Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Novel functions for NFκB: inhibition of bone formation

Abstract

NFκB is a family of transcription factors involved in immunity and the normal functioning of many tissues. It has been well studied in osteoclasts, and new data indicate an important role for NFκB in the negative regulation of bone formation. In this article, we discuss how NFκB activation affects osteoblast function and bone formation. In particular, we describe how reduced NFκB activity in osteoblasts results in an increase in bone formation via enhanced c-Jun N-terminal kinase (JNK) activity, which regulates FOSL1 (also known as Fra1) expression. Furthermore, we discuss how estrogen and NFκB crosstalk in osteoblasts acts to oppositely regulate bone formation. Future NFκB-targeting treatments for osteoporosis, rheumatoid arthritis and other inflammatory bone diseases could lead to increased bone formation concurrent with decreased bone resorption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NFκB signaling in osteoblasts.
Figure 2: Estrogen signaling inhibits NFκB signaling.

Similar content being viewed by others

References

  1. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109 (Suppl.), S81–S96 (2002).

    Article  CAS  Google Scholar 

  2. Granic, I., Dolga, A. M., Nijholt, I. M., van Dijk, G. & Eisel, U. L. Inflammation and NF-κB in Alzheimer's disease and diabetes. J. Alzheimers Dis. 16, 809–821 (2009).

    Article  Google Scholar 

  3. Geusens, P. Emerging treatments for postmenopausal osteoporosis—focus on denosumab. Clin. Interv. Aging 4, 241–250 (2009).

    Article  CAS  Google Scholar 

  4. Jimi, E. & Ghosh, S. Role of nuclear factor-κB in the immune system and bone. Immunol. Rev. 208, 80–87 (2005).

    Article  CAS  Google Scholar 

  5. Lee, Z. H. & Kim, H. H. Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem. Biophys. Res. Commun. 305, 211–214 (2003).

    Article  CAS  Google Scholar 

  6. Soysa, N. S. & Alles, N. NF-κB functions in osteoclasts. Biochem. Biophys. Res. Commun. 378, 1–5 (2009).

    Article  CAS  Google Scholar 

  7. Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    Article  CAS  Google Scholar 

  8. Yamashita, T. et al. NF-κB p50 and p52 regulate receptor activator of NF-κB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J. Biol. Chem. 282, 18245–18253 (2007).

    Article  CAS  Google Scholar 

  9. Kim, J. H. et al. The mechanism of osteoclast differentiation induced by IL-1. J. Immunol. 183, 1862–1870 (2009).

    Article  CAS  Google Scholar 

  10. Jimi, E. et al. Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat. Med. 10, 617–624 (2004).

    Article  CAS  Google Scholar 

  11. Vaira, S. et al. RelB is the NF-κB subunit downstream of NIK responsible for osteoclast differentiation. Proc. Natl Acad. Sci. USA 105, 3897–3902 (2008).

    Article  CAS  Google Scholar 

  12. Iotsova, V. et al. Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nat. Med. 3, 1285–1289 (1997).

    Article  CAS  Google Scholar 

  13. Franzoso, G. et al. Requirement for NF-κB in osteoclast and B-cell development. Genes Dev. 11, 3482–3496 (1997).

    Article  CAS  Google Scholar 

  14. Ruocco, M. G. et al. IκB kinase (IKK)β, but not IKKα, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J. Exp. Med. 201, 1677–1687 (2005).

    Article  CAS  Google Scholar 

  15. Takeda, K. et al. Limb and skin abnormalities in mice lacking IKKα. Science 284, 313–316 (1999).

    Article  CAS  Google Scholar 

  16. Sil, A. K., Maeda, S., Sano, Y., Roop, D. R. & Karin, M. IκB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature 428, 660–664 (2004).

    Article  CAS  Google Scholar 

  17. De Smaele, E. et al. Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature 414, 308–313 (2001).

    Article  CAS  Google Scholar 

  18. Tang, G. et al. Inhibition of JNK activation through NF-κB target genes. Nature 414, 313–317 (2001).

    Article  CAS  Google Scholar 

  19. Vaira, S. et al. RelA/p65 promotes osteoclast differentiation by blocking a RANKL-induced apoptotic JNK pathway in mice. J. Clin. Invest. 118, 2088–2097 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang, J. et al. Inhibition of osteoblastic bone formation by nuclear factor-κB. Nat. Med. 15, 682–689 (2009).

    Article  CAS  Google Scholar 

  21. Eferl, R. et al. The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J. 23, 2789–2799 (2004).

    Article  CAS  Google Scholar 

  22. Julien, M. et al. Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J. Bone Miner. Res. 24, 1856–1868 (2009).

    Article  CAS  Google Scholar 

  23. Pfeilschifter, J., Köditz, R., Pfohl, M. & Schatz, H. Changes in proinflammatory cytokine activity after menopause. Endocr. Rev. 23, 90–119 (2002).

    Article  CAS  Google Scholar 

  24. Weitzmann, M. N. & Pacifici, R. Estrogen deficiency and bone loss: an inflammatory tale. J. Clin. Invest. 116, 1186–1194 (2006).

    Article  CAS  Google Scholar 

  25. Gilbert, L. et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2αA) is inhibited by tumor necrosis factor-alpha. J. Biol. Chem. 277, 2695–2701 (2002).

    Article  CAS  Google Scholar 

  26. Kaneki, H. et al. Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J. Biol. Chem. 281, 4326–4333 (2006).

    Article  CAS  Google Scholar 

  27. Lu, X., Gilbert, L., He, X., Rubin, J. & Nanes, M. S. Transcriptional regulation of the osterix (Osx, Sp7) promoter by tumor necrosis factor identifies disparate effects of mitogen-activated protein kinase and NFκB pathways. J. Biol. Chem. 281, 6297–6306 (2006).

    Article  CAS  Google Scholar 

  28. Ding, J. et al. TNF-α and IL-1β inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sci. 84, 499–504 (2009).

    Article  CAS  Google Scholar 

  29. Gilbert, L. C., Rubin, J. & Nanes, M. S. The p55 TNF receptor mediates TNF inhibition of osteoblast differentiation independently of apoptosis. Am. J. Physiol. Endocrinol. Metab. 288, E1011–E1018 (2005).

    Article  CAS  Google Scholar 

  30. Krum, S. A. & Brown, M. Unraveling estrogen action in osteoporosis. Cell Cycle 7, 1348–1352 (2008).

    Article  CAS  Google Scholar 

  31. Krum, S. A. et al. Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J. 27, 535–545 (2008).

    Article  CAS  Google Scholar 

  32. Kalaitzidis, D. & Gilmore, T. D. Transcription factor cross-talk: the estrogen receptor and NF-κB. Trends Endocrinol. Metab. 16, 46–52 (2005).

    Article  CAS  Google Scholar 

  33. Cvoro, A. et al. Distinct roles of unliganded and liganded estrogen receptors in transcriptional repression. Mol. Cell 21, 555–564 (2006).

    Article  CAS  Google Scholar 

  34. Li, Y. et al. Endogenous TNFα lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-κB. J. Bone Miner. Res. 22, 646–655 (2007).

    Article  CAS  Google Scholar 

  35. Keffer, J. et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 10, 4025–4031 (1991).

    Article  CAS  Google Scholar 

  36. Li, P. et al. Systemic tumor necrosis factor α mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor α-transgenic mice. Arthritis Rheum. 50, 265–276 (2004).

    Article  CAS  Google Scholar 

  37. Kitazawa, R., Kimble, R. B., Vannice, J. L., Kung, V. T. & Pacifici, R. Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J. Clin. Invest. 94, 2397–2406 (1994).

    Article  CAS  Google Scholar 

  38. Jilka, R. L. et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257, 88–91 (1992).

    Article  CAS  Google Scholar 

  39. Weitzmann, M. N., Roggia, C., Toraldo, G., Weitzmann, L. & Pacifici, R. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J. Clin. Invest. 110, 1643–1650 (2002).

    Article  CAS  Google Scholar 

  40. Kimble, R. B. et al. Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology 136, 3054–3061 (1995).

    Article  CAS  Google Scholar 

  41. Raisz, L. G. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J. Clin. Invest. 115, 3318–3325 (2005).

    Article  CAS  Google Scholar 

  42. Deal, C. Future therapeutic targets in osteoporosis. Curr. Opin. Rheumatol. 21, 380–385 (2009).

    Article  CAS  Google Scholar 

  43. Mukherjee, S. et al. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J. Clin. Invest. 118, 491–504 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nat. Cell Biol. 7, 758–765 (2005).

    Article  CAS  Google Scholar 

  45. Wang, C. Y., Mayo, M. W. & Baldwin, A. S. Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274, 784–787 (1996).

    Article  CAS  Google Scholar 

  46. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S. Jr. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).

    Article  CAS  Google Scholar 

  47. Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730 (2001).

    CAS  PubMed  Google Scholar 

  48. Chen, S. et al. Suppression of tumor necrosis factor-mediated apoptosis by nuclear factor κB-independent bone morphogenetic protein/Smad signaling. J. Biol. Chem. 276, 39259–39263 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a K12 BIRCWH grant to S. A. Krum from the NIH/ORWH (HD001400-08) and by DE17684, DE019412, DE016513, DE13848 from National Institute of Craniofacial and Dental Research and CA100849 from National Cancer Institute to C.-Y. Wang. The authors would like to thank Benny Gee, UCLA Life Sciences, for help with the figures.

Author information

Authors and Affiliations

Authors

Contributions

S. A. Krum, J. Chang and C.-Y. Wang researched data for the article. S. Krum, G. Miranda-Carboni and C.-Y. Wang made substantial contributions to the discussion of the article's content. S. A. Krum, G. Miranda-Carboni and C.-Y. Wang were involved in writing the article. All the authors took part in review/editing of the manuscript before submission.

Corresponding author

Correspondence to Cun-Yu Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krum, S., Chang, J., Miranda-Carboni, G. et al. Novel functions for NFκB: inhibition of bone formation. Nat Rev Rheumatol 6, 607–611 (2010). https://doi.org/10.1038/nrrheum.2010.133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing