Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment

Abstract

Bone erosion is a central feature of rheumatoid arthritis and is associated with disease severity and poor functional outcome. Erosion of periarticular cortical bone, the typical feature observed on plain radiographs in patients with rheumatoid arthritis, results from excessive local bone resorption and inadequate bone formation. The main triggers of articular bone erosion are synovitis, including the production of proinflammatory cytokines and receptor activator of nuclear factor κB ligand (RANKL), as well as antibodies directed against citrullinated proteins. Indeed, both cytokines and autoantibodies stimulate the differentiation of bone-resorbing osteoclasts, thereby stimulating local bone resorption. Although current antirheumatic therapy inhibits both bone erosion and inflammation, repair of existing bone lesions, albeit physiologically feasible, occurs rarely. Lack of repair is due, at least in part, to active suppression of bone formation by proinflammatory cytokines. This Review summarizes the substantial progress that has been made in understanding the pathophysiology of bone erosions and discusses the improvements in the diagnosis, monitoring and treatment of such lesions.

Key Points

  • Articular bone erosions are a central clinical feature of rheumatoid arthritis

  • Imaging techniques enable early detection of bone erosions and provide insights into disease pathogenesis

  • Bone erosion is a result of enhanced osteoclast differentiation and inhibition of osteoblast-mediated bone repair

  • Autoantibodies and cytokines, including proinflammatory cytokines and receptor activator of nuclear factor κB ligand, are the major precipitating factors in bone erosion in rheumatoid arthritis

  • Antirheumatic therapies block progression of bone erosion by mitigating synovial inflammation and restoring bone balance

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Autoantibodies against citrullinated proteins and osteoclastogenesis.
Figure 2: Evolution of bone erosion in the course of RA.
Figure 3: Site of action of antirheumatic drugs on osteoclast differentiation and bone erosion.
Figure 4: Disruption of bone homeostasis by synovitis.

Similar content being viewed by others

References

  1. Karsenty, G., Kronenberg, H. M. & Settembre, C. Genetic control of bone formation. Annu. Rev. Cell. Dev. Biol. 25, 629–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Teitelbaum, S. L. & Ross, F. P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Baker, W. M. The formation of abnormal synovial cysts in the connection with the joints. St Bartolomews Hospital Reports 21, 177–190 (1855).

    Google Scholar 

  5. Weichselbaum, A. Die feineren Veränderungen des Gelenkknorpels bei fungöser Synovitis und Karies der Gelenkenden [German] Archiv. Pathol. Anat. Physiol. Klin. Med. 73, 461–475 (1878).

    Article  Google Scholar 

  6. Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Arron, J. R. & Choi, Y. Osteoimmunology: bone versus immune system. Nature 408, 535–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Schett, G. & David, J. P. The multiple faces of autoimmune-mediated bone loss. Nat. Rev. Endocrinol. 6, 698–706 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Schett, G. Saag, K. G. & Bijlsma, J. W. From bone biology to clinical outcome: state of the art and future perspectives. Ann. Rheum. Dis. 69, 1415–1419 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Sharp, J. T., Lidsky, M. D., Collins, L. C. & Moreland, J. Methods of scoring the progression of radiologic changes in rheumatoid arthritis. Correlation of radiologic, clinical and laboratory abnormalities. Arthritis Rheum. 14, 706–720 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Aletaha, D. et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/ European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 69, 1580–1588 (2010).

    Article  PubMed  Google Scholar 

  12. Ødegård, S. et al. Association of early radiographic damage with impaired physical function in rheumatoid arthritis: a ten-year, longitudinal observational study in 238 patients. Arthritis Rheum. 54, 68–75 (2006).

    Article  PubMed  Google Scholar 

  13. Scott, D. L. et al. The links between joint damage and disability in rheumatoid arthritis. Rheumatology (Oxford) 39, 122–132 (2000).

    Article  CAS  Google Scholar 

  14. Welsing, P. M., van Gestel, A. M., Swinkels, H. L., Kiemeney, L. A. & van Riel, P. L. The relationship between disease activity, joint destruction, and functional capacity over the course of rheumatoid arthritis. Arthritis Rheum. 44, 2009–2017 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. McInnes, I. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Immunol. 7, 429–442 (2007).

    Article  CAS  Google Scholar 

  16. Stach, C.M. et al. Periarticular bone structure in rheumatoid arthritis patients and healthy individuals assessed by high-resolution computed tomography. Arthritis Rheum. 62, 330–339 (2010).

    PubMed  Google Scholar 

  17. Døhn, U. M. et al. Rheumatoid arthritis bone erosion volumes on CT and MRI: reliability and correlations with erosion scores on CT, MRI and radiography. Ann. Rheum. Dis. 66, 1388–1392 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wakefield, R. J. et al. The value of sonography in the detection of bone erosions in patients with rheumatoid arthritis: a comparison with conventional radiography. Arthritis Rheum. 43, 2762–2770 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. McGonagle, D., Tan, A. L., Møller Døhn, U., Ostergaard, M. & Benjamin, M. Microanatomic studies to define predictive factors for the topography of periarticular erosion formation in inflammatory arthritis. Arthritis Rheum. 60, 1042–1051 (2009).

    Article  PubMed  Google Scholar 

  20. Martel, W., Hayes, J. T. & Duff, I. F. The pattern of bone erosion in the hand and wrist in rheumatoid arthritis. Radiology 84, 204–214 (1965).

    Article  CAS  PubMed  Google Scholar 

  21. Ejbjerg, B. et al. Magnetic resonance imaging of wrist and finger joints in healthy subjects occasionally shows changes resembling erosions and synovitis as seen in rheumatoid arthritis. Arthritis Rheum. 50, 1097–1106 (2004).

    Article  PubMed  Google Scholar 

  22. Tan, A. L. et al. Role of metacarpophalangeal joint anatomic factors in the distribution of synovitis and bone erosion in early rheumatoid arthritis. Arthritis Rheum. 48, 1214–1222 (2003).

    Article  PubMed  Google Scholar 

  23. Hayer, S. et al. Tenosynovitis and osteoclast formation as the initial preclinical changes in a murine model of inflammatory arthritis. Arthritis Rheum. 56, 79–88 (2007).

    Article  PubMed  Google Scholar 

  24. Marinova-Mutafchieva, L., Williams, R. O., Funa, K., Maini, R. N. & Zvaifler, N. J. Inflammation is preceded by tumor necrosis factor-dependent infiltration of mesenchymal cells in experimental arthritis. Arthritis Rheum. 46, 507–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Schett, G. et al. Analysis of the kinetics of osteoclastogenesis in arthritic rats. Arthritis Rheum. 52, 3192–3201 (2005).

    Article  PubMed  Google Scholar 

  26. Tournis, S. et al. Effect of rheumatoid arthritis on volumetric bone mineral density and bone geometry, assessed by peripheral quantitative computed tomography in postmenopausal women treated with bisphosphonates. J. Rheumatol. 39, 1215–1220 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Aeberli, D. et al. Reduced trabecular bone mineral density and cortical thickness accompanied by increased outer bone circumference in metacarpal bone of rheumatoid arthritis patients: a cross-sectional study. Arthritis Res. Ther. 12, R119 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sharp, J. T. et al. Denosumab prevents metacarpal shaft cortical bone loss in patients with erosive rheumatoid arthritis. Arthritis Care Res. (Hoboken) 62, 537–544 (2010).

    Article  Google Scholar 

  29. Hoff, M. et al. Cortical hand bone loss after 1 year in early rheumatoid arthritis predicts radiographic hand joint damage at 5-year and 10-year follow-up. Ann. Rheum. Dis. 68, 324–329 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Haugeberg, G. et al. Hand cortical bone mass and its associations with radiographic joint damage and fractures in 50–70 year old female patients with rheumatoid arthritis: cross sectional Oslo-Truro-Amsterdam (OSTRA) collaborative study. Ann. Rheum. Dis. 63, 1331–1334 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van der Heijde, D. M. Joint erosions and patients with early rheumatoid arthritis. Br. J. Rheumatol. 34, 74–78 (1995).

    Article  PubMed  Google Scholar 

  32. Machold, K. P. et al. Very recent onset rheumatoid arthritis: clinical and serological patient characteristics associated with radiographic progression over the first years of disease. Rheumatology (Oxford) 46, 342–349 (2007).

    Article  CAS  Google Scholar 

  33. Güler-Yüksel, M. et al. Changes in hand and generalised bone mineral density in patients with recent-onset rheumatoid arthritis. Ann. Rheum. Dis. 68, 330–336 (2009).

    Article  PubMed  Google Scholar 

  34. Solomon, D. H. et al. The relationship between focal erosions and generalized osteoporosis in postmenopausal women with rheumatoid arthritis. Arthritis Rheum. 60, 1624–1631 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pye, S. R. et al. Disease activity and severity in early inflammatory arthritis predict hand cortical bone loss. Rheumatology (Oxford) 49, 1943–1948 (2010).

    Article  Google Scholar 

  36. Møller Døhn, U. et al. No overall progression and occasional repair of erosions despite persistent inflammation in adalimumab-treated rheumatoid arthritis patients: results from a longitudinal comparative MRI, ultrasonography, CT and radiography study. Ann. Rheum. Dis. 70, 252–258 (2011).

    Article  Google Scholar 

  37. Finzel, S. et al. A detailed comparative study of high-resolution ultrasound and micro-computed tomography for detection of arthritic bone erosions. Arthritis Rheum. 63, 1231–1236 (2011).

    Article  PubMed  Google Scholar 

  38. Haavardsholm, E. A., Bøyesen, P., Østergaard, M., Schildvold, A. & Kvien, T. K. Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis: bone marrow oedema predicts erosive progression. Ann. Rheum. Dis. 67, 794–800 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. McQueen, F. M. et al. Bone edema scored on magnetic resonance imaging scans of the dominant carpus at presentation predicts radiographic joint damage of the hands and feet six years later in patients with rheumatoid arthritis. Arthritis Rheum. 48, 1814–1827 (2003).

    Article  PubMed  Google Scholar 

  40. Geusens, P. & Lems, W. F. Osteoimmunology and osteoporosis. Arthritis Res. Ther. 13, 242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Finzel, S., Englbrecht, M., Engelke, K., Stach, C. & Schett, G. A comparative study of periarticular bone lesions in rheumatoid arthritis and psoriatic arthritis. Ann. Rheum. Dis. 70, 122–127 (2011).

    Article  PubMed  Google Scholar 

  42. Bromley, M. & Woolley, D. E. Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum. 27, 968–975 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Leisen, J. C. D. H., Riddle, J. M. & Pitchford, W. C. The erosive front: a topographic study of the junction between the pannus and the subchondral plate in the macerated rheumatoid metacarpal head. J. Rheumatol. 15, 17–22 (1988).

    CAS  PubMed  Google Scholar 

  44. Gravallese, E. M. et al. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am. J. Pathol. 152, 943–951 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kong, Y. Y. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Romas, E. et al. Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am. J. Pathol. 161, 1419–1427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lubberts, E. et al. Increase in expression of receptor activator of nuclear factor κB at sites of bone erosion correlates with progression of inflammation in evolving collagen-induced arthritis. Arthritis Rheum. 46, 3055–3064 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Pettit, A. R. et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol. 159, 1689–1699 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Redlich, K. et al. Osteoclasts are essential for TNF-α-mediated joint destruction. J. Clin. Invest. 110, 1419–1427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Redlich, K. et al. Tumor necrosis factor α-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum. 46, 785–792 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Yoshida, H. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Firestein, G. S. et al. Cytokines in chronic inflammatory arthritis. I. Failure to detect T cell lymphokines (interleukin 2 and interleukin 3) and presence of macrophage colony-stimulating factor (CSF-1) and a novel mast cell growth factor in rheumatoid synovitis. J. Exp. Med. 168, 1573–1586 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Wong, B. R. et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25190–25194 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Kong, Y.-Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Gravallese, E. M. et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 43, 250–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Shigeyama, Y. et al. Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum. 43, 2523–2530 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Li, P. et al. RANK signaling is not required for TNFα-mediated increase in CD11hi osteoclast precursors but is essential for mature osteoclast formation in TNFα-mediated inflammatory arthritis. J. Bone Miner. Res. 19, 207–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Ritchlin, C. T., Haas-Smith, S. A., Li, P., Hicks, D. G. & Schwarz, E. M. Mechanisms of TNF-α- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J. Clin. Invest. 111, 821–831 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hermann, S. et al. OSCAR—a key co-stimulation molecule for osteoclasts is induced in patients with rheumatoid arthritis. Arthritis Rheum. 58, 3041–3050 (2008).

    Article  CAS  Google Scholar 

  62. Ohno, H. et al. The orally-active and selective c-Fms tyrosine kinase inhibitor Ki20227 inhibits disease progression in a collagen-induced arthritis mouse model. Eur. J. Immunol. 38, 283–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Cohen, S. B. et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58, 1299–1309 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Visser, H., le Cessie, S., Vos, K., Breedveld, F. C. & Hazes, J. M. How to diagnose rheumatoid arthritis early: a prediction model for persistent (erosive) arthritis. Arthritis Rheum. 46, 357–365 (2002).

    Article  PubMed  Google Scholar 

  65. Kastbom, A., Strandberg, G., Lindroos, A. & Skogh, T. Anti-CCP antibody test predicts the disease course during 3 years in early rheumatoid arthritis (the Swedish TIRA project). Ann. Rheum. Dis. 63, 1085–1089 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Meyer, O. et al. Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage. Ann. Rheum. Dis. 62, 120–126 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shi, J. et al. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc. Natl Acad. Sci. USA 108, 17372–17377 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu, Y., Humphrey, M. B. & Nakamura, M. C. Osteoclasts—the innate immune cells of the bone. Autoimmunity 41, 183–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Ji, D. et al. Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-γ in human osteoclast precursors. J. Immunol. 183, 7223–7233 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Sato, K. et al. TH17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zaiss, M. M. et al. Regulatory T cells protect from local and systemic bone destruction in arthritis. J. Immunol. 184, 7238–7246 (2010).

    Article  PubMed  Google Scholar 

  73. Zaiss, M. M. et al. Increased bone density and resistance to ovariectomy-induced bone loss in FoxP3-transgenic mice based on impaired osteoclast differentiation. Arthritis Rheum. 62, 2328–2338 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Axmann, R. et al. CTLA-4 directly inhibits osteoclast formation. Ann. Rheum. Dis. 67, 1603–1609 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Zaiss, M. M. et al. TREG cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum. 56, 4104–4112 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Bakker, M. F. et al. Utrecht Rheumatoid Arthritis Cohort Study Group. Low-dose prednisone inclusion in a methotrexate-based, tight control strategy for early rheumatoid arthritis: a randomized trial. Ann. Intern. Med. 156, 329–339 (2012).

    Article  PubMed  Google Scholar 

  77. Grigor, C. et al. Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. Lancet 364, 263–269 (2004).

    Article  PubMed  Google Scholar 

  78. Lam, J. et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106, 1481–1488 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Boyce, B. F. et al. Effects of interleukin-1 on bone turnover in normal mice. Endocrinology 125, 1142–1150 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. Zwerina, J. et al. TNF-induced structural joint damage is mediated by IL-1. Proc. Natl Acad. Sci. USA 104, 11742–11747 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ishimi, Y. M. C. et al. IL-6 is produced by osteoblasts and induces bone resorption. J. Immunol. 145, 3297–3303 (1990).

    CAS  PubMed  Google Scholar 

  82. Axmann, R. et al. Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum. 60, 2747–2756 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Poli, V. et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 13, 1189–1196 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jansen, L. M., van der Horst-Bruinsma, I. E., van Schaardenburg, D., Bezemer, P. D. & Dijkmans, B. A. Predictors of radiographic joint damage in patients with early rheumatoid arthritis. Ann. Rheum. Dis. 60, 924–927 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kraan, M. C. et al. Asymptomatic synovitis precedes clinically manifest arthritis. Arthritis Rheum. 41, 1481–1488 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Van de Sande, M. G. et al. Different stages of rheumatoid arthritis: features of the synovium in the preclinical phase. Ann. Rheum. Dis. 70, 772–777 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Rich, E., Moreland, L. W. & Alarcón, G.S. Paucity of radiographic progression in rheumatoid arthritis treated with methotrexate as the first disease modifying antirheumatic drug. J. Rheumatol. 26, 259–261 (1999).

    CAS  PubMed  Google Scholar 

  88. Schett, G., Stach, C., Zwerina, J., Voll, R. & Manger, B. How antirheumatic drugs protect joints from damage in rheumatoid arthritis. Arthritis Rheum. 58, 2936–2948 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Cohen, G. et al. Radiological damage in patients with rheumatoid arthritis on sustained remission. Ann. Rheum. Dis. 66, 358–363 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Molenaar, E. T. et al. Progression of radiologic damage in patients with rheumatoid arthritis in clinical remission. Arthritis Rheum. 50, 36–42 (2004).

    Article  PubMed  Google Scholar 

  91. Brown, A. K. et al. An explanation for the apparent dissociation between clinical remission and continued structural deterioration in rheumatoid arthritis. Arthritis Rheum. 58, 2958–2967 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Vis, M. et al. Evaluation of bone mineral density, bone metabolism, osteoprotegerin and receptor activator of the NFκB ligand serum levels during treatment with infliximab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 65, 1495–1499 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pesu, M. et al. Therapeutic targeting of Janus kinases. Immunol. Rev. 223, 132–142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. van Vollenhoven, R. F. et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 367, 508–519 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Weinblatt, M. E. et al. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N. Engl. J. Med. 363, 1303–1312 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Mócsai, A. et al. The immunomodulatory adapter proteins DAP12 and Fc receptor γ-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl Acad. Sci. USA 101, 6158–6163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Jiang, Y. et al. A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum. 43, 1001–1009 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Jovanovic, D. V. et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-β and TNF-α, by human macrophages. J. Immunol. 160, 3513–3521 (1998).

    CAS  PubMed  Google Scholar 

  102. Chabaud, M. et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42, 963–970 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Miossec, P., Korn, T. & Kuchroo, V. K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 361, 888–889 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Kotake, S. et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103, 1345–1352 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sato, K. et al. TH17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zwerina, K. et al. Anti IL-17A therapy inhibits bone loss in TNF-α-mediated murine arthritis by modulation of the T-cell balance. Eur. J. Immunol. 42, 413–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Ogata, Y. et al. A novel role of IL-15 in the development of osteoclasts: inability to replace its activity with IL-2. J. Immunol. 162, 2754–2760 (1999).

    CAS  PubMed  Google Scholar 

  108. Knevel, R. et al. Genetic variants in IL15 associate with progression of joint destruction in rheumatoid arthritis: a multicohort study. Ann. Rheum. Dis. 71 (Suppl. 1), A56–A57 (2012).

    Google Scholar 

  109. Zaiss, M. M. et al. IL-33 shifts the balance from osteoclast to alternatively activated macrophage differentiation and protects from TNFα-mediated bone loss. J. Immunol. 186, 6097–6105 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Quinn, J. M. et al. IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. J. Immunol. 181, 5720–5729 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Lukas, C., van der Heijde, D., Fatenejad, S. & Landewé, R. Repair of erosions occurs almost exclusively in damaged joints without swelling. Ann. Rheum. Dis. 69, 851–855 (2010).

    Article  PubMed  Google Scholar 

  112. Møller Døhn, U. et al. Erosive progression is minimal, but erosion healing rare, in patients with rheumatoid arthritis treated with adalimumab. A 1-year investigator-initiated follow-up study using high-resolution computed tomography as the primary outcome measure. Ann. Rheum. Dis. 68, 1585–1590 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Finzel, S. et al. Interleukin-6 receptor blockade induces limited repair of bone erosions in rheumatoid arthritis: a micro CT study. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2011-201075.

  114. Finzel, S. et al. Repair of bone erosions in rheumatoid arthritis treated with tumour necrosis factor inhibitors is based on bone apposition at the base of the erosion. Ann. Rheum. Dis. 70, 1587–1593 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Walsh, N. C. et al. Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J. Bone Miner. Res. 24, 1572–1585 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Diarra D, Stolina M, Polzer K. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Matzelle, M. M. et al. Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum. 64, 1540–1550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Redlich, K. et al. Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis. Am. J. Pathol. 164, 543–555 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Poole, K. E. et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 19, 1842–1844 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Semënov, M., Tamai, K. & He, X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem. 280, 26770–26775 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of G. Schett is supported by the Deutsche Forschungsgemeinschaft (SPP1468-IMMUNOBONE), the Bundesministerium f¨r Bildung und Forschung (BMBF; project ANCYLOSS) and the MASTERSWITCH project of the European Union and the IMI funded project BTCure. The work of E. Gravallese is supported by the NIH (R01 AR055952) and by the American College of Rheumatology Research and Education Foundation (Within our Reach: Finding a Cure for Rheumatoid Arthritis campaign).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Georg Schett.

Ethics declarations

Competing interests

G. Schett declares no competing interests. E. Gravallese has acted as a consultant for Abbott Laboratories and has received grant/research support from Lilly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schett, G., Gravallese, E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol 8, 656–664 (2012). https://doi.org/10.1038/nrrheum.2012.153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing