Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Are autoantibodies the targets of B-cell-directed therapy?

Abstract

B-cell-directed therapy—the use of agents that eliminate B cells or block cytokines important for B-cell function—is emerging as a promising approach to the treatment of rheumatic disease. Target diseases, including systemic lupus erythematosus (SLE), display diverse patterns of autoantibody production and aberrant activation of B cells. Despite the success of this general approach, the mechanisms by which B-cell-directed therapy ameliorates disease, and the role of autoantibodies as biomarkers of clinical response remain unclear. Importantly, although B-cell-directed therapy can reduce the production of some autoantibodies, the effects can be variable and heterogeneous, probably reflecting the critical (but ill-defined) roles of different B-cell and plasma cell populations in autoantibody production. Future studies during clinical trials of these agents are needed to define which B-cell and autoantibody populations are affected (or ought to be), and to discover informative biomarkers of clinical response that can be used to advance this therapeutic approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The serial antibody profile of a patient with SLE in relation to therapy and disease activity.
Figure 2: Generation and categories of Ig-secreting cells.

Similar content being viewed by others

References

  1. Dörner, T. & Burmester, G. R. New approaches of B-cell-directed therapy: beyond rituximab. Curr. Opin. Rheumatol. 20, 263–268 (2008).

    Article  Google Scholar 

  2. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  Google Scholar 

  3. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    Article  CAS  Google Scholar 

  4. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing–remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  Google Scholar 

  5. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    Article  CAS  Google Scholar 

  6. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  Google Scholar 

  7. Wallace, D. J. et al. Epratuzumab demonstrates clinically meaningful improvements in patients with moderate to severe systemic lupus erythematosus: results from EMBLEM, a phase IIb study. Presented at the 9th International Congress on Systemic Lupus Erythematosus, Vancouver, Canada, June 24–27 2010.

  8. Dörner, T., Jacobi, A. M. & Lipsky, P. E. B cells in autoimmunity. Arthritis Res Ther 11, 247 (2009).

    Article  Google Scholar 

  9. Hochberg, M. C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 40, 1725 (1997).

    Article  CAS  Google Scholar 

  10. Hahn, B. H. Antibodies to DNA. N. Engl. J. Med. 338, 1359–1368 (1998).

    Article  CAS  Google Scholar 

  11. van Venrooij, W. J. et al. Anti-(U1) small nuclear RNA antibodies in anti-small nuclear ribonucleoprotein sera from patients with connective tissue diseases. J. Clin. Invest. 86, 2154–2160 (1990).

    Article  CAS  Google Scholar 

  12. Migliorini, P., Baldini, C., Rocchi, V. & Bombardieri, S. Anti-Sm and anti-RNP antibodies. Autoimmunity 38, 47–54 (2005).

    Article  CAS  Google Scholar 

  13. Franceschini, F. & Cavazzana, I. Anti-Ro/SSA and La/SSB antibodies. Autoimmunity 38, 55–63 (2005).

    Article  CAS  Google Scholar 

  14. Cameron, J. S., Lessof, M. H., Ogg, C. S., Williams, B. D. & Williams, D. G. Disease activity in the nephritis of systemic lupus erythematosus in relation to serum complement concentrations. DNA-binding capacity and precipitating anti-DNA antibody. Clin. Exp. Immunol. 25, 418–427 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yung, S. & Chan, T. M. Anti-DNA antibodies in the pathogenesis of lupus nephritis—the emerging mechanisms. Autoimmun. Rev. 7, 317–321 (2008).

    Article  CAS  Google Scholar 

  16. Furie, R. et al. Effect of Rituximab (RTX) On Anti-dsDNA and C3 Levels and Relationship to Response: Results From the LUNAR Trial [abstract 271]. Arthritis Rheum. 60 (Suppl.), S99 (2009).

    Google Scholar 

  17. Lovgren, T., Eloranta, M. L., Båve, U., Alm, G. V. & Rönnblom, L. Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50, 1861–1872 (2004).

    Article  Google Scholar 

  18. Herlands, R. A., Christensen, S. R., Sweet, R. A., Hershberg, U. & Shlomchik, M. J. T cell-independent and toll-like receptor-dependent antigen-driven activation of autoreactive B cells. Immunity 29, 249–260 (2008).

    Article  CAS  Google Scholar 

  19. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8, 487–496 (2007).

    Article  CAS  Google Scholar 

  20. Guiducci, C. et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature 465, 937–941 (2010).

    Article  CAS  Google Scholar 

  21. Tew, G. W. et al. Baseline autoantibody profiles predict normalization of complement and anti-dsDNA autoantibody levels following rituximab treatment in systemic lupus erythematosus. Lupus 19, 146–157 (2010).

    Article  CAS  Google Scholar 

  22. McCarty, G. A., Rice, J. R., Bembe, M. L. & Pisetsky, D. S. Independent expression of autoantibodies in systemic lupus erythematosus. J. Rheumatol. 9, 691–695 (1982).

    CAS  Google Scholar 

  23. Kavanaugh, A. F. & Solomon, D. H. Guidelines for immunologic laboratory testing in the rheumatic diseases: anti-DNA antibody tests. Arthritis Rheum. 47, 546–555 (2002).

    Article  CAS  Google Scholar 

  24. Fragoso-Loyo, H. et al. Serum and cerebrospinal fluid autoantibodies in patients with neuropsychiatric lupus erythematosus. Implications for diagnosis and pathogenesis. PLoS ONE 3, e3347 (2008).

    Article  Google Scholar 

  25. Agarwal, S., Harper, J. & Kiely, P. D. Concentration of antibodies to extractable nuclear antigens and disease activity in systemic lupus erythematosus. Lupus 18, 407–412 (2009).

    Article  CAS  Google Scholar 

  26. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  Google Scholar 

  27. Grammer, A. C. et al. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. J. Clin. Invest. 112, 1506–1520 (2003).

    Article  CAS  Google Scholar 

  28. Hoyer, B. F., Manz, R. A., Radbruch, A. & Hiepe, F. Long-lived plasma cells and their contribution to autoimmunity. Ann. NY Acad. Sci. 1050, 124–133 (2005).

    Article  CAS  Google Scholar 

  29. Neubert, K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat. Med. 14, 748–755 (2008).

    Article  CAS  Google Scholar 

  30. Halicka, H. D., Bedner, E. & Darzynkiewicz, Z. Segregation of RNA and separate packaging of DNA and RNA in apoptotic bodies during apoptosis. Exp. Cell Res. 260, 248–256 (2000).

    Article  CAS  Google Scholar 

  31. Pisetsky, D. S., McCarty, G. A. & Peters, D. V. Mechanisms of autoantibody production in autoimmune MRL mice. J. Exp. Med. 152, 1302–1310 (1980).

    Article  CAS  Google Scholar 

  32. Eisenberg, R. A., Craven, S. Y., Warren, R. W. & Cohen, P. L. Stochastic control of anti-Sm autoantibodies in MRL/Mp-lpr/lpr mice. J. Clin. Invest. 80, 691–697 (1987).

    Article  CAS  Google Scholar 

  33. Pisetsky, D., Caster, S., Roths, J. B. & Murphy, E. Lpr gene control of the anti-DNA antibody response. J. Immunol. 128, 2322–2325 (1982).

    CAS  PubMed  Google Scholar 

  34. Pawar, R. D. et al. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J. Am. Soc. Nephrol. 18, 1721–1731 (2007).

    Article  CAS  Google Scholar 

  35. Nickerson, K. M. et al. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J. Immunol. 184, 1840–1848 (2010).

    Article  CAS  Google Scholar 

  36. Witte, T. et al. IgM anti-dsDNA antibodies in systemic lupus erythematosus: negative association with nephritis. SLE Study Group. Rheumatol. Int. 18, 85–91 (1998).

    Article  CAS  Google Scholar 

  37. Hoyer, B. F. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J. Exp. Med. 199, 1577–1584 (2004).

    Article  CAS  Google Scholar 

  38. Bingham, C. O. 3rd et al. Immunization responses in rheumatoid arthritis patients treated with rituximab: results from a controlled clinical trial. Arthritis Rheum. 62, 64–74 (2010).

    Article  CAS  Google Scholar 

  39. Jacobi, A. M. et al. Effect of long-term belimumab treatment on B cells in systemic lupus erythematosus: extension of a phase II, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum. 62, 201–210 (2010).

    Article  CAS  Google Scholar 

  40. Hiepe, F. et al. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat. Rev. Rheumatol. 7, 170–178 (2011).

    Article  CAS  Google Scholar 

  41. Hartung, H. P. & Kieseier, B. C. Atacicept: targeting B cells in multiple sclerosis. Ther. Adv. Neurol. Disord. 3, 205–216 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors' research activities are supported by a Veterans Administration Merit Review grant and NIH grants AI083923, AI082302 and T32-AI07217-28. P. E. Lipsky and A. C. Grammer were formerly in the autoimmunity branch of the Intramural Research Program, NIAMS, NIH, Bethseda, MD, USA.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to David S. Pisetsky.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisetsky, D., Grammer, A., Ning, T. et al. Are autoantibodies the targets of B-cell-directed therapy?. Nat Rev Rheumatol 7, 551–556 (2011). https://doi.org/10.1038/nrrheum.2011.108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.108

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing