Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Induction of immune tolerance in the treatment of rheumatoid arthritis

Abstract

Progress in our understanding of the genetics and immunology of rheumatoid arthritis (RA) has translated into clinical practice with the introduction of a first generation of biologic agents that effectively interfere with the inflammatory cascade by blocking a key component. This evolution has not only changed the way we practice, but perhaps also the way we think about RA and its treatment. In our view direct manipulation of specific pathogenic pathways is increasingly being used to replace generalized pharmacological immune suppression. The next leap forward will be to develop therapeutic approaches that will lead to maintenance of disease remission with a minimal-treatment or even drug-free regimen, relying on the induction of immune tolerance rather than the suppression of the immune system. Immune tolerance has the potential to prevent tissue damage secondary to inflammatory responses while at the same time maintaining homeostasis through physiologic recognition of self and the ability to perceive and react to 'danger'. Novel therapeutic approaches are emerging from these concepts. Such therapies will hopefully be safe and efficacious, and will complement the first generation of biologic agents that are currently available.

Key Points

  • Immune tolerance is the process by which the immune system recognizes but does not attack the body's own antigens; this mechanism is impaired in autoimmune disorders

  • Restoring a state of immune tolerance could help to achieve the goal of maintaining disease remission with a minimal-treatment regimen

  • Several antigen-independent as well as antigen-dependent strategies to induce tolerance in patients with rheumatoid arthritis (RA) are under development

  • Biologic agents seem to have effects that go beyond their original target and could induce antigen-independent immune tolerance

  • Second generation antigen-specific immunotherapeutic approaches that focus on epitopes involved in disease pathogenesis, such as those from heat shock proteins, have shown some promise in RA treatment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targets of immune tolerance induction.
Figure 2: Heat shock proteins as a target of trigger-independent antigen-specific therapy.
Figure 3: Tolerance induction as a 'work-with' approach.

Similar content being viewed by others

References

  1. Alivernini, S., Laria, A., Gremese, E., Zoli, A. & Ferraccioli, G. ACR70-disease activity score remission achievement from switches between all the available biological agents in rheumatoid arthritis: a systematic review of the literature. Arthritis Res. Ther. 11, R163 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nam, J. L. et al. Current evidence for the management of rheumatoid arthritis with biological disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of RA. Ann. Rheum. Dis. 69, 976–986 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Scott, D. L., Wolfe, F. & Huizinga, T. W. Rheumatoid arthritis. Lancet 376, 1094–1108 (2010).

    Article  PubMed  Google Scholar 

  4. Takeuchi, T. & Kameda, H. The Japanese experience with biologic therapies for rheumatoid arthritis. Nat. Rev. Rheumatol. 6, 644–652 (2010).

    Article  PubMed  Google Scholar 

  5. Marti, L. et al. Alterations in cytokine profile and dendritic cells subsets in peripheral blood of rheumatoid arthritis patients before and after biologic therapy. Ann. NY Acad. Sci. 1173, 334–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. van Vollenhoven, R. F. New and future agents in the treatment of rheumatoid arthritis. Discov. Med. 9, 319–327 (2010).

    PubMed  Google Scholar 

  7. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Steinman, R. M. & Mellman, I. Immunotherapy: bewitched, bothered, and bewildered no more. Science 305, 197–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Steinman, L. Immune therapy for autoimmune diseases. Science 305, 212–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Kronenberg, M. & Rudensky, A. Regulation of immunity by self-reactive T cells. Nature 435, 598–604 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Laganà, B., Vinciguerra, M. & D'Amelio, R. Modulation of T-cell co-stimulation in rheumatoid arthritis: clinical experience with abatacept. Clin. Drug Investig. 29, 185–202 (2009).

    Article  PubMed  Google Scholar 

  12. Leandro, M. J., Cambridge, G., Ehrenstein, M. R. & Edwards, J. C. Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum. 54, 613–620 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kremer, J. M. et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 349, 1907–1915 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Matsumoto, I. et al. Therapeutic effects of antibodies to tumor necrosis factor-α, interleukin-6 and cytotoxic T-lymphocyte antigen 4 immunoglobulin in mice with glucose-6-phosphate isomerase induced arthritis. Arthritis Res. Ther. 10, R66 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Platt, A. M. et al. Abatacept limits breach of self-tolerance in a murine model of arthritis via effects on the generation of T follicular helper cells. J. Immunol. 185, 1558–1567 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Bluestone, J. A. et al. The effect of costimulatory and interleukin 2 receptor blockade on regulatory T cells in renal transplantation. Am. J. Transplant. 8, 2086–2096 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dörner, T., Kinnman, N. & Tak, P. P. Targeting B cells in immune-mediated inflammatory disease: a comprehensive review of mechanisms of action and identification of biomarkers. Pharmacol. Ther. 125, 464–475 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Edwards, J. C. & Cambridge, G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat. Rev. Immunol. 6, 394–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. DiLillo, D. J., Horikawa, M. & Tedder, T. F. B-lymphocyte effector functions in health and disease. Immunol. Res. doi:10.1007/s12026-010-8189–8183.

  20. DiLillo, D. J., Matsushita, T. & Tedder, T. F. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann. NY Acad. Sci. 1183, 38–57 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Sellam, J. et al. B-cell activation biomarkers as predictive factors of the response to rituximab in rheumatoid arthritis. Arthritis Rheum. doi:10.1002/art.30233.

  22. Moura, R. A. et al. Cytokine pattern in very early rheumatoid arthritis favours B-cell activation and survival. Rheumatology (Oxford) 50, 278–282 (2011).

    Article  CAS  Google Scholar 

  23. Townsend, M. J., Monroe, J. G. & Chan, A. C. B-cell targeted therapies in human autoimmune diseases: an updated perspective. Immunol. Rev. 237, 264–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Sutherland, A. P., Mackay, F. & Mackay, C. R. Targeting BAFF: immunomodulation for autoimmune diseases and lymphomas. Pharmacol. Ther. 112, 774–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Tak, P. P. et al. Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum. 58, 61–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Bracewell, C., Isaacs, J. D., Emery, P. & Ng, W. F. Atacicept, a novel B cell-targeting biological therapy for the treatment of rheumatoid arthritis. Expert Opin. Biol. Ther. 9, 909–919 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Cambridge, G. et al. Circulating levels of B lymphocyte stimulator in patients with rheumatoid arthritis following rituximab treatment: relationships with B cell depletion, circulating antibodies, and clinical relapse. Arthritis Rheum. 54, 723–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Opar, A. Kinase inhibitors attract attention as oral rheumatoid arthritis drugs. Nat. Rev. Drug Discov. 9, 257–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Lindstrom, T. M. & Robinson, W. H. A multitude of kinases—which are the best targets in treating rheumatoid arthritis? Rheum. Dis. Clin. North Am. 36, 367–383 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Page, T. H., Brown, A., Timms, E. M., Foxwell, B. M. & Ray, K. P. Inhibitors of p38 suppress cytokine production in rheumatoid arthritis synovial membranes: does variable inhibition of interleukin-6 production limit effectiveness in vivo? Arthritis Rheum. 62, 3221–3231 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Riese, R. J., Krishnaswami, S. & Kremer, J. Inhibition of JAK kinases in patients with rheumatoid arthritis: scientific rationale and clinical outcomes. Best Pract. Res. Clin. Rheumatol. 24, 513–526 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Hammaker, D. & Firestein G. S. “Go upstream, young man”: lessons learned from the p38 saga. Ann. Rheum. Dis. 69 (Suppl. 1), i77–i82 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Genovese, M. C. et al. An oral Syk kinase inhibitor in the treatment of rheumatoid arthritis: A three-month randomized, placebo-controlled, phase II study in patients with active rheumatoid arthritis that did not respond to biologic agents. Arthritis Rheum. 63, 337–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Fleischmann, R. et al. Phase 3 study of oral JAK inhibitor tasocitinib (CP-690, 550) monotherapy in patients with active rheumatoid arthritis. Presented at the 74th Annual Scientific Meeting of the American College of Rheumatology.

  35. Williams, W. V. et al. Initial efficacy of INCB018424, a selective Janus kinase1&2 (JAK1&2) inhibitor in rheumatoid arthritis (RA). Presented at EULAR 2008, Annual Scientific Congress.

  36. Damjanov, N., Kauffman, R. S. & Spencer-Green, G. T. Efficacy, pharmacodynamics, and safety of VX-702, a novel p38 MAPK inhibitor, in rheumatoid arthritis: results of two randomized, double-blind, placebo-controlled clinical studies. Arthritis Rheum. 60, 1232–1241 (2009).

    Article  PubMed  Google Scholar 

  37. Dougados, M. et al. Evaluation of disease activity assessments in patients with rheumatoid arthritis and an inadequate response to anti-TNF therapy: analyses of abatacept clinical trial data. Clin. Exp. Rheumatol. 28, 259–260 (2010).

    Google Scholar 

  38. Taylor, P. C. & Feldmann, M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578–582 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chiu, W. C., Lai, Y. P. & Chou, M. Y. Humanization and characterization of an anti-human TNF-α murine monoclonal antibody. PLoS One 6, e16373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miossec, P., Korn, T. & Kuchroo, V. K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 361, 888–898 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Moran, E. M. et al. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-α, Oncostatin M and response to biologic therapies. Arthritis Res. Ther. 11, R113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aerts, N. E. et al. Increased IL-17 production by peripheral T helper cells after tumour necrosis factor blockade in rheumatoid arthritis is accompanied by inhibition of migration-associated chemokine receptor expression. Rheumatology (Oxford) 49, 2264–2272 (2010).

    Article  CAS  Google Scholar 

  44. Febbraio, M. A., Rose-John, S. & Pedersen, B. K. Is interleukin-6 receptor blockade the Holy Grail for inflammatory diseases? Clin. Pharmacol. Ther. 87, 396–398 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Yoshida, H., Hashizume, M., Suzuki, M. & Mihara, M. Anti-IL-6 receptor antibody suppressed T cell activation by inhibiting IL-2 production and inducing regulatory T cells. Eur. J. Pharmacol. 634, 178–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. An, M. M. et al. The addition of tocilizumab to DMARD therapy for rheumatoid arthritis: a meta-analysis of randomized controlled trials. Eur. J. Clin. Pharmacol. 66, 49–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Moots, R. J., Ostör, A. J. & Isaacs, J. D. Will treatment of rheumatoid arthritis with an IL-6R inhibitor help facilitate the 'age of remission'? Expert Opin. Investig. Drugs 18, 1687–1699 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Jones, G. et al. Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: the AMBITION study. Ann. Rheum. Dis. 69, 88–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Singh, J. A., Beg, S. & Lopez-Olivo, M. A. Tocilizumab for rheumatoid arthritis. Cochrane Database of Systematic Reviews, Issue 7. Art. No.: CD008331. doi:10.1002/14651858.CD008331.pub2 (2010).

  50. Feist, E. & Burmester, G. R. Is tocilizumab in combination with traditional DMARDs safe and effective for patients with active RA? Nat. Clin. Pract. Rheumatol. 5, 128–129 (2009).

    CAS  PubMed  Google Scholar 

  51. Safety, tolerability and efficacy of ACZ885 (canakinumab) in patients with active rheumatoid arthritis identifier: NCT00784628. ClinicalTrials.gov[online], (2010).

  52. Genovese, M. et al. Secukinumab (AIN457), a novel monoclonal antibody targeting IL-17A demonstrates efficacy in active rheumatoid arthritis patients despite stable methotrexate treatment: results of a phase IIb study. Presented at the 74th Annual Scientific Meeting of the American College of Rheumatology.

  53. Wulffraat, N. M. & Kuis, W. Autologous stem cell transplantation: a possible treatment for refractory juvenile chronic arthritis? Rheumatology (Oxford) 38, 764–766 (1999).

    Article  CAS  Google Scholar 

  54. de Kleer, I. M. et al. Autologous stem cell transplantation for refractory juvenile idiopathic arthritis: analysis of clinical effects, mortality, and transplant related morbidity. Ann. Rheum. Dis. 63, 1318–1326 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wulffraat, N. M. et al. Current perspectives of autologous stem cell transplantation for severe juvenile idiopathic arthritis. Autoimmunity 41, 632–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. de Kleer, I. et al. Autologous stem cell transplantation for autoimmunity induces immunologic self-tolerance by reprogramming autoreactive T cells and restoring the CD4+CD25+ immune regulatory network. Blood 107, 1696–1702 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Albani, S. & Prakken, B. T cell epitope-specific immune therapy for rheumatic diseases. Arthritis Rheum. 54, 19–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Lanzavecchia, A. & Sallusto, F. Regulation of T cell immunity by dendritic cells. Cell 106, 263–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Sallusto, F. & Lanzavecchia, A. The instructive role of dendritic cells on T-cell responses. Arthritis Res. 4 (Suppl. 3), S127–S132 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Banchereau, J., Pulendran, B., Steinman, R. & Palucka, K. Will the making of plasmacytoid dendritic cells in vitro help unravel their mysteries? J. Exp. Med. 192, F39–F44 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Steinman, R. M. & Nussenzweig, M. C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl Acad. Sci. USA 99, 351–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Hackstein, H. & Thomson, A. W. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat. Rev. Immunol. 4, 24–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Kleijwegt, F. S. et al. Critical role for TNF in the induction of human antigen-specific regulatory T cells by tolerogenic dendritic cells. J. Immunol. 185, 1412–1418 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Harry, R. A., Anderson, A. E., Isaacs, J. D. & Hilkens, C. M. Generation and characterisation of therapeutic tolerogenic dendritic cells for rheumatoid arthritis. Ann. Rheum. Dis. 69, 2042–2050 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Racke, M. K., Lovett-Racke, A. E. & Karandikar, N. J. The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology 74 (Suppl. 1), S25–S30 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Liblau, R. Glatiramer acetate for the treatment of multiple sclerosis: evidence for a dual anti-inflammatory and neuroprotective role. J. Neurol. Sci. 287 (Suppl. 1), S17–S23 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Weiner, H. L. Oral tolerance, an active immunologic process mediated by multiple mechanisms. J. Clin. Invest. 106, 935–937 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bluestone, J. A. Regulatory T cells: therapeutic potential for treating transplant rejection and type I diabetes. J. Vis. Exp. 7, 257 (2007).

    Google Scholar 

  70. Mayer, L. Current advances in gastrointestinal immunology. Mt Sinai J. Med. 60, 178–179 (1993).

    CAS  PubMed  Google Scholar 

  71. Joosten, L. A. et al. Induction of tolerance with intranasal administration of human cartilage gp-39 in DBA/1 mice: amelioration of clinical, histologic, and radiologic signs of type II collagen-induced arthritis. Arthritis Rheum. 43, 645–655 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Thompson, H. S. & Staines, N. A. Gastric administration of type II collagen delays the onset and severity of collagen-induced arthritis in rats. Clin. Exp. Immunol. 64, 581–586 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Trentham, D. E., Townes, A. S. & Kang, A. H. Autoimmunity to type II collagen an experimental model of arthritis. J. Exp. Med. 146, 857–868 (1977).

    Article  CAS  PubMed  Google Scholar 

  74. Staines, N. A. et al. Mucosal tolerance and suppression of collagen-induced arthritis (CIA) induced by nasal inhalation of synthetic peptide 184–198 of bovine type II collagen (CII) expressing a dominant T cell epitope. Clin. Exp. Immunol. 103, 368–375 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cope, A. P. et al. T cell responses to a human cartilage autoantigen in the context of rheumatoid arthritis-associated and nonassociated HLA-DR4 alleles. Arthritis Rheum. 42, 1497–1507 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Kim, W. U. et al. Type II collagen autoimmunity in rheumatoid arthritis. Am. J. Med. Sci. 327, 202–211 (2004).

    Article  PubMed  Google Scholar 

  77. Trentham, D. E. et al. Effects of oral administration of type II collagen on rheumatoid arthritis. Science 261, 1727–1730 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. Choy, E. H. et al. Control of rheumatoid arthritis by oral tolerance. Arthritis Rheum. 44, 1993–1997 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Sieper, J. et al. Oral type II collagen treatment in early rheumatoid arthritis. A double-blind, placebo-controlled, randomized trial. Arthritis Rheum. 39, 41–51 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Barnett, M. L. et al. Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 41, 290–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Kavanaugh, A. et al. Allele and antigen-specific treatment of rheumatoid arthritis: a double blind, placebo controlled phase 1 trial. J. Rheumatol. 30, 449–454 (2003).

    CAS  PubMed  Google Scholar 

  82. Barnett, M. L., Combitchi, D. & Trentham, D. E. A pilot trial of oral type II collagen in the treatment of juvenile rheumatoid arthritis. Arthritis Rheum. 39, 623–628 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Myers, L. K. et al. Juvenile arthritis and autoimmunity to type II collagen. Arthritis Rheum. 44, 1775–1781 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Koffeman, E. C. et al. Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial. Arthritis Rheum. 60, 3207–3216 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Pockley, A. G. Heat shock proteins in health and disease: therapeutic targets or therapeutic agents? Expert Rev. Mol. Med. 3, 1–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Roord, S. T. et al. Modulation of T cell function by combination of epitope specific and low dose anticytokine therapy controls autoimmune arthritis. PLoS One 1, e87 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. de Jong, H. et al. Pan-DR-binding Hsp60 self epitopes induce an interleukin-10-mediated immune response in rheumatoid arthritis. Arthritis Rheum. 60, 1966–1976 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Massa, M. et al. Differential recognition of heat-shock protein dnaJ-derived epitopes by effector and Treg cells leads to modulation of inflammation in juvenile idiopathic arthritis. Arthritis Rheum. 56, 1648–1657 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Kamphuis, S. et al. Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 in juvenile idiopathic arthritis. Lancet 366, 50–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. La Cava, A. et al. Genetic bias in immune responses to a cassette shared by different microorganisms in patients with rheumatoid arthritis. J. Clin. Invest. 100, 658–663 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Albani, S. & Carson, D. A. A multistep molecular mimicry hypothesis for the pathogenesis of rheumatoid arthritis. Immunol. Today 17, 466–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Albani, S. et al. Positive selection in autoimmunity: abnormal immune responses to a bacterial dnaJ antigenic determinant in patients with early rheumatoid arthritis. Nat. Med. 1, 448–452 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Albani, S., Tuckwell, J. E., Esparza, L., Carson, D. A. & Roudier, J. The susceptibility sequence to rheumatoid arthritis is a cross-reactive B cell epitope shared by the Escherichia coli heat shock protein dnaJ and the histocompatibility leukocyte antigen DRB10401 molecule. J. Clin. Invest. 89, 327–331 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Prakken, B. J. et al. Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 101, 4228–4233 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Quintana, F. J. & Cohen, I. R. The HSP60 immune system network. Trends Immunol. 32, 89–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Klarenbeek, N. B. et al. Discontinuing treatment in patients with rheumatoid arthritis in sustained clinical remission: exploratory analyses from the BeSt study. Ann. Rheum. Dis. 70, 315–319 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S. Albani is supported by NIH Grants and the Bartman Foundation. B. Prakken is supported by the Dutch Rheumatoid Arthritis Foundation and grants from the Dutch Organization for Scientific Research and the 5th European Framework Grant 'HSP for therapy'. E. C. Koffeman is supported by the Ter Meulen Fonds from the Royal Netherlands Academy of Sciences. The authors would like to acknowledge Jessica Colomb's contribution to the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S. Albani, E. C. Koffeman and B. Prakken contributed equally to researching the data for the article and to the review and/or editing of the manuscript before submission. S. Albani and B. Prakken contributed to discussions of the content and writing the article.

Corresponding author

Correspondence to Salvatore Albani.

Ethics declarations

Competing interests

S. Albani is a patent holder/applicant for a University of California, San Diego product. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albani, S., Koffeman, E. & Prakken, B. Induction of immune tolerance in the treatment of rheumatoid arthritis. Nat Rev Rheumatol 7, 272–281 (2011). https://doi.org/10.1038/nrrheum.2011.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing