Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tyrosine kinases as targets for the treatment of rheumatoid arthritis

Abstract

As critical regulators of numerous cell signaling pathways, tyrosine kinases are implicated in the pathogenesis of several diseases, including rheumatoid arthritis (RA). In the absence of disease, synoviocytes produce factors that provide nutrition and lubrication for the surrounding cartilage tissue; few cellular infiltrates are seen in the synovium. In RA, however, macrophages, neutrophils, T cells and B cells infiltrate the synovium and produce cytokines, chemokines and degradative enzymes that promote inflammation and joint destruction. In addition, the synovial lining expands owing to the proliferation of synoviocytes and infiltration of inflammatory cells to form a pannus, which invades the surrounding bone and cartilage. Many of these cell responses are regulated by tyrosine kinases that operate in specific signaling pathways, and inhibition of a number of these kinases might be expected to provide benefit in RA.

Key Points

  • Rheumatoid arthritis (RA) is characterized by leukocyte infiltration, synoviocyte hyperplasia and osteoclastogenesis, and tyrosine kinases have key roles in the signaling pathways that regulate these processes

  • Inhibition of platelet-derived growth factor receptors, vascular endothelial growth factor receptors and TIE receptors might reduce synovial hyperplasia and angiogenesis

  • Inhibition of colony-stimulating factor receptor-1 and Src might reduce monocyte maturation and osteoclastogenesis

  • Blocking signaling through Bruton's tyrosine kinase might reduce B-cell and T-cell activation

  • Blocking KIT activation might induce mast cell apoptosis, thereby reducing the production of inflammatory cytokines and degradative molecules in the synovium

  • Imatinib, which inhibits several tyrosine kinases, and more-specific inhibitors of Janus kinases and Syk, have already shown efficacy in the treatment of RA; however, toxicity remains an issue

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular responses mediated by tyrosine kinases that contribute to the pathogenesis of rheumatoid arthritis.
Figure 2: Activation of tyrosine kinases.

Similar content being viewed by others

References

  1. Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature 423, 356–361 (2003).

    Article  CAS  Google Scholar 

  2. Sano, H. et al. Coexpression of phosphotyrosine-containing proteins, platelet-derived growth factor-B, and fibroblast growth factor-1 in situ in synovial tissues of patients with rheumatoid arthritis and Lewis rats with adjuvant or streptococcal cell wall arthritis. J. Clin. Invest. 91, 553–565 (1993).

    Article  CAS  Google Scholar 

  3. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  Google Scholar 

  4. Benati, D. & Baldari, C. T. SRC family kinases as potential therapeutic targets for malignancies and immunological disorders. Curr. Med. Chem. 15, 1154–1165 (2008).

    Article  CAS  Google Scholar 

  5. Schindler, T. et al. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    Article  CAS  Google Scholar 

  6. Ikeda, M., Hosoda, Y., Hirose, S., Okada, Y. & Ikeda, E. Expression of vascular endothelial growth factor isoforms and their receptors Flt-1, KDR, and neuropilin-1 in synovial tissues of rheumatoid arthritis. J. Pathol. 191, 426–433 (2000).

    Article  CAS  Google Scholar 

  7. Betsholtz, C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev. 15, 215–228 (2004).

    Article  CAS  Google Scholar 

  8. Pohlers, D. et al. Expression of platelet-derived growth factors C and D in the synovial membrane of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum. 54, 788–794 (2006).

    Article  CAS  Google Scholar 

  9. Watanabe, N. et al. Gene expression profile analysis of rheumatoid synovial fibroblast cultures revealing the overexpression of genes responsible for tumor-like growth of rheumatoid synovium. Biochem. Biophys. Res. Commun. 294, 1121–1129 (2002).

    Article  CAS  Google Scholar 

  10. Reuterdahl, C. et al. Characterization of platelet-derived growth factor beta-receptor expressing cells in the vasculature of human rheumatoid synovium. Lab. Invest. 64, 321–329 (1991).

    CAS  PubMed  Google Scholar 

  11. Paniagua, R. T. et al. Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis. J. Clin. Invest. 116, 2633–2642 (2006).

    Article  CAS  Google Scholar 

  12. Ando, W. et al. Imatinib mesylate inhibits osteoclastogenesis and joint destruction in rats with collagen-induced arthritis (CIA). J. Bone Miner. Metab. 24, 274–282 (2006).

    Article  CAS  Google Scholar 

  13. Koyama, K. et al. Imatinib mesylate both prevents and treats the arthritis induced by type II collagen antibody in mice. Mod. Rheumatol. 17, 306–310 (2007).

    Article  CAS  Google Scholar 

  14. Sandler, C. et al. Imatinib mesylate inhibits platelet derived growth factor stimulated proliferation of rheumatoid synovial fibroblasts. Biochem. Biophys. Res. Commun. 347, 31–35 (2006).

    Article  CAS  Google Scholar 

  15. Kameda, H. et al. Imatinib mesylate inhibits proliferation of rheumatoid synovial fibroblast-like cells and phosphorylation of Gab adapter proteins activated by platelet-derived growth factor. Clin. Exp. Immunol. 144, 335–341 (2006).

    Article  CAS  Google Scholar 

  16. Giatromanolaki, A. et al. The angiogenic pathway “vascular endothelial growth factor/flk-1(KDR)-receptor” in rheumatoid arthritis and osteoarthritis. J. Pathol. 194, 101–108 (2001).

    Article  CAS  Google Scholar 

  17. Roy, H., Bhardwaj, S. & Ylä- Herttuala, S. Biology of vascular endothelial growth factors. FEBS Lett. 580, 2879–2887 (2006).

    Article  CAS  Google Scholar 

  18. Ballara, S. et al. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum. 44, 2055–2064 (2001).

    Article  CAS  Google Scholar 

  19. Sone, H. et al. Elevated levels of vascular endothelial growth factor in the sera of patients with rheumatoid arthritis correlation with disease activity. Life Sci. 69, 1861–1869 (2001).

    Article  CAS  Google Scholar 

  20. Olszewski, W. L. et al. Lymph draining from foot joints in rheumatoid arthritis provides insight into local cytokine and chemokine production and transport to lymph nodes. Arthritis Rheum. 44, 541–549 (2001).

    Article  CAS  Google Scholar 

  21. Tanaka, S. Signaling axis in osteoclast biology and therapeutic targeting in the RANKL/RANK/OPG system. Am. J. Nephrol. 27, 466–478 (2007).

    Article  Google Scholar 

  22. Kim, W. U. et al. Interaction of vascular endothelial growth factor 165 with neuropilin-1 protects rheumatoid synoviocytes from apoptotic death by regulating Bcl-2 expression and Bax translocation. J. Immunol. 177, 5727–5735 (2006).

    Article  CAS  Google Scholar 

  23. Paavonen, K. et al. Vascular endothelial growth factors C and D and their VEGFR-2 and 3 receptors in blood and lymphatic vessels in healthy and arthritic synovium. J. Rheumatol. 29, 39–45 (2002).

    CAS  PubMed  Google Scholar 

  24. Fava, R. A. et al. Vascular permeability factor/endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J. Exp. Med. 180, 341–346 (1994).

    Article  CAS  Google Scholar 

  25. Pufe, T. et al. Splice variants VEGF121 and VEGF165 of the angiogenic peptide vascular endothelial cell growth factor are expressed in the synovial tissue of patients with rheumatoid arthritis. J. Rheumatol. 28, 1482–1485 (2001).

    CAS  PubMed  Google Scholar 

  26. De Bandt, M. et al. Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis. J. Immunol. 171, 4853–4859 (2003).

    Article  CAS  Google Scholar 

  27. Lu, J. et al. Vascular endothelial growth factor expression and regulation of murine collagen-induced arthritis. J. Immunol. 164, 5922–5927 (2000).

    Article  CAS  Google Scholar 

  28. Jin, P. et al. Novel splice variants derived from the receptor tyrosine kinase superfamily are potential therapeutics for rheumatoid arthritis. Arthritis Res. Ther. 10, R73 (2008).

    Article  Google Scholar 

  29. Murakami, M. et al. Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood 108, 1849–1856 (2006).

    Article  CAS  Google Scholar 

  30. Faivre, S. et al. Molecular basis for sunitinib efficacy and future clinical development. Nat. Rev. Drug Discov. 6, 734–745 (2007).

    Article  CAS  Google Scholar 

  31. Makinde, T. & Agrawal, D. K. Intra and extravascular transmembrane signalling of angiopoietin-1-Tie2 receptor in health and disease. J. Cell. Mol. Med. 12, 810–828 (2008).

    Article  CAS  Google Scholar 

  32. Shahrara, S. et al. Differential expression of the angiogenic Tie receptor family in arthritic and normal synovial tissue. Arthritis Res. 4, 201–208 (2002).

    Article  CAS  Google Scholar 

  33. Uchida, T. et al. Immunohistochemical localisation of protein tyrosine kinase receptors Tie-1 and Tie-2 in synovial tissue of rheumatoid arthritis: correlation with angiogenesis and synovial proliferation. Ann. Rheum. Dis. 59, 607–614 (2000).

    Article  CAS  Google Scholar 

  34. Chen, Y., Donnelly, E., Kobayashi, H., Debusk, L. M. & Lin, P. C. Gene therapy targeting the Tie2 function ameliorates collagen-induced arthritis and protects against bone destruction. Arthritis Rheum. 52, 1585–1594 (2005).

    Article  CAS  Google Scholar 

  35. Orozco, G. et al. Genetic basis of rheumatoid arthritis. Biomed. Pharmacother. 60, 656–662 (2006).

    Article  CAS  Google Scholar 

  36. Yanaba, K. et al. B-lymphocyte contributions to human autoimmune disease. Immunol. Rev. 223, 284–299 (2008).

    Article  CAS  Google Scholar 

  37. Jiang, A. et al. Different protein tyrosine kinases are required for B cell antigen receptor-mediated activation of extracellular signal-regulated kinase, c-Jun NH2-terminal kinase 1, and p38 mitogen-activated protein kinase. J. Exp. Med. 188, 1297–1306 (1998).

    Article  CAS  Google Scholar 

  38. Blake, S. et al. The Src/ABL kinase inhibitor dasatinib (BMS-354825) inhibits function of normal human T-lymphocytes in vitro. Clin. Immunol. 127, 330–339 (2008).

    Article  CAS  Google Scholar 

  39. Rokosz, L. L. et al. Kinase inhibitors as drugs for chronic inflammatory and immunological diseases: progress and challenges. Expert Opin. Ther. Targets 12, 883–903 (2008).

    Article  CAS  Google Scholar 

  40. Felices, M. et al. Tec kinases in T cell and mast cell signaling. Adv. Immunol. 93, 145–184 (2007).

    Article  CAS  Google Scholar 

  41. Pan, Z. et al. Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase. ChemMedChem 2, 58–61 (2007).

    Article  CAS  Google Scholar 

  42. Hantschel, O. et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc. Natl Acad. Sci. USA 104, 13283–13288 (2007).

    Article  CAS  Google Scholar 

  43. Eklund, K. K. Mast cells in the pathogenesis of rheumatic diseases and as potential targets for anti-rheumatic therapy. Immunol. Rev. 217, 38–52 (2007).

    Article  CAS  Google Scholar 

  44. Bakharevski, O. & Ryan, P. F. Mast cells as a target in the treatment of rheumatoid arthritis. Inflammopharmacology 7, 351–362 (1999).

    Article  CAS  Google Scholar 

  45. Lee, D. M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297, 1689–1692 (2002).

    Article  CAS  Google Scholar 

  46. Juurikivi, A. et al. Inhibition of c-kit tyrosine kinase by imatinib mesylate induces apoptosis in mast cells in rheumatoid synovia: a potential approach to the treatment of arthritis. Ann. Rheum. Dis. 64, 1126–1131 (2005).

    Article  CAS  Google Scholar 

  47. Carsons, S. E. et al. Detection and quantitation of stem cell factor (kit ligand) in the synovial fluid of patients with rheumatic disease. J. Rheumatol. 27, 2798–2800 (2000).

    CAS  PubMed  Google Scholar 

  48. Ceponis, A. et al. Expression of stem cell factor (SCF) and SCF receptor (c-kit) in synovial membrane in arthritis: correlation with synovial mast cell hyperplasia and inflammation. J. Rheumatol. 25, 2304–2314 (1998).

    CAS  PubMed  Google Scholar 

  49. Olsson, N. et al. Demonstration of mast cell chemotactic activity in synovial fluid from rheumatoid patients. Ann. Rheum. Dis. 60, 187–193 (2001).

    Article  CAS  Google Scholar 

  50. Adamopoulos, I. E. et al. Synovial fluid macrophages are capable of osteoclast formation and resorption. J. Pathol. 208, 35–43 (2006).

    Article  CAS  Google Scholar 

  51. Takasugi, K. et al. Induction of tumour necrosis factor receptor-expressing macrophages by interleukin-10 and macrophage colony-stimulating factor in rheumatoid arthritis. Arthritis Res. Ther. 8, R126 (2006).

    Article  Google Scholar 

  52. Nakano, K. et al. Rheumatoid synovial endothelial cells produce macrophage colony-stimulating factor leading to osteoclastogenesis in rheumatoid arthritis. Rheumatology (Oxford) 46, 597–603 (2007).

    Article  CAS  Google Scholar 

  53. Seitz, M. et al. Constitutive mRNA and protein production of macrophage colony-stimulating factor but not of other cytokines by synovial fibroblasts from rheumatoid arthritis and osteoarthritis patients. Br. J. Rheumatol. 33, 613–619 (1994).

    Article  CAS  Google Scholar 

  54. Campbell, I. K. et al. The colony-stimulating factors and collagen-induced arthritis: exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF. J. Leukoc. Biol. 68, 144–150 (2000).

    CAS  PubMed  Google Scholar 

  55. Bischof, R. J. et al. Exacerbation of acute inflammatory arthritis by the colony-stimulating factors CSF-1 and granulocyte macrophage (GM)-CSF: evidence of macrophage infiltration and local proliferation. Clin. Exp. Immunol. 119, 361–367 (2000).

    Article  CAS  Google Scholar 

  56. Abd, A. H. et al. The role of macrophages in experimental arthritis induced by Streptococcus agalactiae sonicate: actions of macrophage colony-stimulating factor (CSF-1) and other macrophage-modulating agents. Lymphokine Cytokine Res. 10, 43–50 (1991).

    CAS  PubMed  Google Scholar 

  57. Yang, Y. H. & Hamilton, J. A. Dependence of interleukin-1-induced arthritis on granulocyte-macrophage colony-stimulating factor. Arthritis Rheum. 44, 111–119 (2001).

    Article  Google Scholar 

  58. Kitaura, H. et al. M-CSF mediates TNF-induced inflammatory osteolysis. J. Clin. Invest. 115, 3418–3427 (2005).

    Article  CAS  Google Scholar 

  59. Conway, J. G. et al. Effects of the cFMS kinase inhibitor 5-(3-methoxy-4-[{4-methoxybenzyl}oxy]benzyl)pyrimidine-2, 4-diamine (GW2580) in normal and arthritic rats. J. Pharmacol. Exp. Ther. 326, 41–50 (2008).

    Article  CAS  Google Scholar 

  60. Ohno, H. et al. The orally-active and selective c-Fms tyrosine kinase inhibitor Ki20227 inhibits disease progression in a collagen-induced arthritis mouse model. Eur. J. Immunol. 38, 283–291 (2008).

    Article  CAS  Google Scholar 

  61. van Nimwegen, M. J. & van de Water, B. Focal adhesion kinase: a potential target in cancer therapy. Biochem. Pharmacol. 73, 597–609 (2007).

    Article  CAS  Google Scholar 

  62. Miyazaki, T. et al. The role of c-Src kinase in the regulation of osteoclast function. Mod. Rheumatol. 16, 68–74 (2006).

    Article  CAS  Google Scholar 

  63. Del Fattore, A. et al. Osteoclast receptors and signaling. Arch. Biochem. Biophys. 473, 147–160 (2008).

    Article  CAS  Google Scholar 

  64. Wada, T. et al. RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17–25 (2006).

    Article  CAS  Google Scholar 

  65. Shahrara, S. et al. Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues. Arthritis Res. Ther. 9, R112 (2007).

    Article  Google Scholar 

  66. Takayanagi, H. et al. Suppression of arthritic bone destruction by adenovirus-mediated csk gene transfer to synoviocytes and osteoclasts. J. Clin. Invest. 104, 137–146 (1999).

    Article  CAS  Google Scholar 

  67. Kay, J. & Calabrese, L. The role of interleukin-1 in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 43 (Suppl. 3), iii2–iii9 (2004).

    Google Scholar 

  68. Segal, B. et al. Tumor necrosis factor (TNF) inhibitor therapy for rheumatoid arthritis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 106, 778–787 (2008).

    Article  Google Scholar 

  69. Kumkumian, G. K. et al. Platelet-derived growth factor and IL-1 interactions in rheumatoid arthritis. Regulation of synoviocyte proliferation, prostaglandin production, and collagenase transcription. J. Immunol. 143, 833–837 (1989).

    CAS  PubMed  Google Scholar 

  70. Campbell, I. K. et al. Production of macrophage colony-stimulating factor (M-CSF) by human articular cartilage and chondrocytes. Modulation by interleukin-1 and tumor necrosis factor alpha. Biochim. Biophys. Acta 1182, 57–63 (1993).

    Article  CAS  Google Scholar 

  71. Miyachi, K. et al. Efficacy of imatinib mesylate (STI571) treatment for a patient with rheumatoid arthritis developing chronic myelogenous leukemia. Clin. Rheumatol. 22, 329–332 (2003).

    Article  CAS  Google Scholar 

  72. Eklund, K. K. & Joensuu, H. Treatment of rheumatoid arthritis with imatinib mesylate: clinical improvement in three refractory cases. Ann. Med. 35, 362–367 (2003).

    Article  CAS  Google Scholar 

  73. Walker, J. G. et al. Changes in synovial tissue Jak–STAT expression in rheumatoid arthritis in response to successful DMARD treatment. Ann. Rheum. Dis. 65, 1558–1564 (2006).

    Article  CAS  Google Scholar 

  74. Pfizer Pipeline: as of September 30, 2008. http://media.pfizer.com/files/research/pipeline/2008_0930/pipeline_2008_0930.pdf (2008).

  75. Incyte Corporation. Press Release: Incyte's JAK inhibitor demonstrates rapid and marked clinical improvement in rheumatoid arthritis patients. http://investor.incyte.com/phoenix.zhtml?c=69764&p=IROL-NewsText&t=Regular&id=1217246& (2008).

  76. Cha, H. S. et al. A novel spleen tyrosine kinase inhibitor blocks c-Jun N-terminal kinase-mediated gene expression in synoviocytes. J. Pharmacol. Exp. Ther. 317, 571–578 (2006).

    Article  CAS  Google Scholar 

  77. Weinblatt, M. E. et al. Treatment of rheumatoid arthritis with a syk kinase inhibitor: a twelve-week, randomized, placebo-controlled trial. Arthritis Rheum. 58, 3309–3318 (2008).

    Article  CAS  Google Scholar 

  78. Firestein, G. S. Rheumatoid arthritis in a mouse? Nat. Clin. Pract. Rheumatol. 5, 1 (2009).

    Article  Google Scholar 

  79. Alvarez, R. H. et al. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin. Proc. 81, 1241–1257 (2006).

    Article  CAS  Google Scholar 

  80. Naito, M. Macrophage differentiation and function in health and disease. Pathol. Int. 58, 143–155 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Robinson laboratory for their scientific input. This work was funded by NIH NHLBI contract N01 HV 28183, NIH NIAMS R01 AR-054822, and Veterans Affairs Health Care System funding to W. H. Robinson; Stanford University Program in Immunology training grant support to C. D'Aura Swanson; and an NIH F31 Fellowship Award and a Lieberman Fellowship Award to R. T. Paniagua.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Robinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Aura Swanson, C., Paniagua, R., Lindstrom, T. et al. Tyrosine kinases as targets for the treatment of rheumatoid arthritis. Nat Rev Rheumatol 5, 317–324 (2009). https://doi.org/10.1038/nrrheum.2009.82

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing