M., Wahren-Herlenius, M. & Nyberg, F. Fine specificity of the Ro/SSA autoantibody response in relation to serological and clinical findings in 96 patients with self-reported cutaneous symptoms induced by the sun. Lupus 16, 10–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Tzaneva, S., Volc-Platzer, B., Kittler, H., Hönigsmann, H. & Tanew, A. Antinuclear antibodies in patients with polymorphic light eruption: a long-term follow-up study. Br. J. Dermatol. 158, 1050–1054 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Tan, E. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25, 1271–1277 (1982).

    Article  CAS  PubMed  Google Scholar 

  27. Hochberg, M. C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 40, 1725 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Petri, M. et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 64, 2677–2686 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vilá, L. M., Mayor, A. M., Valentín, A. H., García-Soberal, M. & Vilá, S. Clinical outcome and predictors of disease evolution in patients with incomplete lupus erythematosus. Lupus 9, 110–115 (2000).

    Article  PubMed  Google Scholar 

  30. Li, Q. et al. Protein array autoantibody profiles for insights into systemic lupus erythematosus and incomplete lupus syndromes. Clin. Exp. Immunol. 147, 60–70 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Olsen, N. J. et al. Autoantibody profiling to follow evolution of lupus syndromes. Arthritis Res. Ther. 14, R174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Werwitzke, S. et al. Inhibition of lupus disease by anti-double-stranded DNA antibodies of the IgM isotype in the (NZB x NZW)F1 mouse. Arthritis Rheum. 52, 3629–3638 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Grönwall, C. et al. IgM autoantibodies to distinct apoptosis-associated antigens correlate with protection from cardiovascular events and renal disease in patients with SLE. Clin. Immunol. 142, 390–398 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pauklin, S., Sernández, I. V., Bachmann, G., Ramiro, A. R. & Petersen-Mahrt, S. K. Estrogen directly activates AID transcription and function. J. Exp. Med. 206, 99–111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tessnow, A. H., Olsen, N. J. & Kovacs, W. J. Expression of humoral autoimmunity is related to androgen receptor CAG repeat length in men with systemic lupus erythematosus. J. Clin. Immunol. 31, 567–573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sakiani, S., Olsen, N. J. & Kovacs, W. J. Gonadal steroids and humoral immunity. Nat. Rev. Endocrinol. 9, 56–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Villalta, D. et al. Anti-dsDNA antibody isotypes in systemic lupus erythematosus: IgA in addition to IgG anti-dsDNA help to identify glomerulonephritis and active disease. PLoS ONE 8, e71458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Charles, N. & Rivera, J. Basophils and autoreactive IgE in the pathogenesis of systemic lupus erythematosus. Curr. Allergy Asthma Rep. 11, 378–387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoch, S., Schur, P. H. & Schwaber, J. Frequency of anti-DNA antibody producing cells from normals and patients with systemic lupus erythematosus. Clin. Immunol. Immunopathol. 27, 28–37 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. Aringer, M. & Vital, E. Lots of autoantibodies equal lupus? Arthritis Res. Ther. 15, 102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zandman-Goddard, G., Solomon, M., Rosman, Z., Peeva, E. & Shoenfeld, Y. Environment and lupus-related diseases. Lupus 21, 241–250 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Wahren-Herlenius, M. & Dörner, T. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet 382, 819–831 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Costenbader, K. H., Feskanich, D., Stampfer, M. J. & Karlson, E. W. Reproductive and menopausal factors and risk of systemic lupus erythematosus in women. Arthritis Rheum. 56, 1251–1262 (2007).

    Article  PubMed  Google Scholar 

  44. Costenbader, K. H. & Karlson, E. W. Cigarette smoking and autoimmune disease: what can we learn from epidemiology? Lupus 15, 737–745 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Cooper, G. S. et al. Occupational and environmental exposures and risk of systemic lupus erythematosus: silica, sunlight, solvents. Rheumatology (Oxford) 49, 2172–2180 (2010).

    Article  CAS  Google Scholar 

  46. Schmidt, E., Tony, H., Bröcker, E. & Kneitz, C. Sun-induced life-threatening lupus nephritis. Ann. NY Acad. Sci. 1108, 35–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Harley, J. B. & James, J. A. Epstein-Barr virus infection induces lupus autoimmunity. Bull. NYU Hosp. Jt Dis. 64, 45–50 (2006).

    PubMed  Google Scholar 

  48. Ritterhouse, L. L. et al. Vitamin D deficiency is associated with an increased autoimmune response in healthy individuals and in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 70, 1569–1574 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Agmon-Levin, N., Hughes, G. R. & Shoenfeld, Y. The spectrum of ASIA: 'Autoimmune (Auto-inflammatory) Syndrome induced by Adjuvants'. Lupus 21, 118–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Azizah, M. R., Azila, M. N., Zulkifli, M. N. & Norita, T. Y. The prevalence of antinuclear, anti-dsDNA, anti-Sm and anti-RNP antibodies in a group of healthy blood donors. Asian Pac. J. Allergy Immunol. 14, 125–128 (1996).

    CAS  PubMed  Google Scholar 

  51. von Mühlen, C. A. & Tan, E. M. Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin. Arthritis Rheum. 24, 323–358 (1995).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Catherine Abendroth, Penn State Milton S. Hershey Medical Center, PA, USA, and Kari Connolly, University of California San Francisco Medical Center, CA, USA, for providing photomicrographs used in Figure 2.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made substantial contributions to all stages of the preparation of this manuscript for submission.

Corresponding author

Correspondence to Nancy J. Olsen.

Ethics declarations

Competing interests

N. J. Olsen has received research funding from NovoNordisk, Questcor, Roche/Genentech and Savient, and has an equity interest in ArthroChip. D. R. Karp has received research funding from BMS, Human Genome Sciences/GSK, Janssen and Sanofi.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, N., Karp, D. Autoantibodies and SLE—the threshold for disease. Nat Rev Rheumatol 10, 181–186 (2014). https://doi.org/10.1038/nrrheum.2013.184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing