Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Getting arthritis gene therapy into the clinic

Abstract

Gene transfer technologies enable the controlled, targeted and sustained expression of gene products at precise anatomical locations, such as the joint. In this way, they offer the potential for more-effective, less-expensive treatments of joint diseases with fewer extra-articular adverse effects. A large body of preclinical data confirms the utility of intra-articular gene therapy in animal models of rheumatoid arthritis and osteoarthritis. However, relatively few clinical trials have been conducted, only one of which has completed phase II. This article summarizes the status in 2010 of the clinical development of gene therapy for arthritis, identifies certain constraints to progress and suggests possible solutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic concept behind local, intra-articular gene therapy for arthritis.
Figure 2: Local gene therapy for arthritis in clinical trials.

Similar content being viewed by others

References

  1. Bandara, G. et al. Gene transfer to synoviocytes: prospects for gene treatment of arthritis. DNA Cell Biol. 11, 227–231 (1992).

    Article  CAS  Google Scholar 

  2. Mease, P. J. et al. Safety, tolerability, and clinical outcomes after intraarticular injection of a recombinant adeno-associated vector containing a tumor necrosis factor antagonist gene: results of a phase 1/2 study. J. Rheumatol. 37, 692–703 (2010).

    Article  CAS  Google Scholar 

  3. Traister, R. S. & Hirsch, R. Gene therapy for arthritis. Mod. Rheumatol. 18, 2–14 (2008).

    Article  CAS  Google Scholar 

  4. Ghivizzani, S. C. et al. Perspectives on the use of gene therapy for chronic joint diseases. Curr. Gene Ther. 8, 273–286 (2008).

    Article  CAS  Google Scholar 

  5. Gouze, E. et al. Transgene persistence and cell turnover in the diarthrodial joint: implications for gene therapy of chronic joint diseases. Mol. Ther. 15, 1114–1120 (2007).

    Article  CAS  Google Scholar 

  6. Madry, H., Cucchiarini, M., Terwilliger, E. F. & Trippel, S. B. Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum. Gene Ther. 14, 393–402 (2003).

    Article  CAS  Google Scholar 

  7. Zhang, H., Gao, G., Clayburne, G. & Schumacher, H. R. Elimination of rheumatoid synovium in situ using a Fas ligand 'gene scalpel'. Arthritis Res. Ther. 7, R1235–R1243 (2005).

    Article  CAS  Google Scholar 

  8. Goossens, P. H. et al. Feasibility of adenovirus-mediated nonsurgical synovectomy in collagen-induced arthritis-affected rhesus monkeys. Hum. Gene Ther. 10, 1139–1149 (1999).

    Article  CAS  Google Scholar 

  9. Sant, S. M. et al. Molecular lysis of synovial lining cells by in vivo herpes simplex virus-thymidine kinase gene transfer. Hum. Gene Ther. 9, 2735–2743 (1998).

    Article  CAS  Google Scholar 

  10. Miagkov, A. V., Varley, A. W., Munford, R. S. & Makarov, S. S. Endogenous regulation of a therapeutic transgene restores homeostasis in arthritic joints. J. Clin. Invest. 109, 1223–1229 (2002).

    Article  CAS  Google Scholar 

  11. Evans, C. H. et al. Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc. Natl Acad. Sci. USA 102, 8698–8703 (2005).

    Article  CAS  Google Scholar 

  12. Bendele, A. et al. Efficacy of sustained blood levels of interleukin-1 receptor antagonist in animal models of arthritis: comparison of efficacy in animal models with human clinical data. Arthritis Rheum. 42, 498–506 (1999).

    Article  CAS  Google Scholar 

  13. Makarov, S. S. et al. Suppression of experimental arthritis by gene transfer of interleukin 1 receptor antagonist cDNA. Proc. Natl Acad. Sci. USA 93, 402–406 (1996).

    Article  CAS  Google Scholar 

  14. Bandara, G. et al. Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer. Proc. Natl Acad. Sci. USA 90, 10764–10768 (1993).

    Article  CAS  Google Scholar 

  15. Wehling, P. et al. Clinical responses to gene therapy in joints of two subjects with rheumatoid arthritis. Hum. Gene Ther. 20, 97–101 (2009).

    Article  CAS  Google Scholar 

  16. Kohn, D. B., Sadelain, M. & Glorioso, J. C. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat. Rev. Cancer 3, 477–488 (2003).

    Article  CAS  Google Scholar 

  17. Miles, B. J. et al. Prostate-specific antigen response and systemic T cell activation after in situ gene therapy in prostate cancer patients failing radiotherapy. Hum. Gene Ther. 12, 1955–1967 (2001).

    Article  CAS  Google Scholar 

  18. Raper, S. E. et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80, 148–158 (2003).

    Article  CAS  Google Scholar 

  19. Mease, P. J. et al. Local delivery of a recombinant adenoassociated vector containing a tumor necrosis factor alpha antagonist gene in inflammatory arthritis: a phase 1 dose-escalation safety and tolerability study. Ann. Rheum. Dis. 68, 1247–1254 (2009).

    Article  CAS  Google Scholar 

  20. Frank, K. M. et al. Investigation of the cause of death in a gene-therapy trial. N. Engl. J. Med. 361, 161–169 (2009).

    Article  CAS  Google Scholar 

  21. Gibbons, L. J. & Hyrich, K. L. Biologic therapy for rheumatoid arthritis: clinical efficacy and predictors of response. BioDrugs 23, 111–124 (2009).

    Article  CAS  Google Scholar 

  22. Tomita, N., Morishita, R., Tomita, T. & Ogihara, T. Potential therapeutic applications of decoy oligonucleotides. Curr. Opin. Mol. Ther. 4, 166–170 (2002).

    CAS  PubMed  Google Scholar 

  23. Safety study of TissueGene-C in degenerative joint disease of the knee (TGC-03-01). ClinicalTrials.gov identifier: NCT00599248, [online], (2010).

  24. Pelletier, J. P. et al. In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum. 40, 1012–1019 (1997).

    Article  CAS  Google Scholar 

  25. Zhang, X., Mao, Z. & Yu, C. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J. Orthop. Res. 22, 742–750 (2004).

    Article  CAS  Google Scholar 

  26. Frisbie, D. D., Ghivizzani, S. C., Robbins, P. D., Evans, C. H. & McIlwraith, C. W. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Ther. 9, 12–20 (2002).

    Article  CAS  Google Scholar 

  27. Sun, J. et al. Intraarticular factor IX protein or gene replacement protects against development of hemophilic synovitis in the absence of circulating factor IX. Blood 112, 4532–4541 (2008).

    Article  CAS  Google Scholar 

  28. Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006).

    Article  CAS  Google Scholar 

  29. Tyler, W. K., Vidal, A. F., Williams, R. J. & Healey, J. H. Pigmented villonodular synovitis. J. Am. Acad. Orthop. Surg. 14, 376–385 (2006).

    Article  Google Scholar 

  30. Byers, S., Rothe, M., Lalic, J., Koldej, R. & Anson, D. S. Lentiviral-mediated correction of MPS VI cells and gene transfer to joint tissues. Mol. Genet. Metab. 97, 102–108 (2009).

    Article  CAS  Google Scholar 

  31. Evans, C. H. Arthritis gene therapy at an inflection point. Future Rheumatol. 3, 207–210 (2008).

    Article  Google Scholar 

  32. [No authors listed] Gene therapy deserves a fresh chance. Nature 461, 1173 (2009).

Download references

Acknowledgements

The authors' work in this area has been funded by NIH grants R01 AR43623, R21 AR049606, R01 AR048566, R01 AR057422 and R01 AR051085, and by Orthogen.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, providing a substantial contribution to discussion of content, writing the article and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Christopher H. Evans.

Ethics declarations

Competing interests

C. H. Evans and P. D. Robbins are consultants for, and have received honoraria from, TissueGene. C. H. Evans is on the supervisory board of and owns stock in Orthogen. P. D. Robbins and S. C. Ghivizzani are founders of Molecular Orthopaedics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, C., Ghivizzani, S. & Robbins, P. Getting arthritis gene therapy into the clinic. Nat Rev Rheumatol 7, 244–249 (2011). https://doi.org/10.1038/nrrheum.2010.193

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.193

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research