Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lupus nephritis: lessons from murine models

Abstract

Lupus nephritis is a challenging clinical condition for which current therapies are unsatisfactory with respect to both remission induction and unwanted toxic effects. Despite intervention, the rates of end-stage renal disease seem to be increasing in the USA. Discoveries over the past decade have greatly improved our understanding of immune activation and effector inflammatory pathways in lupus nephritis; however, this increased understanding has not yet translated into the approval of an effective new therapeutic agent. An analysis of the mechanisms of action of novel immunomodulatory drugs in multiple models of murine lupus clearly shows that interacting networks of immune and effector pathways are recruited as the disease progresses. Reversing established disease by targeting a single cell population or inflammatory pathway is, therefore, difficult once long-lived autoreactive lymphocyte populations are present and peripheral organs are inflamed. Data from murine models of lupus suggest that we need to consider new paradigms for the management of systemic lupus erythematosus that include earlier immune intervention, long-term maintenance therapies and protection of target organs.

Key Points

  • The incidence of end-stage renal disease resulting from lupus nephritis is static or increasing in the USA

  • Several high-profile clinical trials of novel biologic therapies for lupus nephritis that target the immune system have failed despite convincing evidence that lupus nephritis is immune-mediated

  • Although inhibition of single cell types or inflammatory mediators can prevent disease in murine models of lupus, the efficacy of this approach is substantially lower in established disease

  • Multiple interactions between innate and adaptive immune pathways in established disease amplify inflammation and make it difficult to restore normal tolerance

  • An understanding of the pathways that mediate intrinsic renal cell activation, interstitial renal inflammation, renal hypoxia and fibrosis should yield new strategies for protection of the kidneys

  • The role of genetic polymorphisms in determining susceptibility to systemic lupus erythematosus and to renal damage might enable targeting of therapies to particular subgroups of patients

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenesis of lupus nephritis.
Figure 2: Dysregulated immune responses in SLE.

Similar content being viewed by others

References

  1. Sidiropoulos, P. I., Kritikos, H. D. & Boumpas, D. T. Lupus nephritis flares. Lupus 14, 49–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Mok, C. C. et al. Predictors and outcome of renal flares after successful cyclophosphamide treatment for diffuse proliferative lupus glomerulonephritis. Arthritis Rheum. 50, 2559–2568 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Appel, G. B. et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J. Am. Soc. Nephrol. 20, 1103–1112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mok, C. C. Therapeutic options for resistant lupus nephritis. Semin. Arthritis Rheum. 36, 71–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Dooley, M. A. in Dubois' Lupus Erythematosus 7th edn (eds Wallace, D. J. & Hahn, H. B.) 1112–1130 (Lippincott Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  6. Chan, T. M. Preventing renal failure in patients with severe lupus nephritis. Kidney Int. 67 (Suppl.), S116–S119 (2005).

    Article  Google Scholar 

  7. Contreras, G. et al. Sequential therapies for proliferative lupus nephritis. N. Engl. J. Med. 350, 971–980 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Contreras, G., Tozman, E., Nahar, N. & Metz, D. Maintenance therapies for proliferative lupus nephritis: mycophenolate mofetil, azathioprine and intravenous cyclophosphamide. Lupus 14 (Suppl. 1), S33–S38 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Dooley, M. A., Hogan, S., Jennette, C. & Falk, R. Cyclophosphamide therapy for lupus nephritis: poor renal survival in black Americans. Glomerular Disease Collaborative Network. Kidney Int. 51, 1188–1195 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Costenbader, K. H., Solomon, D. H., Winkelmayer, W. & Brookhart, M. A. Incidence of end-stage renal disease due to lupus nephritis in the US, 1995–2004 [abstract 1927]. Arthritis Rheum. 58 (Suppl.), S872 (2008).

    Google Scholar 

  11. Wiesendanger, M., Stanevsky, A., Kovsky, S. & Diamond, B. Novel therapeutics for systemic lupus erythematosus. Curr. Opin. Rheumatol. 18, 227–235 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Clynes, R., Dumitru, C. & Ravetch, J. V. Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279, 1052–1054 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Turnberg, D. & Cook, H. T. Complement and glomerulonephritis: new insights. Curr. Opin. Nephrol. Hypertens. 14, 223–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Anders, H. J. & Schlondorff, D. Toll-like receptors: emerging concepts in kidney disease. Curr. Opin. Nephrol. Hypertens. 16, 177–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Segerer, S. & Schlondorff, D. B cells and tertiary lymphoid organs in renal inflammation. Kidney Int. 73, 533–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Jeruc, J. et al. Tubulo-interstitial involvement in lupus nephritis with emphasis on pathogenesis. Wien. Klin. Wochenschr. 112, 702–706 (2000).

    CAS  PubMed  Google Scholar 

  17. Chan, O. T., Hannum, L. G., Haberman, A. M., Madaio, M. P. & Shlomchik, M. J. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J. Exp. Med. 189, 1639–1648 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwartz, M. M. The pathology of lupus nephritis. Semin. Nephrol. 27, 22–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Lewis, E. J. & Schwartz, M. M. Pathology of lupus nephritis. Lupus 14, 31–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Schlondorff, D. O. Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int. 74, 860–866 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Schiffer, L. et al. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J. Immunol. 180, 1938–1947 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferraccioli, G. & Romano, G. Renal interstitial cells, proteinuria and progression of lupus nephritis: new frontiers for old factors. Lupus 17, 533–540 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumpers, P. et al. The Tie2 receptor antagonist Angiopoietin-2 facilitates vascular inflammation in systemic lupus erythematosus. Ann. Rheum. Dis. 68, 1638–1643 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Yeboah, M. M. et al. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats. Kidney Int. 74, 62–69 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yao, G. et al. Evaluation of renal vascular lesions using circulating endothelial cells in patients with lupus nephritis. Rheumatology (Oxford) 47, 432–436 (2008).

    Article  CAS  Google Scholar 

  27. Izmirly, P. M. et al. Expression of endothelial protein C receptor in cortical peritubular capillaries associates with a poor clinical response in lupus nephritis. Rheumatology (Oxford) 48, 513–519 (2009).

    Article  CAS  Google Scholar 

  28. Sesin, C. A., Yin, X., Esmon, C. T., Buyon, J. P. & Clancy, R. M. Shedding of endothelial protein C receptor contributes to vasculopathy and renal injury in lupus: in vivo and in vitro evidence. Kidney Int. 68, 110–120 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Shankland, S. J. The podocyte's response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 69, 2131–2147 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Michaud, J. L. & Kennedy, C. R. The podocyte in health and disease: insights from the mouse. Clin. Sci. (Lond.) 112, 325–335 (2007).

    Article  Google Scholar 

  31. Crowley, S. D. et al. Glomerular type 1 angiotensin receptors augment kidney injury and inflammation in murine autoimmune nephritis. J. Clin. Invest. 119, 943–953 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Duran-Barragan, S., McGwin, G., Jr, Vila, L. M., Reveille, J. D. & Alarcon, G. S. Angiotensin-converting enzyme inhibitors delay the occurrence of renal involvement and are associated with a decreased risk of disease activity in patients with systemic lupus erythematosus—results from LUMINA (LIX): a multiethnic US cohort. Rheumatology (Oxford) 47, 1093–1096 (2008).

    Article  CAS  Google Scholar 

  33. Faurschou, M., Starklint, H., Halberg, P. & Jacobsen, S. Prognostic factors in lupus nephritis: diagnostic and therapeutic delay increases the risk of terminal renal failure. J. Rheumatol. 33, 1563–1569 (2006).

    PubMed  Google Scholar 

  34. Mok, C. C. Prognostic factors in lupus nephritis. Lupus 14, 39–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Segerer, S. et al. Compartment specific expression of dendritic cell markers in human glomerulonephritis. Kidney Int. 74, 37–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Tucci, M. et al. Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum. 58, 251–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Kruger, B., Schroppel, B. & Murphy, B. T. Genetic polymorphisms and the fate of the transplanted organ. Transplant Rev. (Orlando) 22, 131–140 (2008).

    Article  Google Scholar 

  38. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Warchol, T., Lianeri, M., Wudarski, M., Lacki, J. K. & Jagodzinski, P. P. IL-18 105 A>C polymorphism contributes to renal manifestations in patients with SLE. Rheumatol Int. doi: 10.1007/s00296-009-0934–0933.

  40. Liu, K. et al. Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans. J. Clin. Invest. 119, 911–923 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Phan, T. G., Green, J. A., Gray, E. E., Xu, Y. & Cyster, J. G. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat. Immunol. 10, 786–793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mamula, M. J. Epitope spreading: the role of self peptides and autoantigen processing by B lymphocytes. Immunol. Rev. 164, 231–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Roosnek, E. & Lanzavecchia, A. Efficient and selective presentation of antigen-antibody complexes by rheumatoid factor B cells. J. Exp. Med. 173, 487–489 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Lund, F. E. Cytokine-producing B lymphocytes-key regulators of immunity. Curr. Opin. Immunol. 20, 332–338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ngo, V. N., Cornall, R. J. & Cyster, J. G. Splenic T zone development is B cell dependent. J. Exp. Med. 194, 1649–1660 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cassese, G. et al. Inflamed kidneys of NZB/W mice are a major site for the homeostasis of plasma cells. Eur. J. Immunol. 31, 2726–2732 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167, 1072–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Odendahl, M. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 165, 5970–5979 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Huang, W. et al. The effect of anti-CD40 ligand antibody on B cells in human SLE. Arthritis Rheum. 46, 1554–1562 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Merrill, J. T. et al. Efficacy and safety of rituximab in patients with moderately to severely active systemic lupus erythematosus (SLE): Results from the randomized, double-blind phase II/III study EXPLORER [abstract L12]. Presented at the American College of Rheumatology Annual Meeting, 2008 October, San Francisco, CA.

  51. Furie, R. et al. Efficacy and safety of rituximab in subjects with active proliferative lupus nephritis (LN): results from the randomized, double-blind phase III LUNAR Study [abstract 1149]. Arthritis Rheum. 60 (Suppl.), S429 (2009).

    Google Scholar 

  52. Anolik, J. H. et al. Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum. 50, 3580–3590 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Vallerskog, T. et al. Differential effects on BAFF and APRIL levels in rituximab-treated patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res. Ther. 8, R167 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ahuja, A. et al. Depletion of B cells in murine lupus: efficacy and resistance. J. Immunol. 179, 3351–3361 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Ramanujam, M. et al. Mechanism of action of transmembrane activator and calcium modulator ligand interactor-Ig in murine systemic lupus erythematosus. J. Immunol. 173, 3524–3534 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Scholz, J. L. et al. BLyS inhibition eliminates primary B cells but leaves natural and acquired humoral immunity intact. Proc. Natl Acad. Sci. USA 105, 15517–15522 (2008).

    Article  PubMed  Google Scholar 

  58. Doreau, A. et al. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat. Immunol. 10, 778–785 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Ramanujam, M. et al. Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J. Clin. Invest. 116, 724–734 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lai Kwan Lam, Q., King Hung Ko, O., Zheng, B. J. & Lu, L. Local BAFF gene silencing suppresses Th17-cell generation and ameliorates autoimmune arthritis. Proc. Natl Acad. Sci. USA 105, 14993–14998 (2008).

    Article  PubMed  Google Scholar 

  61. Ramanujam, M. & Davidson, A. BAFF blockade for systemic lupus erythematosus: will the promise be fulfilled? Immunol. Rev. 223, 156–174 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Jacob, C. O. et al. Paucity of clinical disease despite serological autoimmunity and kidney pathology in lupus-prone New Zealand mixed 2328 mice deficient in BAFF. J. Immunol. 177, 2671–2680 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wallace, D. J. et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 61, 1168–1178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Navarra, S. et al. Belimumab, a BLyS-specific inhibitor, reduced disease activity, flares and prednisone use in patients with active SLE: efficacy and safety results from the Phase 3 BLISS-52 Study [abstract LB1]. Presented at the American College of Rheumatology Annual Meeting, 2009 October, Philadelphia, PA.

  65. Chen, Y., Park, Y. B., Patel, E. & Silverman, G. J. IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J. Immunol. 182, 6031–6043 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Manson, J. J., Mauri, C. & Ehrenstein, M. R. Natural serum IgM maintains immunological homeostasis and prevents autoimmunity. Springer Semin. Immunopathol. 26, 425–432 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Mihara, M. et al. CTLA4Ig inhibits T cell-dependent B-cell maturation in murine systemic lupus erythematosus. J. Clin. Invest. 106, 91–101 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schiffer, L. et al. Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J. Immunol. 171, 489–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Linterman, M. A. et al. Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS. Immunity 30, 228–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Ettinger, R. et al. IL-21 and BAFF/BLyS synergize in stimulating plasma cell differentiation from a unique population of human splenic memory B cells. J. Immunol. 178, 2872–2882 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Bubier, J. A. et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc. Natl Acad. Sci. USA 106, 1518–1523 (2009).

    Article  PubMed  Google Scholar 

  72. Linterman, M. A. et al. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 206, 561–576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kalled, S. L., Cutler, A. H., Datta, S. K. & Thomas, D. W. Anti-CD40 ligand antibody treatment of SNF1 mice with established nephritis: preservation of kidney function. J. Immunol. 160, 2158–2165 (1998).

    CAS  PubMed  Google Scholar 

  74. Forestier, C. et al. Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black x New Zealand White) F1 mice. J. Immunol. 175, 763–770 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Scalapino, K. J. & Daikh, D. I. Suppression of glomerulonephritis in NZB/NZW lupus prone mice by adoptive transfer of ex vivo expanded regulatory T cells. PLoS ONE 4, e6031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Beriou, G. et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113, 4240–4249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, H. Y., Center, E. M., Tsokos, G. C. & Weiner, H. L. Suppression of murine SLE by oral anti-CD3: inducible CD4+CD25-LAP+ regulatory T cells control the expansion of IL-17+ follicular helper T cells. Lupus 18, 586–596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Perl, A. et al. T-cell and B-cell signaling biomarkers and treatment targets in lupus. Curr. Opin. Rheumatol. 21, 454–464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Singh, R. P., Hahn, B. H. & La Cava, A. Tuning immune suppression in systemic autoimmunity with self-derived peptides. Inflamm. Allergy Drug Targets 7, 253–259 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Kang, H. K., Liu, M. & Datta, S. K. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J. Immunol. 178, 7849–7858 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Sharabi, A. & Mozes, E. The suppression of murine lupus by a tolerogenic peptide involves foxp3-expressing CD8 cells that are required for the optimal induction and function of foxp3-expressing CD4 cells. J. Immunol. 181, 3243–3251 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. United States National Library of Medicine NIH. ClinicalTrials.gov [online], (2009).

  83. Pascual, V., Farkas, L. & Banchereau, J. Systemic lupus erythematosus: all roads lead to type I interferons. Curr. Opin. Immunol. 18, 676–682 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Mathian, A., Weinberg, A., Gallegos, M., Banchereau, J. & Koutouzov, S. IFN-alpha induces early lethal lupus in preautoimmune (New Zealand Black x New Zealand White) F1 but not in BALB/c mice. J. Immunol. 174, 2499–2506 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Zagury, D. et al. IFNalpha kinoid vaccine-induced neutralizing antibodies prevent clinical manifestations in a lupus flare murine model. Proc. Natl Acad. Sci. USA 106, 5294–5299 (2009).

    Article  PubMed  Google Scholar 

  86. Groom, J. R. et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J. Exp. Med. 204, 1959–1971 (2007).

    Article  CAS  Google Scholar 

  87. Pawar, R. D. et al. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J. Am. Soc. Nephrol. 18, 1721–1731 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Ehlers, M. & Ravetch, J. V. Opposing effects of Toll-like receptor stimulation induce autoimmunity or tolerance. Trends Immunol. 28, 74–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Lafyatis, R., York, M. & Marshak-Rothstein, A. Antimalarial agents: closing the gate on Toll-like receptors? Arthritis Rheum. 54, 3068–3070 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Crispin, J. C., Kyttaris, V. C., Juang, Y. T. & Tsokos, G. C. How signaling and gene transcription aberrations dictate the systemic lupus erythematosus T cell phenotype. Trends Immunol. 29, 110–115 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Gilliet, M., Cao, W. & Liu, Y. J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 8, 594–606 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Chaturvedi, A., Dorward, D. & Pierce, S. K. The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity 28, 799–809 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Davidson.

Ethics declarations

Competing interests

C. Aranow declares that she has acted as a consultant for and/or received research support from the following companies: Amgen, Bristol-Myers Squibb, Genentech, Human Genome Sciences, La Jolla Pharmaceutical, Medimmune, Novo Nordisk and UCB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, A., Aranow, C. Lupus nephritis: lessons from murine models. Nat Rev Rheumatol 6, 13–20 (2010). https://doi.org/10.1038/nrrheum.2009.240

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing