Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities

Abstract

Fibrosis in multiple organs is a prominent pathological finding and distinguishing hallmark of systemic sclerosis (SSc). Findings during the past 5 years have contributed to a more complete understanding of the complex cellular and molecular underpinning of fibrosis in SSc. Fibroblasts, the principal effector cells, are activated in the profibrotic cellular milieu by cytokines and growth factors, developmental pathways, endothelin 1 and thrombin. Innate immune signaling via Toll-like receptors, matrix-generated biomechanical stress signaling via integrins, hypoxia and oxidative stress seem to be implicated in perpetuating the process. Beyond chronic fibroblast activation, fibrosis represents a failure to terminate tissue repair, coupled with an expanded population of mesenchymal cells originating from bone marrow and transdifferentiation of epithelial cells, endothelial cells and pericytes. In addition, studies have identified intrinsic alterations in SSc fibroblasts resulting from epigenetic changes, as well as altered microRNA expression that might underlie the cell-autonomous, persistent activation phenotype of these cells. Precise characterization of the deregulated extracellular and intracellular signaling pathways, mediators and cellular differentiation programs that contribute to fibrosis in SSc will facilitate the development of selective, targeted therapeutic strategies. Effective antifibrotic therapy will ultimately involve novel compounds and repurposing of drugs that are already approved for other indications.

Key Points

  • Fibrosis represents a deregulated and uncontrolled repair process that recapitulates features of embryonic development and normal wound healing

  • Fibrosis in systemic sclerosis (SSc) shares mechanisms that underlie organ-based fibrosing disorders such as idiopathic pulmonary fibrosis

  • Transforming growth factor β seems to be a master regulator of both physiological and pathological matrix remodeling, and might be responsible for maintaining the activated fibroblast phenotype in SSc

  • The Wnt–β-catenin, Hedgehog–Patched and Jagged–Notch pathways are important in embryological development, and seem to be aberrantly activated in some patients with SSc

  • Mesenchymal cells are chronically activated via self-amplifying loops, resulting in a vicious cycle of progressive fibrogenesis

  • Selective targeting of molecules and pathways involved in fibroblast activation, singly or in combination, offers new approaches to the treatment of fibrosis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular and molecular pathways underlying fibrosis in systemic sclerosis.
Figure 2: Tissue damage activates innate immune signaling, which transforms an orderly self-limited repair into a sustained, aberrant fibrogenic process.
Figure 3: Tissue fibrosis in SSc.

Similar content being viewed by others

References

  1. Varga, J. & Abraham, D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Invest. 117, 557–567 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenbloom, J., Castro, S. V. & Jimenez, S. A. Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies. Ann. Intern. Med. 152, 159–166 (2010).

    Article  PubMed  Google Scholar 

  3. Denton, C. P., Black, C. M. & Abraham, D. J. Mechanisms and consequences of fibrosis in systemic sclerosis. Nat. Clin. Pract. Rheumatol. 2, 134–144 (2006).

    Article  PubMed  Google Scholar 

  4. Wei, J., Bhattacharyya, S., Tourtellotte, W. G. & Varga, J. Fibrosis in systemic sclerosis: emerging concepts and implications for targeted therapy. Autoimmun. Rev. 10, 267–275 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Quillinan, N. P. & Denton, C. P. Disease-modifying treatment in systemic sclerosis: current status. Curr. Opin. Rheumatol. 21, 636–641 (2009).

    Article  PubMed  Google Scholar 

  6. Distler, J. & Distler, O. Novel treatment approaches to fibrosis in scleroderma. Rheum. Dis. Clin. North Am. 34, 145–159 (2008).

    Article  PubMed  Google Scholar 

  7. Trojanowska, M. & Varga, J. Molecular pathways as novel therapeutic targets in systemic sclerosis. Curr. Opin. Rheumatol. 19, 568–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. van der Slot, A. J. et al. Increased formation of pyridinoline cross-links due to higher telopeptide lysyl hydroxylase levels is a general fibrotic phenomenon. Matrix Biol. 23, 251–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Higgins, D. F. et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest. 117, 3810–3820 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gardner, H. et al. Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts. Arthritis Rheum. 54, 1961–1973 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Whitfield, M. L. et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc. Natl Acad. Sci. USA 100, 12319–12324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Milano, A. et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS ONE 3, e2696 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tan, F. K. et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford) 45, 694–702 (2006).

    Article  CAS  Google Scholar 

  14. Hsu, E. et al. Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension. Arthritis Rheum. 63, 783–794 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leroy, E. C. Connective tissue synthesis by scleroderma skin fibroblasts in cell culture. J. Exp. Med. 135, 1351–1362 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. LeRoy, E. C. Increased collagen synthesis by scleroderma skin fibroblasts in vitro: a possible defect in the regulation or activation of the scleroderma fibroblast. J. Clin. Invest. 54, 880–889 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ihn, H. Autocrine TGF-β signaling in the pathogenesis of systemic sclerosis. J. Dermatol. Sci. 49, 103–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh, A. K., Mori, Y., Dowling, E. & Varga, J. Trichostatin A blocks TGF-β-induced collagen gene expression in skin fibroblasts: involvement of Sp1. Biochem. Biophys. Res. Commun. 354, 420–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y., Fan, P. S. & Kahaleh, B. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum. 54, 2271–2279 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Pandit, K. V., Milosevic, J. & Kaminski, N. MicroRNAs in idiopathic pulmonary fibrosis. Transl. Res. 157, 191–199 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Pandit, K. V. et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 182, 220–229 (2011).

    Article  CAS  Google Scholar 

  23. van Rooij, E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027–13032 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maurer, B. et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 62, 1733–1743 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Dong, C. et al. Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc. Natl Acad. Sci. USA 99, 3908–3913 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coward, W. R., Watts, K., Feghali-Bostwick, C. A., Knox, A. & Pang, L. Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Mol. Cell. Biol. 29, 4325–4339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hemmatazad, H. et al. Histone deacetylase 7, a potential target for the antifibrotic treatment of systemic sclerosis. Arthritis Rheum. 60, 1519–1529 (2009).

    Article  PubMed  Google Scholar 

  28. Kaimori, A. et al. Histone deacetylase inhibition suppresses the transforming growth factor β1-induced epithelial-to-mesenchymal transition in hepatocytes. Hepatology 52, 1033–1045 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Guo, W., Shan, B., Klingsberg, R. C., Qin, X. & Lasky, J. A. Abrogation of TGF-β1-induced fibroblast–myofibroblast differentiation by histone deacetylase inhibition. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L864–L870 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rajkumar, V. S. et al. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res. Ther. 7, R1113–R1123 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, G. et al. Hypoxia-induced alveolar epithelial–mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L1120–L1130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Z. & Jimenez, S. A. Protein kinase Cδ and the c-Abl kinase are required for transforming growth factor β induction of endothelial–mesenchymal transition in vitro. Arthritis Rheum. 63, 2473–2483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tan, X., Dagher, H., Hutton, C. A. & Bourke, J. E. Effects of PPARγ ligands on TGF-β1-induced epithelial–mesenchymal transition in alveolar epithelial cells. Respir. Res. 11, 21 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reka, A. K. et al. Peroxisome proliferator-activated receptor-γ activation inhibits tumor metastasis by antagonizing Smad3-mediated epithelial-mesenchymal transition. Mol. Cancer Ther. 9, 3221–3232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Du, F. et al. Expression of snail in epidermal keratinocytes promotes cutaneous inflammation and hyperplasia conducive to tumor formation. Cancer Res. 70, 10080–10089 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dees, C. et al. Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum. 63, 1396–1404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kavian, N. et al. Targeting ADAM-17/notch signaling abrogates the development of systemic sclerosis in a murine model. Arthritis Rheum. 62, 3477–3487 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Greenbaum, L. E. Hedgehog signaling in biliary fibrosis. J. Clin. Invest. 118, 3263–3265 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Beutler, B. A. TLRs and innate immunity. Blood 113, 1399–1407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, D. et al. Induction of interferon-α by scleroderma sera containing autoantibodies to topoisomerase I: association of higher interferon-α activity with lung fibrosis. Arthritis Rheum. 58, 2163–2173 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. York, M. R. et al. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and Toll-like receptor agonists. Arthritis Rheum. 56, 1010–1020 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Duan, H. et al. Combined analysis of monocyte and lymphocyte messenger RNA expression with serum protein profiles in patients with scleroderma. Arthritis Rheum. 58, 1465–1474 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Assassi, S. et al. Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum. 62, 589–598 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eloranta, M. L. et al. Type I interferon system activation and association with disease manifestations in systemic sclerosis. Ann. Rheum. Dis. 69, 1396–1402 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Dieude, P. et al. Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. Arthritis Rheum. 60, 225–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Agarwal, S. K. et al. Toll-like receptor 3 upregulation by type I interferon in healthy and scleroderma dermal fibroblasts. Arthritis Res. Ther. 13, R3 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Farina, G. A. et al. Poly(I:C) drives type I IFN- and TGFβ-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. J. Invest. Dermatol. 130, 2583–2593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hyde, D. M. & Giri, S. N. Polyinosinic-polycytidylic acid, an interferon inducer, ameliorates bleomycin-induced lung fibrosis in mice. Exp. Lung Res. 16, 533–546 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Miyake, K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin. Immunol. 19, 3–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Gabbiani, G. The myofibroblast in wound healing and fibrocontractive diseases. J. Pathol. 200, 500–503 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Arslan, F. et al. Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circ. Res. 108, 582–592 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Muro, A. F. et al. An essential role for fibronectin extra type III domain A in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 177, 638–645 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Fineschi, S. et al. Antifibroblast antibodies in systemic sclerosis induce fibroblasts to produce profibrotic chemokines, with partial exploitation of toll-like receptor 4. Arthritis Rheum. 58, 3913–3923 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Csak, T. et al. Deficiency in myeloid differentiation factor-2 and Toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G433–G441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pulskens, W. P. et al. TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J. Am. Soc. Nephrol. 21, 1299–1308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Campbell, M. T. et al. Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J. Surg. Res. 168, e61–e69 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. He, Z., Zhu, Y. & Jiang, H. Inhibiting Toll-like receptor 4 signaling ameliorates pulmonary fibrosis during acute lung injury induced by lipopolysaccharide: an experimental study. Respir. Res. 10, 126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lafyatis, R. & York, M. Innate immunity and inflammation in systemic sclerosis. Curr. Opin. Rheumatol. 21, 617–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Del Galdo, F., Wermuth, P. J., Addya, S., Fortina, P. & Jimenez, S. A. NFκB activation and stimulation of chemokine production in normal human macrophages by the gadolinium-based magnetic resonance contrast agent Omniscan: possible role in the pathogenesis of nephrogenic systemic fibrosis. Ann. Rheum. Dis. 69, 2024–2033 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Asano, Y., Ihn, H., Yamane, K., Kubo, M. & Tamaki, K. Increased expression levels of integrin αvβ5 on scleroderma fibroblasts. Am. J. Pathol. 164, 1275–1292 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Asano, Y. et al. Increased expression of integrin αvβ3 contributes to the establishment of autocrine TGF-β signaling in scleroderma fibroblasts. J. Immunol. 175, 7708–7718 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Horan, G. S. et al. Partial inhibition of integrin αvβ6 prevents pulmonary fibrosis without exacerbating inflammation. Am. J. Respir. Crit. Care Med. 177, 56–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Varga, J. & Pasche, B. Transforming growth factor β as a therapeutic target in systemic sclerosis. Nat. Rev. Rheumatol. 5, 200–206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sargent, J. L. et al. A TGFβ-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J. Invest. Dermatol. 130, 694–705 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Kawakami, T. et al. Increased expression of TGF-β receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-β signaling to scleroderma phenotype. J. Invest. Dermatol. 110, 47–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Pannu, J., Nakerakanti, S., Smith, E., ten Dijke, P. & Trojanowska, M. Transforming growth factor-β receptor type I-dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways. J. Biol. Chem. 282, 10405–10413 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Pannu, J., Gardner, H., Shearstone, J. R., Smith, E. & Trojanowska, M. Increased levels of transforming growth factor β receptor type I and up-regulation of matrix gene program: a model of scleroderma. Arthritis Rheum. 54, 3011–3021 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Ihn, H. Scleroderma, fibroblasts, signaling, and excessive extracellular matrix. Curr. Rheumatol. Rep. 7, 156–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Ihn, H., Yamane, K., Kubo, M. & Tamaki, K. Blockade of endogenous transforming growth factor β signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor β receptors. Arthritis Rheum. 44, 474–480 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Chen, Y. et al. Heparan sulfate-dependent ERK activation contributes to the overexpression of fibrotic proteins and enhanced contraction by scleroderma fibroblasts. Arthritis Rheum. 58, 577–585 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Jun, J. B. et al. Scleroderma fibroblasts demonstrate enhanced activation of Akt (protein kinase B) in situ. J. Invest. Dermatol. 124, 298–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Pannu, J. et al. Smad1 pathway is activated in systemic sclerosis fibroblasts and is targeted by imatinib mesylate. Arthritis Rheum. 58, 2528–2537 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Bhattacharyya, S. et al. Smad-independent transforming growth factor-β regulation of early growth response-1 and sustained expression in fibrosis: implications for scleroderma. Am. J. Pathol. 173, 1085–1099 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, S. J. et al. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-β: involvement of Smad 3. J. Invest. Dermatol. 112, 49–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Ghosh, A. K., Yuan, W., Mori, Y. & Varga, J. Smad-dependent stimulation of type I collagen gene expression in human skin fibroblasts by TGF-β involves functional cooperation with p300/CBP transcriptional coactivators. Oncogene 19, 3546–3555 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Hong, M. et al. Non-Smad TGF-β signaling regulated by focal adhesion kinase binding the P85 subunit of phosphatidylinositol 3-kinase. J. Biol. Chem. 286, 17841–17850 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shi-wen, X. et al. Requirement of transforming growth factor β-activated kinase 1 for transforming growth factor β-induced α-smooth muscle actin expression and extracellular matrix contraction in fibroblasts. Arthritis Rheum. 60, 234–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Varga, J. Scleroderma and Smads: dysfunctional Smad family dynamics culminating in fibrosis. Arthritis Rheum. 46, 1703–1713 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Ihn, H., Yamane, K., Asano, Y., Jinnin, M. & Tamaki, K. Constitutively phosphorylated Smad3 interacts with Sp1 and p300 in scleroderma fibroblasts. Rheumatology (Oxford) 45, 157–165 (2006).

    Article  CAS  Google Scholar 

  81. Asano, Y., Ihn, H., Yamane, K., Kubo, M. & Tamaki, K. Impaired Smad7–Smurf-mediated negative regulation of TGF-β signaling in scleroderma fibroblasts. J. Clin. Invest. 113, 253–264 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mori, Y., Chen, S. J. & Varga, J. Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. Arthritis Rheum. 48, 1964–1978 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Bhattacharyya, S. et al. Fibroblast expression of the coactivator p300 governs the intensity of profibrotic response to transforming growth factor β. Arthritis Rheum. 52, 1248–1258 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Daniels, C. E. et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-β and prevents bleomycin-mediated lung fibrosis. J. Clin. Invest. 114, 1308–1316 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bhattacharyya, S. et al. A non-Smad mechanism of fibroblast activation by transforming growth factor-β via c-Abl and EGR-1: selective modulation by imatinib mesylate. Oncogene 28, 1285–1297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rajkumar, V. S. et al. Platelet-derived growth factor-β receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am. J. Pathol. 169, 2254–2265 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Distler, J. H. et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum. 56, 311–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Vittal, R. et al. Effects of the protein kinase inhibitor, imatinib mesylate, on epithelial/mesenchymal phenotypes: implications for treatment of fibrotic diseases. J. Pharmacol. Exp. Ther. 321, 35–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Daniels, C. E. et al. Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am. J. Respir. Crit. Care Med. 181, 604–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Bhattacharyya, S. et al. Early growth response transcription factors: key mediators of fibrosis and novel targets for anti-fibrotic therapy. Matrix Biol. 30, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, M. et al. Essential roles for early growth response transcription factor EGR-1 in tissue fibrosis and wound healing. Am. J. Pathol. 175, 1041–1055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, S. J. et al. The early-immediate gene EGR-1 is induced by transforming growth factor-β and mediates stimulation of collagen gene expression. J. Biol. Chem. 281, 21183–21197 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Bhattacharyya, S. et al. The transcriptional cofactor Nab2 is induced by TGF-β and suppresses fibroblast activation: physiological roles and impaired expression in scleroderma. PLoS ONE 4, e7620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bhattacharyya, S. et al. EGR-1 induces a profibrotic injury/repair gene program associated with systemic sclerosis. PLoS ONE 6, e2 3082.

    Google Scholar 

  95. Leask, A. Towards an anti-fibrotic therapy for scleroderma: targeting myofibroblast differentiation and recruitment. Fibrogenesis Tissue Repair 3, 8 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sonnylal, S. et al. Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum. 62, 1523–1532 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Liu, S., Shi-wen, X., Abraham, D. J. & Leask, A. CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum. 63, 239–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Fonseca, C. et al. A polymorphism in the CTGF promoter region associated with systemic sclerosis. N. Engl. J. Med. 357, 1210–1220 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Xu, S. W. et al. Endothelin-1 induces expression of matrix-associated genes in lung fibroblasts through MEK/ERK. J. Biol. Chem. 279, 23098–23103 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Abraham, D. J. et al. Increased levels of endothelin-1 and differential endothelin type A and B receptor expression in scleroderma-associated fibrotic lung disease. Am. J. Pathol. 151, 831–841 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Shi-wen, X. et al. Endothelin is a downstream mediator of profibrotic responses to transforming growth factor β in human lung fibroblasts. Arthritis Rheum. 56, 4189–4194 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Schroll, S. et al. Improvement of bleomycin-induced pulmonary hypertension and pulmonary fibrosis by the endothelin receptor antagonist Bosentan. Respir. Physiol. Neurobiol. 170, 32–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. King, T. E. Jr et al. BUILD-3: A randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 184, 92–99 (2011).

    Article  PubMed  Google Scholar 

  104. Moon, R. T., Kohn, A. D., De Ferrari, G. V. & Kaykas, A. WNT and β-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5, 691–701 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Vlad, A., Röhrs, S., Klein-Hitpass, L. & Müller, O. The first five years of the Wnt targetome. Cell Signal. 20, 795–802 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Carthy, J. M., Garmaroudi, F. S., Luo, Z. & McManus, B. M. Wnt3a induces myofibroblast differentiation by upregulating TGF-β signaling through SMAD2 in a β-catenin-dependent manner. PLoS ONE 6, e19809.

  107. Chang, W. et al. SPARC suppresses apoptosis of idiopathic pulmonary fibrosis fibroblasts through constitutive activation of β-catenin. J. Biol. Chem. 285, 8196–8206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Thorne, C. A. et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat. Chem. Biol. 6, 829–836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wei, J. et al. Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: a novel mouse model for scleroderma? Arthritis Rheum. 63, 1707–1717 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Konigshoff, M. & Eickelberg, O. WNT signaling in lung disease: a failure or a regeneration signal? Am. J. Respir. Cell Mol. Biol. 42, 21–31 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Bayle, J. et al. Increased expression of Wnt2 and SFRP4 in Tsk mouse skin: role of Wnt signaling in altered dermal fibrillin deposition and systemic sclerosis. J. Invest. Dermatol. 128, 871–881 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Selman, M., Pardo, A. & Kaminski, N. Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs? PLoS Med. 5, e62 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chilosi, M. et al. Aberrant Wnt/β-catenin pathway activation in idiopathic pulmonary fibrosis. Am. J. Pathol. 162, 1495–1502 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Konigshoff, M. et al. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J. Clin. Invest. 119, 772–787 (2009).

    PubMed  PubMed Central  Google Scholar 

  115. Lam, A. P. et al. Nuclear β-catenin is increased in SSc pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am. J. Respir. Cell Mol. Biol. http://dx.doi.org/10.1165/rcmb.2010-0113OC.

  116. Bielefeld, K. A. et al. Fibronectin and β-catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J. Biol. Chem. 286, 27687–27697 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. He, W., Kang, Y. S., Dai, C. & Liu, Y. Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J. Am. Soc. Nephrol. 22, 90–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Henderson, W. R., Jr et al. Inhibition of Wnt/β-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc. Natl Acad. Sci. USA 107, 14309–14314 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hinz, B. & Gabbiani, G. Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives. F1000 Biol. Rep. 2, 78 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Georges, P. C. et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1147–G1154 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Margadant, C. & Sonnenberg, A. Integrin–TGF-β crosstalk in fibrosis, cancer and wound healing. EMBO Rep. 11, 97–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Eckes, B. et al. Fibroblast-matrix interactions in wound healing and fibrosis. Matrix Biol. 19, 325–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Liu, S., Kapoor, M., Denton, C. P., Abraham, D. J. & Leask, A. Loss of β1 integrin in mouse fibroblasts results in resistance to skin scleroderma in a mouse model. Arthritis Rheum. 60, 2817–2821 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Liu, S. et al. Expression of integrin β1 by fibroblasts is required for tissue repair in vivo. J. Cell Sci. 123, 3674–3682 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Munger, J. S. et al. The integrin αvβ6 binds and activates latent TGF β1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Worthington, J. J., Klementowicz, J. E. & Travis, M. A. TGFβ: a sleeping giant awoken by integrins. Trends Biochem. Sci. 36, 47–54 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Hakkinen, L. et al. Increased expression of β6-integrin in skin leads to spontaneous development of chronic wounds. Am. J. Pathol. 164, 229–242 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Asano, Y., Ihn, H., Yamane, K., Jinnin, M. & Tamaki, K. Increased expression of integrin αvβ5 induces the myofibroblastic differentiation of dermal fibroblasts. Am. J. Pathol. 168, 499–510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Loeys, B. L. et al. Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome. Sci. Transl. Med. 2, 23–20 (2010).

    Article  CAS  Google Scholar 

  132. Henault, J., Robitaille, G., Senecal, J. L. & Raymond, Y. DNA topoisomerase I binding to fibroblasts induces monocyte adhesion and activation in the presence of anti-topoisomerase I autoantibodies from systemic sclerosis patients. Arthritis Rheum. 54, 963–973 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Chizzolini, C., Brembilla, N. C., Montanari, E. & Truchetet, M. E. Fibrosis and immune dysregulation in systemic sclerosis. Autoimmun. Rev. 10, 276–281 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Zhou, X. et al. Autoantibodies to fibrillin-1 activate normal human fibroblasts in culture through the TGF-β pathway to recapitulate the “scleroderma phenotype”. J. Immunol. 175, 4555–4560 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Brinckmann, J. et al. Absence of autoantibodies against correctly folded recombinant fibrillin-1 protein in systemic sclerosis patients. Arthritis Res. Ther. 7, R1221–R1226 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Baroni, S. S. et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N. Engl. J. Med. 354, 2667–2676 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Classen, J. F. et al. Lack of evidence of stimulatory autoantibodies to platelet-derived growth factor receptor in patients with systemic sclerosis. Arthritis Rheum. 60, 1137–1144 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Loizos, N. et al. Lack of detection of agonist activity by antibodies to platelet-derived growth factor receptor α in a subset of normal and systemic sclerosis patient sera. Arthritis Rheum. 60, 1145–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Distler, J. H. et al. Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis. Arthritis Rheum. 56, 4203–4215 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Bogatkevich, G. S. et al. Antiinflammatory and antifibrotic effects of the oral direct thrombin inhibitor dabigatran etexilate in a murine model of interstitial lung disease. Arthritis Rheum. 63, 1416–1425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Olson, L. E. & Soriano, P. Increased PDGFRα activation disrupts connective tissue development and drives systemic fibrosis. Dev. Cell 16, 303–313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dees, C. et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J. Exp. Med. 208, 961–972 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gabrielli, A., Avvedimento, E. V. & Krieg, T. Scleroderma. N. Engl. J. Med. 360, 1989–2003 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Hecker, L. et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat. Med. 15, 1077–1081 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Servettaz, A. et al. Radical oxygen species production induced by advanced oxidation protein products predicts clinical evolution and response to treatment in systemic sclerosis. Ann. Rheum. Dis. 66, 1202–1209 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Huang, S. K. & Peters-Golden, M. Eicosanoid lipid mediators in fibrotic lung diseases: ready for prime time? Chest 133, 1442–1450 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Oga, T. et al. Prostaglandin F2α receptor signaling facilitates bleomycin-induced pulmonary fibrosis independently of transforming growth factor-β. Nat. Med. 15, 1426–1430 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Rancoule, C. et al. Lysophosphatidic acid-1-receptor targeting agents for fibrosis. Expert Opin. Investig. Drugs 20, 657–667 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Tager, A. M. et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat. Med. 14, 45–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Castelino, F. V. et al. Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum. 63, 1405–1415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xu, M. Y. et al. Lysophosphatidic acid induces αvβ6 integrin-mediated TGF-β activation via the LPA2 receptor and the small G protein Gαq . Am. J. Pathol. 174, 1264–1279 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wei, J., Bhattacharyya, S. & Varga, J. Peroxisome proliferator-activated receptor γ: innate protection from excessive fibrogenesis and potential therapeutic target in systemic sclerosis. Curr. Opin. Rheumatol. 22, 671–676 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ghosh, A. K. et al. Peroxisome proliferator-activated receptor-γ abrogates Smad-dependent collagen stimulation by targeting the p300 transcriptional coactivator. FASEB J. 23, 2968–2977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ghosh, A. K. et al. Disruption of transforming growth factor β signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor γ. Arthritis Rheum. 50, 1305–1318 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Kapoor, M. et al. Loss of peroxisome proliferator-activated receptor γ in mouse fibroblasts results in increased susceptibility to bleomycin-induced skin fibrosis. Arthritis Rheum. 60, 2822–2829 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Karnik, P. et al. Hair follicle stem cell-specific PPARγ deletion causes scarring alopecia. J. Invest. Dermatol. 129, 1243–1257 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Wu, M. et al. Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-γ. Am. J. Pathol. 174, 519–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zheng, F. et al. Upregulation of type I collagen by TGF-β in mesangial cells is blocked by PPARγ activation. Am. J. Physiol. Renal Physiol. 282, F639–F648 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Miyahara, T. et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J. Biol. Chem. 275, 35715–35722 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Culver, D. A. et al. Peroxisome proliferator-activated receptor γ activity is deficient in alveolar macrophages in pulmonary sarcoidosis. Am. J. Respir. Cell Mol. Biol. 30, 1–5 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Wei, J. et al. PPARγ downregulation by TGFβ in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS ONE 5, e13778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fang, F. et al. The early growth response gene EGR2 (alias Krox20) is a novel transcriptional target of transforming growth factor-β that is up-regulated in systemic sclerosis and mediates profibrotic responses. Am. J. Pathol. 178, 2077–2090 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kubo, M. et al. Persistent down-regulation of Fli1, a suppressor of collagen transcription, in fibrotic scleroderma skin. Am. J. Pathol. 163, 571–581 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jinnin, M., Ihn, H., Mimura, Y., Asano, Y. & Tamaki, K. Involvement of the constitutive complex formation of c-Ski/SnoN with Smads in the impaired negative feedback regulation of transforming growth factor β signaling in scleroderma fibroblasts. Arthritis Rheum. 56, 1694–1705 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Bu, S. et al. Dihydrosphingosine 1-phosphate has a potent antifibrotic effect in scleroderma fibroblasts via normalization of phosphatase and tensin homolog levels. Arthritis Rheum. 62, 2117–2126 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Parapuram, S. K. et al. Loss of PTEN expression by dermal fibroblasts causes skin fibrosis. J. Invest. Dermatol. http://dx.doi.org/10.1038/jid.2011.156.

Download references

Acknowledgements

This work was partially supported by grants from the National Institutes of Health (AR 42309) and the Scleroderma Research Foundation. We are grateful to Carol Feghali-Bostwick, Warren Tourtellotte, Monique Hinchcliff, Robert Lafyatis, Michael Whitfield, Cara Gottardi, Carol Artlett, Maria Trojanowska and members of the Northwestern Scleroderma Program for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data, discussing content, writing, and review/editing of the manuscript before subscription.

Corresponding author

Correspondence to John Varga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, S., Wei, J. & Varga, J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 8, 42–54 (2012). https://doi.org/10.1038/nrrheum.2011.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing