Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ethnogenetic heterogeneity of rheumatoid arthritis—implications for pathogenesis

Abstract

Autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus are generally considered multifactorial—that is, they involve both genetic and environmental factors. Technical advances in human genetics over the past 5 years have enabled the survey of the entire human genome for disease susceptibility genes and have contributed to a greater understanding of the molecular mechanisms underlying autoimmunity. Among the genetic predisposition factors identified to date, some variants have been found to be restricted to specific ethnic groups, which might reflect migration history and the natural selection that shaped genetic variation in these populations. Other genetic factors could also have exerted different magnitudes of risk for the disease among the different populations, which might be explained by their interactions with other genetic and environmental factors. These pieces of evidence suggest that substantial heterogeneity exists in the genetics underlying autoimmunity among different ethnic populations. This Review discusses the genetic heterogeneity in autoimmunity, with a focus on rheumatoid arthritis, between Asian and European populations. In addition to the most-studied and well-characterized gene HLA-DRB1, we will also describe examples of the gene–environment interactions between PADI4 and smoking, and the gene–gene interactions between PTPN22 and FCRL3.

Key Points

  • Genome-wide association studies have revealed multiple genetic risk factors for rheumatoid arthritis (RA) in addition to the well-studied HLA-DRB1 locus

  • Some of the RA-associated genetic factors are restricted to specific ethnic populations, indicating the presence of genetic heterogeneity in RA

  • The genetic heterogeneity might be primarily explained by the exclusive presence of a disease susceptibility allele in a particular population (for example, PTPN22 variant in European populations and HLA-DRB1*0901 in Asian populations)

  • Gene–environment interactions and gene–gene interactions might affect the contribution of each genetic factor to disease susceptibility, and account for the genetic heterogeneity between the populations

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic differences observed in PADI4 between Asian and European populations.
Figure 2: Upmodulation of the antigen receptor affinity threshold by PTPN22 and FCRL3.

Similar content being viewed by others

References

  1. Plenge, R. M. Recent progress in rheumatoid arthritis genetics: one step towards improved patient care. Curr. Opin. Rheumatol. 21, 262–271 (2009).

    Article  PubMed  Google Scholar 

  2. Plenge, R. M. et al. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. N. Engl. J. Med. 357, 1199–1209 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Plenge, R. M. et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet. 39, 1477–1482 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  5. Gregersen, P. K. et al. REL, encoding a member of the NF-κB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat. Genet. 41, 820–823 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shimane, K. et al. The association of a nonsynonymous single-nucleotide polymorphism in TNFAIP3 with systemic lupus erythematosus and rheumatoid arthritis in the Japanese population. Arthritis Rheum. 62, 574–579 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357, 977–986 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, H. S. et al. Association of STAT4 with rheumatoid arthritis in the Korean population. Mol. Med. 13, 455–460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kobayashi, S. et al. Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum. 58, 1940–1946 (2008).

    Article  PubMed  Google Scholar 

  10. Abdel-Nasser, A. M., Rasker, J. J. & Valkenburg, H. A. Epidemiological and clinical aspects relating to the variability of rheumatoid arthritis. Semin. Arthritis Rheum. 27, 123–140 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Alamanos, Y. & Drosos, A. A. Epidemiology of adult rheumatoid arthritis. Autoimmun. Rev. 4, 130–136 (2005).

    Article  PubMed  Google Scholar 

  12. Ferucci, E. D., Templin, D. W. & Lanier, A. P. Rheumatoid arthritis in American Indians and Alaska Natives: a review of the literature. Semin. Arthritis Rheum. 34, 662–667 (2005).

    Article  PubMed  Google Scholar 

  13. Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Gabriel, S. E. The epidemiology of rheumatoid arthritis. Rheum. Dis. Clin. North Am. 27, 269–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Kallberg, H. et al. Gene–gene and gene–environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am. J. Hum. Genet. 80, 867–875 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee, H. S. et al. Interaction between smoking, the shared epitope, and anti-cyclic citrullinated peptide: a mixed picture in three large North American rheumatoid arthritis cohorts. Arthritis Rheum. 56, 1745–1753 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Prugnolle, F. et al. Pathogen-driven selection and worldwide HLA class I diversity. Curr. Biol. 15, 1022–1027 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Verity, D. H., Marr, J. E., Ohno, S., Wallace, G. R. & Stanford, M. R. Behçet's disease, the Silk Road and HLA-B51: historical and geographical perspectives. Tissue Antigens 54, 213–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Newton, J. L., Harney, S. M., Wordsworth, B. P. & Brown, M. A. A review of the MHC genetics of rheumatoid arthritis. Genes Immun. 5, 151–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. du Montcel, S. T. et al. New classification of HLA-DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility. Arthritis Rheum. 52, 1063–1068 (2005).

    Article  PubMed  Google Scholar 

  21. de Vries, N., Tijssen, H., van Riel, P. L. & van de Putte, L. B. Reshaping the shared epitope hypothesis: HLA-associated risk for rheumatoid arthritis is encoded by amino acid substitutions at positions 67–74 of the HLA-DRB1 molecule. Arthritis Rheum. 46, 921–928 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Mattey, D. L. et al. HLA-DRB1 alleles encoding an aspartic acid at position 70 protect against development of rheumatoid arthritis. J. Rheumatol. 28, 232–239 (2001).

    CAS  PubMed  Google Scholar 

  23. Evans, T. I., Han, J., Singh, R. & Moxley, G. The genotypic distribution of shared-epitope DRB1 alleles suggests a recessive mode of inheritance of the rheumatoid arthritis disease-susceptibility gene. Arthritis Rheum. 38, 1754–1761 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Stastny, P. Mixed lymphocyte cultures in rheumatoid arthritis. J. Clin. Invest. 57, 1148–1157 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, H. S. et al. Increased susceptibility to rheumatoid arthritis in Koreans heterozygous for HLA-DRB1*0405 and *0901. Arthritis Rheum. 50, 3468–3475 (2004).

    Article  PubMed  Google Scholar 

  26. Kochi, Y. et al. Analysis of single-nucleotide polymorphisms in Japanese rheumatoid arthritis patients shows additional susceptibility markers besides the classic shared epitope susceptibility sequences. Arthritis Rheum. 50, 63–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kong, K. F., Yeap, S. S., Chow, S. K. & Phipps, M. E. HLA-DRB1 genes and susceptibility to rheumatoid arthritis in three ethnic groups from Malaysia. Autoimmunity 35, 235–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Wakitani, S. et al. The relationship between HLA-DRB1 alleles and disease subsets of rheumatoid arthritis in Japanese. Br. J. Rheumatol. 36, 630–636 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Chan, S. H., Lin, Y. N., Wee, G. B., Koh, W. H. & Boey, M. L. HLA class 2 genes in Singaporean Chinese rheumatoid arthritis. Br. J. Rheumatol. 33, 713–717 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Wakitani, S. et al. The homozygote of HLA-DRB1*0901, not its heterozygote, is associated with rheumatoid arthritis in Japanese. Scand. J. Rheumatol. 27, 381–382 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Klareskog, L., Ronnelid, J., Lundberg, K., Padyukov, L. & Alfredsson, L. Immunity to citrullinated proteins in rheumatoid arthritis. Annu. Rev. Immunol. 26, 651–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Auger, I. et al. Influence of HLA-DR genes on the production of rheumatoid arthritis-specific autoantibodies to citrullinated fibrinogen. Arthritis Rheum. 52, 3424–3432 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. van Gaalen, F. A. et al. Association between HLA class II genes and autoantibodies to cyclic citrullinated peptides (CCPs) influences the severity of rheumatoid arthritis. Arthritis Rheum. 50, 2113–2121 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Furuya, T. et al. Differential association of HLA-DRB1 alleles in Japanese patients with early rheumatoid arthritis in relationship to autoantibodies to cyclic citrullinated peptide. Clin. Exp. Rheumatol. 25, 219–224 (2007).

    CAS  PubMed  Google Scholar 

  36. Irigoyen, P. et al. Regulation of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: contrasting effects of HLA-DR3 and the shared epitope alleles. Arthritis Rheum. 52, 3813–3818 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Verpoort, K. N. et al. Association of HLA-DR3 with anti-cyclic citrullinated peptide antibody-negative rheumatoid arthritis. Arthritis Rheum. 52, 3058–3062 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki, A. et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34, 395–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Nakashima, K. et al. Molecular characterization of peptidylarginine deiminase in HL-60 cells induced by retinoic acid and 1α, 25-dihydroxyvitamin D3 . J. Biol. Chem. 274, 27786–27792 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Cha, S. et al. Association of anti-cyclic citrullinated peptide antibody levels with PADI4 haplotypes in early rheumatoid arthritis and with shared epitope alleles in very late rheumatoid arthritis. Arthritis Rheum. 56, 1454–1463 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Gandjbakhch, F. et al. A functional haplotype of PADI4 gene in rheumatoid arthritis: positive correlation in a French population. J. Rheumatol. 36, 881–886 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Ikari, K. et al. Association between PADI4 and rheumatoid arthritis: a replication study. Arthritis Rheum. 52, 3054–3057 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Kang, C. P. et al. A functional haplotype of the PADI4 gene associated with increased rheumatoid arthritis susceptibility in Koreans. Arthritis Rheum. 54, 90–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Plenge, R. M. et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am. J. Hum. Genet. 77, 1044–1060 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burr, M. L. et al. PADI4 genotype is not associated with rheumatoid arthritis in a large UK caucasian population. Ann. Rheum. Dis. doi:10.1136/ard.2009.111294.

    Article  PubMed  Google Scholar 

  46. Harney, S. M. et al. Genetic and genomic studies of PADI4 in rheumatoid arthritis. Rheumatology (Oxford) 44, 869–872 (2005).

    Article  CAS  Google Scholar 

  47. Makrygiannakis, D. et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann. Rheum. Dis. 67, 1488–1492 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Mei, L. et al. Evaluating gene × gene and gene × smoking interaction in rheumatoid arthritis using candidate genes in GAW15. BMC Proc. 1 (Suppl. 1), S17 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gregersen, P. K., Lee, H. S., Batliwalla, F. & Begovich, A. B. PTPN22: setting thresholds for autoimmunity. Semin. Immunol. 18, 214–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Mori, M., Yamada, R., Kobayashi, K., Kawaida, R. & Yamamoto, K. Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J. Hum. Genet. 50, 264–266 (2005).

    Article  PubMed  Google Scholar 

  52. Zhang, Z. H. et al. PTPN22 allele polymorphisms in 15 Chinese populations. Int. J. Immunogenet. 35, 433–437 (2008).

    Article  PubMed  Google Scholar 

  53. Cohen, S., Dadi, H., Shaoul, E., Sharfe, N. & Roifman, C. M. Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 93, 2013–2024 (1999).

    CAS  PubMed  Google Scholar 

  54. Vang, T. et al. Protein tyrosine phosphatases in autoimmunity. Annu. Rev. Immunol. 26, 29–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37, 1317–1319 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Arechiga, A. F. et al. Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J. Immunol. 182, 3343–3347 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Kochi, Y. et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat. Genet. 37, 478–485 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ikari, K. et al. Supportive evidence for a genetic association of the FCRL3 promoter polymorphism with rheumatoid arthritis. Ann. Rheum. Dis. 65, 671–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Umemura, T. et al. Genetic association of Fc receptor-like 3 polymorphisms with autoimmune pancreatitis in Japanese patients. Gut 55, 1367–1368 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shimada, M. et al. Association of autoimmune disease-related gene polymorphisms with chronic graft-versus-host disease. Br. J. Haematol. 139, 458–463 (2007).

    CAS  PubMed  Google Scholar 

  61. Simmonds, M. J. et al. Contribution of single nucleotide polymorphisms within FCRL3 and MAP3K7IP2 to the pathogenesis of Graves' disease. J. Clin. Endocrinol. Metab. 91, 1056–1061 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Newman, W. G. et al. Rheumatoid arthritis association with the FCRL3 −169C polymorphism is restricted to PTPN22 1858T-homozygous individuals in a Canadian population. Arthritis Rheum. 54, 3820–3827 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Davis, R. S. Fc receptor-like molecules. Annu. Rev. Immunol. 25, 525–560 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Mendoza, J. L. et al. FcRL3 gene promoter variant is associated with peripheral arthritis in Crohn's disease. Inflamm. Bowel Dis. 15, 1351–1357 (2009).

    Article  PubMed  Google Scholar 

  66. Xu, M. J., Zhao, R., Cao, H. & Zhao, Z. J. SPAP2, an Ig family receptor containing both ITIMs and ITAMs. Biochem. Biophys. Res. Commun. 293, 1037–1046 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Kochi, Y. et al. FCRL3, an autoimmune susceptibility gene, has inhibitory potential on B-cell receptor-mediated signaling. J. Immunol. 183, 5502–5510 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Kumar, K. R. et al. Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science 312, 1665–1669 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Laboratory for Autoimmune Diseases, RIKEN, Tokyo for their assistance. This work was supported by grants from the Center for Genomic Medicine, RIKEN; the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Leading Project); and the Ministry of Health, Labor, and Welfare of Japan (Research on Intractable Diseases).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Yamamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochi, Y., Suzuki, A., Yamada, R. et al. Ethnogenetic heterogeneity of rheumatoid arthritis—implications for pathogenesis. Nat Rev Rheumatol 6, 290–295 (2010). https://doi.org/10.1038/nrrheum.2010.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing