Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of SLE: evidence from mouse models

Abstract

Great progress has been made in the field of lupus genetics in the past few years, notably with the publication of genome-wide association studies in humans and the identification of susceptibility genes (including Fcgr2b, Ly108, Kallikrein genes and Coronin-1A) in mouse models of spontaneous lupus. This influx of new information has revealed an ever-increasing interdependence between the mouse and human systems for unraveling the genetic basis of lupus susceptibility. Studies in the 1980s and 1990s established that mice prone to spontaneous lupus constitute excellent models of the genetic architecture of human systemic lupus erythematosus (SLE). This notion has been greatly strengthened by the convergence of the functional pathways that are defective in both human and murine lupus. Within these pathways, variants in a number of genes have now been shown to be directly associated with lupus in both species. Consequently, mouse models will continue to serve a pre-eminent role in lupus genetics research, with an increased emphasis on mechanistic and molecular studies of human susceptibility alleles.

Key Points

  • A large number of lupus susceptibility loci have been validated in mouse models, and the corresponding susceptibility genes have been identified for some of these loci

  • Many murine lupus genes characterized by congenic studies have been validated in association studies in patients with systemic lupus erythematosus (SLE)

  • In both mice and humans, lupus susceptibility results from the combination of the weak individual effects of a large number of alleles

  • The functional pathways that are defective in both human and murine lupus largely overlap

  • The functional characterization of SLE risk alleles identified by analyses of genome-wide association studies will greatly benefit from mechanistic and molecular studies in mouse models

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Theofilopoulos, A. N. & Dixon, F. J. Murine models of systemic lupus erythematosus. Adv. Immunol. 37, 269–379 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Abiola, O. et al. The nature and identification of quantitative trait loci: a community's view. Nat. Rev. Genet. 4, 911–916 (2003).

    PubMed  Google Scholar 

  3. Kono, D. H. & Theofilopoulos, A. N. Genetics of SLE in mice. Springer Semin. Immunopathol. 28, 83–96 (2006).

    Article  PubMed  Google Scholar 

  4. Wakeland, E. K., Liu, K., Graham, R. R. & Behrens, T. W. Delineating the genetic basis of systemic lupus erythematosus. Immunity 15, 397–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. The International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN) et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

  6. Hom, G. et al. Association of systemic lupus erythematosus with C8orf1–BLK and ITGAM–ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Graham, R. R. et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet. 40, 1059–1061 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kozyrev, S. V. et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat. Genet. 40, 211–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Harley, I. T., Kaufman, K. M., Langefeld, C. D., Harley, J. B. & Kelly, J. A. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat. Rev. Genet. 10, 285–290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohan, C., Alas, E., Morel, L., Yang, P. & Wakeland, E. K. Genetic dissection of SLE pathogenesis: Sle1 on murine chromosome 1 leads to a selective loss of tolerance to H2A/H2B/DNA subnucleosomes. J. Clin. Invest. 101, 1362–1372 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Waters, S. T. et al. Breaking tolerance to double stranded DNA, nucleosome, and other nuclear antigens is not required for the pathogenesis of lupus glomerulonephritis. J. Exp. Med. 199, 255–264 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morel, L. et al. Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains. Proc. Natl Acad. Sci. USA 97, 6670–6675 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morel, L., Blenman, K. R., Croker, B. P. & Wakeland, E. K. The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc. Natl Acad. Sci. USA 98, 1787–1792 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, Y., Cuda, C. & Morel, L. Genetic determination of T cell help in loss of tolerance to nuclear antigens. J. Immunol. 174, 7692–7702 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Cuda, C. M., Zeumer, L., Sobel, E. S., Croker, B. P. & Morel, L. Murine lupus susceptibility locus Sle1a requires the expression of two subloci to induce inflammatory T cells. Genes Immun. (in press).

  16. Rahman, Z. S. M. et al. Expression of the autoimmune Fcgr2b NZW allele fails to be upregulated in germinal center B cells and is associated with increased IgG production. Genes Immun. 8, 604–612 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Wandstrat, A. E. et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 21, 769–780 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Kumar, K. R. et al. Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science 312, 1665–1669 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Boackle, S. A. et al. Cr2, a candidate gene in the murine Sle1c lupus susceptibility locus, encodes a dysfunctional protein. Immunity 15, 775–785 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, Y. et al. Several genes contribute to the production of autoreactive B and T cells in the murine lupus susceptibility locus Sle1c. J. Immunol. 175, 1080–1089 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Cuda, C. M., Wan, S., Sobel, E. S., Croker, B. P. & Morel, L. Murine lupus susceptibility locus Sle1a controls regulatory T cell number and function through multiple mechanisms. J. Immunol. 179, 7439–7447 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Peters, L. L. et al. The mouse as a model for human biology: a resource guide for complex trait analysis. Nat. Rev. Genet. 8, 58–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, Y., Rollins, J., Paigen, B. & Wang, X. Genetic and genomic insights into the molecular basis of atherosclerosis. Cell Metab. 6, 164–179 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mouse Phenome Database. Mouse SNPs [online], (2010).

  25. Xiu, Y. et al. Transcriptional regulation of Fcgr2b gene by polymorphic promoter region and its contribution to humoral immune responses. J. Immunol. 169, 4340–4346 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, Y. H., Ji, J. D. & Song, G. G. Fcγ receptor IIB and IIIB polymorphisms and susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Lupus 18, 727–734 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Mackay, M. et al. Selective dysregulation of the FcγIIB receptor on memory B cells in SLE. J. Exp. Med. 203, 2157–2164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, H. et al. Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 104, 3961–3966 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Douglas, K. B. et al. Complement receptor 2 polymorphisms associated with systemic lupus erythematosus modulate alternative splicing. Genes Immun. 10, 457–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schwartzberg, P. L., Mueller, K. L., Qi, H. & Cannons, J. L. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat. Rev. Immunol. 9, 39–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Graham, D. S. C. et al. Association of LY9 in UK and Canadian SLE families. Genes Immun. 9, 93–102 (2008).

    Article  CAS  Google Scholar 

  32. Suzuki, A. et al. Functional SNPs in CD244 increase the risk of rheumatoid arthritis in a Japanese population. Nat. Genet. 40, 1224–1229 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, J. K. et al. T cell hyperactivity in lupus as a consequence of hyperstimulatory antigen-presenting cells. J. Clin. Invest. 115, 1869–1878 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mohan, C., Yu, Y., Morel, L., Yang, P. & Wakeland, E. K. Genetic dissection of Sle pathogenesis: Sle3 on murine chromosome 7 impacts T cell activation, differentiation, and cell death. J. Immunol. 162, 6492–6502 (1999).

    CAS  PubMed  Google Scholar 

  35. Liu, K. et al. Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans. J. Clin. Invest. 119, 911–923 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rogers, N. J. et al. A defect in Marco expression contributes to systemic lupus erythematosus development via failure to clear apoptotic cells. J. Immunol. 182, 1982–1990 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Haraldsson, M. K. et al. The lupus-related Lmb3 locus contains a disease-suppressing Coronin-1A gene mutation. Immunity 28, 40–51 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Limaye, N. et al. Prevalence and evolutionary origins of autoimmune susceptibility alleles in natural mouse populations. Genes Immun. 9, 61–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Mehrad, B. et al. The lupus-susceptibility locus, Sle3, mediates enhanced resistance to bacterial infections. J. Immunol. 176, 3233–3239 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Cohen, P. L. & Eisenberg, R. A. The lpr and gld genes in systemic autoimmunity: life and death in the Fas lane. Immunol. Today 13, 427–428 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Fukuyama, H., Nimmerjahn, F. & Ravetch, J. V. The inhibitory Fc receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells. Nat. Immunol. 6, 99–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Bygrave, A. E. et al. Spontaneous autoimmunity in 129 and C57BL/6 mice—implications for autoimmunity described in gene-targeted mice. PLoS Biol. 2, 1081–1090 (2004).

    Article  CAS  Google Scholar 

  46. Vinuesa, C. G. & Goodnow, C. C. Illuminating autoimmune regulators through controlled variation of the mouse genome sequence. Immunity 20, 669–679 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, M. C., Huang, C. M., Tsai, J. J., Chen, H. Y. & Tsai, F. J. Polymorphisms of the interleukin-4 gene in Chinese patients with systemic lupus erythematosus in Taiwan. Lupus 12, 21–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, K. et al. A regulatory SNP at position −899 in CDKN1A is associated with systemic lupus erythematosus and lupus nephritis. Genes Immun. 10, 482–486 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Graham, R. R., Hom, G., Ortmann, W. & Behrens, T. W. Review of recent genome-wide association scans in lupus. J. Intern. Med. 265, 680–688 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Cheema, G. S., Roschke, V., Hilbert, D. M. & Stohl, W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 44, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Doreau, A. et al. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat. Immunol. 10, 778–785 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Chaussabel, D. et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 29, 150–164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hannestad, K. & Scott, H. The MHC haplotype H2b converts two pure nonlupus mouse strains to producers of antinuclear antibodies. J. Immunol. 183, 3542–3550 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Jacob, C. O. et al. Heritable major histocompatibility complex class-II-associated differences in production of tumor necrosis factor-alpha: relevance to genetic predisposition to systemic lupus-erythematosus. Proc. Natl Acad. Sci. USA 87, 1233–1237 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, D. Q. et al. Dissection of the role of MHC class II A and E genes in autoimmune susceptibility in murine lupus models with intragenic recombination. Proc. Natl Acad. Sci. USA 101, 13838–13843 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jacob, C. O. et al. Pivotal role of Stat4 and Stat6 in the pathogenesis of the lupus-like disease in the New Zealand mixed 2328 mice. J. Immunol. 171, 1564–1571 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Xu, Z., Duan, B., Croker, B. P. & Morel, L. STAT4 deficiency reduces autoantibody production and glomerulonephritis in a mouse model of lupus. Clin. Immunol. 120, 189–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Korman, B. D., Kastner, D. L., Gregersen, P. K. & Remmers, E. F. STAT4: genetics, mechanisms, and implications for autoimmunity. Curr. Allergy Asthma Rep. 8, 398–403 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zikherman, J. et al. PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a non-autoimmune background. J. Immunol. 182, 4093–4106 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Vang, T. et al. Protein tyrosine phosphatases in autoimmunity. Ann. Rev. Immunol. 26, 29–55 (2008).

    Article  CAS  Google Scholar 

  62. Jacob, C. O. et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 106, 6256–6261 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gottipati, S., Rao, N. L. & Fung-Leung, W. P. IRAK1: a critical signaling mediator of innate immunity. Cell. Signal. 20, 269–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Yin, Z. N. et al. IL-10 regulates murine lupus. J. Immunol. 169, 2148–2155 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Ann. Rev. Immunol. 19, 683–765 (2003).

    Article  Google Scholar 

  66. Kevil, C. G. et al. Loss of LFA-1, but not Mac-1, protects MRL/MpJ-Faslpr mice from autoimmune disease. Am. J. Pathol. 165, 609–616 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bullard, D. C. et al. Critical requirement of CD11b (Mac-1) on T cells and accessory cells for development of experimental autoimmune encephalomyelitis. J. Immunol. 175, 6327–6333 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Oliva, C. R. et al. The integrin Mac-1 (CR3) mediates internalization and directs Bacillus anthracis spores into professional phagocytes. Proc. Natl Acad. Sci. USA 105, 1261–1266 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Paun, A. et al. Functional characterization of murine interferon regulatory factor 5 (IRF-5) and its role in the innate antiviral response. J. Biol. Chem. 283, 14295–14308 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yasuda, K. et al. Murine dendritic cell type I IFN production induced by human IgG–RNA immune complexes is IFN regulatory factor (IRF)5 and IRF7 dependent and is required for IL-6 production. J. Immunol. 178, 6876–6885 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Saijo, K. et al. Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development. Nat. Immunol. 4, 274–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Tong, Y., Tan, Y., Zhou, C. & Melmed, S. Pituitary tumor transforming gene interacts with Sp1 to modulate G1//S cell phase transition. Oncogene 26, 5596–5605 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Munz, C. Enhancing immunity through autophagy. Ann. Rev. Immunol. 27, 423–449 (2009).

    Article  CAS  Google Scholar 

  74. Croft, M. The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol. 9, 271–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vereecke, L., Beyaert, R. & van Loo, G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 30, 383–391 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Verstrepen, L., Carpentier, I., Verhelst, K. & Beyaert, R. ABINs: A20 binding inhibitors of NF-κB and apoptosis signaling. Biochem. Pharmacol. 78, 105–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Aiba, Y. et al. BANK negatively regulates Akt activation and subsequent B cell responses. Immunity 24, 259–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Martins, G. & Calame, K. Regulation and functions of Blimp-1 in T and B lymphocytes. Ann. Rev. Immunol. 26, 133–169 (2008).

    Article  CAS  Google Scholar 

  79. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Moser, K. L., Kelly, J. A., Lessard, C. J. & Harley, J. B. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun. 10, 373–379 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kontoyiannis, D. & Kollias, G. Accelerated autoimmunity and lupus nephritis in NZB mice with an engineered heterozygous deficiency in tumor necrosis factor. Eur. J. Immunol. 30, 2038–2047 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Paisansinsup, T., Vallejo, A. N., Luthra, H. & David, C. S. HLA-DR modulates autoantibody repertoire, but not mortality, in a humanized mouse model of systemic lupus erythematosus. J. Immunol. 167, 4083–4090 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Manz, M. G. & Di Santo, J. P. Renaissance for mouse models of human hematopoiesis and immunobiology. Nat. Immunol. 10, 1039–1042 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450, 299–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Vinuesa, C. G., Rigby, R. J. & Yu, D. Logic and extent of miRNA-mediated control of autoimmune gene expression. Int. Rev. Immunol. 28, 112–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, K. et al. Sle3 and Sle5 can independently couple with Sle1 to mediate severe lupus nephritis. Genes Immun. 8, 634–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Kong, P. L., Morel, L., Croker, B. P. & Craft, J. The centromeric region of chromosome 7 from MRL mice (Lmb3) is an epistatic modifier of Fas for autoimmune disease expression. J. Immunol. 172, 2785–2794 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Subramanian, S. et al. Epistatic suppression of systemic lupus erythematosus: fine mapping of Sles1 to less than 1 Mb. J. Immunol. 175, 1062–1072 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Haywood, M. E. K. et al. Dissection of BXSB lupus phenotype using mice congenic for chromosome 1 demonstrates that separate intervals direct different aspects of disease. J. Immunol. 173, 4277–4285 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Wither, J. E. et al. Functional dissection of lupus susceptibility loci on the New Zealand Black mouse chromosome 1: evidence for independent genetic loci affecting T and B cell activation. J. Immunol. 171, 1697–1706 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Carlucci, F. et al. Genetic dissection of spontaneous autoimmunity driven by 129-derived chromosome 1 loci when expressed on C57BL/6 mice. J. Immunol. 178, 2352–2360 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Rozzo, S. J. et al. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity 15, 435–443 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Santiago-Raber, M. L. et al. Fcγ receptor-dependent expansion of a hyperactive monocyte subset in lupus-prone mice. Arthritis Rheum. 60, 2408–2417 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Ichii, O. et al. Autoimmune glomerulonephritis induced in congenic mouse strain carrying telomeric region of chromosome 1 derived from MRL/MpJ. Histol. Histopathol. 23, 411–422 (2008).

    CAS  PubMed  Google Scholar 

  95. Heidari, Y. et al. A lupus-susceptibility C57BL/6 locus on chromosome 3 (Sle18) contributes to autoantibody production in 129 mice. Genes Immun. 10, 47–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, Y. et al. Lupus susceptibility genes may breach tolerance to DNA by impairing receptor editing of nuclear antigen-reactive B cells. J. Immunol. 179, 1340–1352 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Mohan, C., Morel, L., Yang, P. & Wakeland, E. K. Genetic dissection of systemic lupus erythematosus pathogenesis: Sle2 on murine chromosome 4 leads to B cell hyperactivity. J. Immunol. 159, 454–465 (1997).

    CAS  PubMed  Google Scholar 

  98. Xu, Z., Duan, B., Croker, B. P., Wakeland, E. K. & Morel, L. Genetic dissection of the murine lupus susceptibility locus Sle2: contributions to increased peritoneal B-1a cells and lupus nephritis map to different loci. J. Immunol. 175, 936–943 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Li, J. et al. Deficiency of type I interferon contributes to Sle2-associated component lupus phenotypes. Arthritis Rheum. 52, 3063–3072 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Loh, C. et al. Dissociation of the genetic loci leading to B1a and NKT cell expansions from autoantibody production and renal disease in B6 mice with an introgressed New Zealand Black chromosome 4 interval. J. Immunol. 178, 1608–1617 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Haraldsson, M. K. et al. Autoimmune alterations induced by the New Zealand Black Lbw2 locus in BWF1 mice. J. Immunol. 174, 5065–5073 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Kikuchi, S. et al. Differential role of three major New Zealand Black-derived loci linked with Yaa-induced murine lupus nephritis. J. Immunol. 174, 1111–1117 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Santiago-Raber, M. L., Haraldsson, M. K., Theofilopoulos, A. N. & Kono, D. H. Characterization of reciprocal Lmb1–4 interval MRL–Faslpr and C57BL/6–Faslpr congenic mice reveals significant effects from Lmb3. J. Immunol. 178, 8195–8202 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Tarasenko, T., Kole, H. K. & Bolland, S. A lupus-suppressor BALB/c locus restricts IgG2 autoantibodies without altering intrinsic B cell-tolerance mechanisms. J. Immunol. 180, 3807–3814 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Laporte, C., Ballester, B., Mary, C., Izui, S. & Reininger, L. The Sgp3 locus on mouse chromosome 13 regulates nephritogenic gp70 autoantigen expression and predisposes to autoimmunity. J. Immunol. 171, 3872–3877 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Yoshinobu, K. et al. Selective up-regulation of intact, but not defective env RNAs of endogenous modified polytropic retrovirus by the Sgp3 locus of lupus-prone mice. J. Immunol. 182, 8094–8103 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Wither, J. E. et al. Colocalization of expansion of the splenic marginal zone population with abnormal B cell activation and autoantibody production in B6 mice with an introgressed New Zealand Black chromosome 13 interval. J. Immunol. 175, 4309–4319 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Cook, M. C., Vinuesa, C. G. & Goodnow, C. C. ENU-mutagenesis: insight into immune function and pathology. Curr. Opin. Immunol. 18, 627–633 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Box 1

The mouse geneticist's tool box (DOC 44 kb)

Supplementary Table 1

Genes associated with lupus in murine transgenic models and validated in patients with SLE (DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, L. Genetics of SLE: evidence from mouse models. Nat Rev Rheumatol 6, 348–357 (2010). https://doi.org/10.1038/nrrheum.2010.63

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing