Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of spondyloarthritis—beyond the MHC

Abstract

Ankylosing spondylitis (AS), psoriasis and inflammatory bowel disease (IBD) often coexist in the same patient and in their families. In AS, genes within the MHC region, in particular HLA-B27, account for nearly 25% of disease hereditability, with additional small contributions from genes outside of the MHC locus, including those involved in intracellular antigen processing (that is, ERAP1, which interacts with HLA-B27) and cytokine genes such as those involved in the IL-17–IL-23 pathway. Similar to AS, the strongest genetic signal of susceptibility to psoriasis and psoriatic arthritis also emanates from the MHC region (attributable mostly to HLA-C*06:02 although other genes have been implicated), and gene–gene interaction of HLA-C with ERAP1. The remaining hereditary load is from genes involved in cytokine production, specifically genes in the IL-17–IL-23 pathway, the NFκB pathway and the type 2 T-helper pathway. In IBD, similar genetic influences are operative. Indeed, genes important in the regulation of the IL-17–IL-23 pathway and, in Crohn's disease, genes important for autophagy (that is, NOD2 and ATG16L1 and IRGM) have a role in conferring susceptibility of individuals to these diseases. Thus, AS, psoriasis and IBD seem to share similar pathogenic mechanisms of aberrant intracellular antigen processing or elimination of intracellular bacteria and cytokine production, especially in the IL-17–IL-23 pathway.

Key Points

  • Ankylosing spondylitis (AS), psoriasis and inflammatory bowel disease (IBD) exhibit both shared as well as disease-specific genes that are operative in susceptibility

  • Genes within the MHC region (especially HLA-B27) account for the majority of the currently known susceptibility of individuals to AS

  • Genes outside of the MHC region involved in intracellular antigen processing and cytokine production (especially genes in the IL-17–IL-23 pathway), also predispose individuals to AS, although their overall contribution to hereditability is small

  • Psoriasis and psoriatic arthritis have similar characteristics to AS: the majority of disease susceptibility is from the MHC region, and most of the remaining susceptibility is from genes involved in cytokine production

  • In IBD, genes important in autophagy (in Crohn's disease) and regulation of the IL-17–IL-23 pathway have a large role in disease susceptibility

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innate immunity, antigen presentation and the TH17 pathway are all implicated in conferring susceptibility to AS, psoriasis/PsA and IBD.

Similar content being viewed by others

References

  1. Schlosstein, L., Terasaki, P. I., Bluestone, R., Pearson, C. M. High association of an HLA antigen, W27, with ankylosing spondylitis. N. Engl. J. Med. 288, 704–706 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Murray, C. et al. Histocompatibility alloantigens in psoriasis and psoriatic arthritis. Evidence for the influence of multiple genes in the major histocompatibility complex. J. Clin. Invest. 66, 670–675 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Brown, M. A. et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 40, 1823–1828 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, M. A., Laval, S. H., Brophy, S. & Calin, A. Recurrence risk modeling of the genetic susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. 59, 883–886 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown, M. A. Progress in the genetics of ankylosing spondylitis. Brief Funct. Genomics 10, 249–257 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Dangoria, N. S. et al. HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J. Biol. Chem. 277, 23459–23468 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Delay, M. L. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with TH17 activation in transgenic rats. Arthritis Rheum. 60, 2633–2643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kollnberger, S. et al. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum. 46, 2972–2982 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, E. C., Fettke, F., Bhat, S., Morley, K. D. & Powis, S. J. Expression of MHC class I dimers and ERAP1 in an ankylosing spondylitis patient cohort. Immunology 133, 379–385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mathieu, A. et al. The interplay between the geographic distribution of HLA-B27 alleles and their role in infectious and autoimmune diseases: a unifying hypothesis. Autoimmun. Rev. 8, 420–425 (2009).

    CAS  PubMed  Google Scholar 

  13. Gerard, H. C., Branigan, P. J., Schumacher, H. R. & Hudson, A. P. Synovial Chlamydia trachomatis in patients with reactive arthritis/Reiter's syndrome are viable but show aberrant gene expression. J. Rheumatol. 25, 734–742 (1998).

    CAS  PubMed  Google Scholar 

  14. van der Linden, S. M., Valkenburg, H. A., de Jongh, B. M. & Cats, A. The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population. Arthritis Rheum. 27, 241–249 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Robinson, W. P. et al. HLA-Bw60 increases susceptibility to ankylosing spondylitis in HLA-B27+ patients. Arthritis Rheum. 32, 1135–1141 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Brown, M. A. et al. HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann. Rheum. Dis. 55, 268–270 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei, J. C., Tsai, W. C., Lin, H. S., Tsai, C. Y. & Chou, C. T. HLA-B60 and B61 are strongly associated with ankylosing spondylitis in HLA-B27-negative Taiwan Chinese patients. Rheumatology (Oxford) 43, 839–842 (2004).

    Article  CAS  Google Scholar 

  18. Reveille, J. D. The genetic basis of spondyloarthritis. Ann. Rheum. Dis. 70 (Suppl. 1), i44–i50 (2011).

    Article  PubMed  Google Scholar 

  19. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wellcome Trust Case Control Consortium et al. Association scan of 14,500 nsSNPs in four common diseases identifies variants involved in autoimmunity. Nat. Genet. 39, 1329–1337 (2007).

  21. Australo-Anglo-American Spondyloarthritis Consortium et al. Genomewide association study of ankylosing spondylitis identifies multiple non-MHC susceptibility loci. Nat. Genet. 42, 123–127 (2010).

  22. Maksymowych, W. P. et al. Association of a specific ERAP1/ARTS1 haplotype with disease susceptibility in ankylosing spondylitis. Arthritis Rheum. 60, 1317–1323 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Tsui, F. W. et al. Association of an ERAP1/ ERAP2 haplotype with familial ankylosing spondylitis. Ann. Rheum. Dis. 69, 733–736 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Pimentel-Santos, F. M. et al. Association of IL23R and ERAP1 genes with ankylosing spondylitis in a Portuguese population. Clin. Exp. Rheumatol. 27, 800–806 (2009).

    CAS  PubMed  Google Scholar 

  25. Pazár, B. et al. Association of ARTS1 gene polymorphisms with ankylosing spondylitis in the Hungarian population: the rs27044 variant is associated with HLA-B*2705 subtype in Hungarian patients with ankylosing spondylitis. J. Rheumatol. 37, 379–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Davidson, S. I. et al. Association of ERAP1, but not IL23R, with ankylosing spondylitis in a Han Chinese population. Arthritis Rheum. 60, 3263–3268 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Bang, S. Y. et al. Genetic studies of ankylosing spondylitis in Koreans confirm associations with ERAP1 and 2p15 reported in white patients. J. Rheumatol. 38, 322–324 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Yan, J. et al. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J. Exp. Med. 203, 647–659 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Genetic Analysis of Psoriasis Consortium and the Wellcome Trust Case Control Consortium 2. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42, 985–990 (2010).

  30. Kochan, G. et al. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proc. Natl Acad. Sci. USA 108, 7745–7750 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cui, X. et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J. Clin. Invest. 110, 515–526 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haroon, N., Tsui, F. W., Chiu, B., Tsui, H. W. & Inman, R. D. Serum cytokine receptors in ankylosing spondylitis: relationship to inflammatory markers and endoplasmic reticulum aminopeptidase polymorphisms. J. Rheumatol. 37, 1907–1910 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80, 273–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Karaderi, T. et al. Association between the interleukin 23 receptor and ankylosing spondylitis is confirmed by a new UK case–control study and meta-analysis of published series. Rheumatology (Oxford) 48, 386–389 (2009).

    Article  CAS  Google Scholar 

  36. Rahman, P. et al. Association of interleukin-23 receptor variants with ankylosing spondylitis. Arthritis Rheum. 58, 1020–1025 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Rueda, B. et al. The IL23R Arg381Gln non-synonymous polymorphism confers susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. 67, 1451–1454 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Safrany, E. et al. Interleukin-23 receptor gene variants in Hungarian systemic lupus erythematosus patients. Inflamm. Res. 59, 159–164 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Sung, I. H. et al. IL-23R polymorphisms in patients with ankylosing spondylitis in Korea. J. Rheum. 236, 1003–1005 (2009).

    Article  CAS  Google Scholar 

  40. Davidson, S. I. et al.Association of STAT3 and TNFSF1A with ankylosing spondylitis in Han Chinese. Ann. Rheum. Dis. 70, 289–292 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Kugathasan, S. et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat. Genet. 40, 1211–1215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McGarry, F., Neilly, J., Anderson, N., Sturrock, R. & Field, M. A polymorphism within the interleukin 1 receptor antagonist (IL-1Ra) gene is associated with ankylosing spondylitis. Rheumatology (Oxford) 40, 1359–1364 (2001).

    Article  CAS  Google Scholar 

  43. van der Paardt, M. et al. Interleukin-1β and interleukin-1 receptor antagonist gene polymorphisms in ankylosing spondylitis. Rheumatology (Oxford) 41, 1419–1423 (2002).

    Article  CAS  Google Scholar 

  44. Maksymowych, W. P. et al. High-throughput single-nucleotide polymorphism analysis of the IL1RN locus in patients with ankylosing spondylitis by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Arthritis Rheum. 48, 2011–2018 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Chou, C.-T. et al. Replication of association of IL-1 gene complex members with ankylosing spondylitis in Taiwanese Chinese. Ann. Rheum. Dis. 65, 1106–1109 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Timms, A. E. et al. The interleukin 1 gene cluster contains a major susceptibility locus for ankylosing spondylitis. Am. J. Hum. Genet. 75, 587–595 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sims, A. M. et al. Prospective meta-analysis of interleukin 1 gene complex polymorphisms confirms associations with ankylosing spondylitis. Ann. Rheum. Dis. 67, 1305–1309 (2008).

    Article  PubMed  Google Scholar 

  48. Haibel, H., Rudwaleit, M., Listing, J. & Sieper, J. Open label trial of anakinra in active ankylosing spondylitis over 24 weeks. Ann. Rheum. Dis. 64, 296–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Dowling, O. et al. Mutations in capillary morphogenesis gene-2 result in the allelic disorders juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am. J. Hum. Genet. 73, 957–966 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park, J. H. et al. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gottlieb, A. et al. Ustekinumab, a human interleukin 12/23 monoclonal antibody, for psoriatic arthritis: randomised, double-blind, placebo-controlled, crossover trial. Lancet 373, 633–640 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Danoy, P. et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn's disease. PLoS Genet. 6, e1001195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Armaka, M. et al. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J. Exp. Med. 205, 331–337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bouwmeester, T. et al. A physical and functional map of the human TNF-α/NF-κ-B signal transduction pathway. Nat. Cell Biol. 6, 97–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Pointon, J. J. et al.The chromosome 16q region associated with ankylosing spondylitis includes the candidate gene tumour necrosis factor receptor type 1-associated death domain (TRADD). Ann. Rheum. Dis. 69, 1243–1246 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Pointon, J. J. et al. Elucidating the chromosome 9 association with AS; CARD9 is a candidate gene. Genes Immun. 11, 490–496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ruland, J. CARD9 signaling in the innate immune response. Ann. NY Acad. Sci. 1143, 35–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Gagliardi, M. C. et al. Endogenous PGE2 promotes the induction of human TH17 responses by fungal β-glucan. J. Leukoc. Biol. 88, 947–954 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Dekker-Saeys, AJ, Keat, A. Follow-up study of ankylosing spondylitis over a period of 12 years (1977–1989). Scand. J. Rheumatol. 87 (Suppl.), 120–121 (1990).

    Article  CAS  Google Scholar 

  61. Gudjónsson J, E, et al. HLA-Cw6-positive and HLA-Cw6-negative patients with psoriasis vulgaris have distinct clinical features. J. Invest. Dermatol. 118, 362–365 (2002).

    Article  PubMed  Google Scholar 

  62. Nair, R. P. et al. Localization of psoriasis-susceptibility locus PSORS1 to a 60-kb interval telomeric to HLA-C. Am. J. Hum. Genet. 66, 1833–1844 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nair, R. P. et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 78, 827–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Feng, B. J. et al. Multiple loci within the major histocompatibility complex confer risk of psoriasis. PLoS Genet. 5, e1000606 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Reischl, J. et al. Increased expression of Wnt5a in psoriatic plaques. J. Invest. Dermatol. 127, 163–169 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Elder, J. T. Genome-wide association scan yields new insights into the immuno-pathogenesis of psoriasis. Genes Immun. 10, 201–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nair RP. et al. Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. J. Invest. Dermatol. 128, 1653–1661 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lesueur, F. et al. ADAM33, a new candidate for psoriasis susceptibility. PLoS ONE 2, e906 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, Y. et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 4, e1000041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nair, R. P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 41, 199–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stuart, P. E. et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat. Genet. 42, 1000–1004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, Y. et al. Further genetic evidence for three psoriasis-risk genes: ADAM33, CDKAL1, and PTPN22. J. Invest Dermatol. 129, 629–634 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Sun, L. D. et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat. Genet. 42, 1005–1009 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ellinghaus, E. et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat. Genet. 242, 991–995 (2010).

    Article  CAS  Google Scholar 

  76. Hüffmeier, U. et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat. Genet. 42, 996–999 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 8, 247–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, X. J. et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat. Genet. 41, 205–210 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. De Cid, R. et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat. Genet. 41, 211–215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pollock, R. et al. Differential major histocompatibility complex class I chain-related A allele associations with skin and joint manifestations of psoriatic disease. Tissue Antigens 77, 554–561 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Rahman, P. et al. High resolution mapping in the major histocompatibility complex region identifies multiple independent novel loci for psoriatic arthritis. Ann. Rheum. Dis. 70, 690–694 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Rahman, P. et al. Association between the interleukin-1 family gene cluster and psoriatic arthritis. Arthritis Rheum. 54, 2321–2325 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Ravindran, J. S. et al. Interleukin 1α, interleukin 1β and interleukin 1 receptor gene polymorphisms in psoriatic arthritis. Rheumatology (Oxford) 43, 22–26 (2004).

    Article  CAS  Google Scholar 

  84. Bowes, J. et al. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis. Ann. Rheum. Dis. 70, 1641–1644 (2011).

    Article  PubMed  Google Scholar 

  85. Duffin, K. C. et al. Association between IL13 polymorphisms and psoriatic arthritis is modified by smoking. J. Invest. Dermatol. 129, 2777–2783 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Bowes, J. et al. Evidence to support IL-13 as a risk locus for psoriatic arthritis but not psoriasis vulgaris. Ann. Rheum. Dis. 70, 1016–1019 (2011).

    Article  PubMed  Google Scholar 

  87. Bowes, J. et al. Variants in linkage disequilibrium with the late cornified envelope gene cluster deletion are associated with susceptibility to psoriatic arthritis. Ann. Rheum. Dis. 69, 2199–2203 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Huffmeier, U. et al. Deletion of LCE3C and LCE3B genes at PSORS4 does not contribute to susceptibility to psoriatic arthritis in German patients. Ann. Rheum. Dis. 69, 876–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Mielants, H. et al. Gut inflammation in the spondyloarthropathies: clinical, radiologic, biologic and genetic features in relation to the type of histology. A prospective study. J. Rheumatol. 18, 1542–1551 (1991).

    CAS  PubMed  Google Scholar 

  90. Cooney, R. et al. A. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16, 90–97, (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, K. et al., Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn disease. Am. J. Hum. Genet. 84, 399–405 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fisher, S. A. et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nat. Genet. 40, 710–712 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McGovern, D. P. B. et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet. 42, 332–337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Anderson, C. A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Festen, E. A. et al. A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn's disease and celiac disease. PLoS Genet. 7, e1001283 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brest, P. et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nat. Genet. 43, 242–245 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. McCarroll, S. A. et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat. Genet. 40, 1107–1112 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Waterman, M. et al. Distinct and overlapping genetic loci in Crohn's disease and ulcerative colitis: Correlations with pathogenesis. Inflamm. Bowel Dis. 17, 1936–1942 (2010).

    Article  PubMed  Google Scholar 

  103. Laukens, D. et al. Evidence for significant overlap between common risk variants for Crohn's disease and ankylosing spondylitis. PLoS ONE 5, e13795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Momozawa, Y. et al. Resequencing of positional candidates identifies low frequency IL23R coding variants protecting against inflammatory bowel disease. Nat. Genet. 43, 43–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Fellermann, K. et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am. J. Hum. Genet. 79, 439–448 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hollox, E. J. et al. Psoriasis is associated with increased β-defensin genomic copy number. Nat. Genet. 40, 23–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Kang, J. et al. The NIDDK IBD Genetics Consortium. Improved risk prediction for Crohn's disease with a multi-locus approach. Hum. Mol. Genet. 20, 2435–2442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author's research is supported by NIH grants P01-052,915-01 and 1U01AI090909-01.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Table 1

Non-MHC genes associated with susceptibility to ankylosing spondylitis* (DOC 51 kb)

Supplementary Table 2

Genes associated with psoriasis and psoriatic arthritis susceptibility not shared with ankylosing spondylitis* (DOC 54 kb)

Supplementary Table 3

Genes associated with Crohn's disease susceptibility not shared with ankylosing spondylitis or psoriasis* (DOC 53 kb)

Supplementary Table 4

Genes associated with ulcerative colitis susceptibility not shared with ankylosing spondylitis, psoriatic arthritis, or Crohn's Disease* (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reveille, J. Genetics of spondyloarthritis—beyond the MHC. Nat Rev Rheumatol 8, 296–304 (2012). https://doi.org/10.1038/nrrheum.2012.41

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.41

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing