Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dendritic cells as targets for therapy in rheumatoid arthritis

Abstract

Dendritic cells (DCs) are central in inducing immunity and in mediating immune tolerance in their role as professional antigen-presenting cells. In the absence of DCs, a fatal autoimmunity develops in animal models. Although the role of DCs has been investigated extensively in the pathogenesis of rheumatoid arthritis (RA), it remains unclear whether DCs initiate autoimmunity in this disease. Nevertheless, evidence points towards a significant role for DCs in disease maintenance and progression. Current biologic therapies target cytokine products of antigen-presenting cells, such as tumor necrosis factor, interleukin-1 and interleukin-6. Emerging therapies for RA exploit the tolerogenic capacity of DCs. 'Tolerogenic' DCs can be generated from myeloid precursors ex vivo, loaded with antigen, and manipulated to suppress autoimmune responses in vivo, through the induction of activation-induced cell death, anergy, and/or regulatory T cells. Cells that are primed by DCs, such as B cells, type 1 and type 17 T helper cells, and that have been implicated in certain models of autoimmunity, are also being considered as additional targets for immune-based therapy. Studies to validate these approaches to ameliorate autoimmunity will be necessary before their application in the clinic.

Key Points

  • Dendritic cells (DCs) are implicated in the pathogenesis of rheumatoid arthritis (RA)

  • These cells and their products, such as tumor necrosis factor, interleukin-1 and interleukin-6, localize in rheumatoid synovium

  • The proinflammatory products of DCs can be targeted to ameliorate RA

  • DCs can also be manipulated to induce tolerance in animal models; studies are underway to test their tolerogenic activity in patients with RA

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DCs: mediators of immunity and tolerance.

Similar content being viewed by others

References

  1. Wenink, M. H., Han, W., Toes, R. E. & Radstake, T. R. Dendritic cells and their potential implication in pathology and treatment of rheumatoid arthritis. Handb. Exp. Pharmacol. 188, 81–98 (2009).

    Article  CAS  Google Scholar 

  2. Zhou, L., Chong, M. M. & Littman, D. R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    Article  CAS  Google Scholar 

  3. Ohnmacht, C. et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med. 206, 549–559 (2009).

    Article  CAS  Google Scholar 

  4. Somersan, S. & Bhardwaj, N. Tethering and tickling: a new role for the phosphatidylserine receptor. J. Cell Biol. 155, 501–504 (2001).

    Article  CAS  Google Scholar 

  5. Kobayashi, N. et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27, 927–940 (2007).

    Article  CAS  Google Scholar 

  6. Skoberne, M., Beignon, A. S., Larsson, M. & Bhardwaj, N. Apoptotic cells at the crossroads of tolerance and immunity. Curr. Top. Microbiol. Immunol. 289, 259–292 (2005).

    CAS  PubMed  Google Scholar 

  7. Skoberne, M. et al. The apoptotic-cell receptor CR3, but not αvβ5, is a regulator of human dendritic-cell immunostimulatory function. Blood 108, 947–955 (2006).

    Article  CAS  Google Scholar 

  8. Thomas, R. et al. Dendritic cells and the pathogenesis of rheumatoid arthritis. J. Leukoc. Biol. 66, 286–292 (1999).

    Article  CAS  Google Scholar 

  9. Pettit, A. R., MacDonald, K. P., O'Sullivan, B. & Thomas, R. Differentiated dendritic cells expressing nuclear RelB are predominantly located in rheumatoid synovial tissue perivascular mononuclear cell aggregates. Arthritis Rheum. 43, 791–800 (2000).

    Article  CAS  Google Scholar 

  10. Zvaifler, N. J., Steinman, R. M., Kaplan, G., Lau, L. L. & Rivelis, M. Identification of immunostimulatory dendritic cells in the synovial effusions of patients with rheumatoid arthritis. J. Clin. Invest. 76, 789–800 (1985).

    Article  CAS  Google Scholar 

  11. Jongbloed, S. L. et al. Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis. Arthritis Res. Ther. 8, R15 (2006).

    Article  Google Scholar 

  12. Santiago-Schwarz, F., Anand, P., Liu, S. & Carsons, S. E. Dendritic cells (DCs) in rheumatoid arthritis (RA): progenitor cells and soluble factors contained in RA synovial fluid yield a subset of myeloid DCs that preferentially activate Th1 inflammatory-type responses. J. Immunol. 167, 1758–1768 (2001).

    Article  CAS  Google Scholar 

  13. van Lieshout, A. W. et al. Inhibition of TNFα during maturation of dendritic cells results in the development of semi-mature cells: a potential mechanism for the beneficial effects of TNFα blockade in rheumatoid arthritis. Ann. Rheum. Dis. 64, 408–414 (2005).

    Article  CAS  Google Scholar 

  14. Leung, B. P. et al. A novel dendritic cell-induced model of erosive inflammatory arthritis: distinct roles for dendritic cells in T cell activation and induction of local inflammation. J. Immunol. 169, 7071–7077 (2002).

    Article  CAS  Google Scholar 

  15. Tsark, E. C. et al. Differential MHC class II-mediated presentation of rheumatoid arthritis autoantigens by human dendritic cells and macrophages. J. Immunol. 169, 6625–6633 (2002).

    Article  CAS  Google Scholar 

  16. Steenbakkers, P. G. et al. Localization of MHC class II/human cartilage glycoprotein-39 complexes in synovia of rheumatoid arthritis patients using complex-specific monoclonal antibodies. J. Immunol. 170, 5719–5727 (2003).

    Article  CAS  Google Scholar 

  17. Page, G. & Miossec, P. RANK and RANKL expression as markers of dendritic cell–T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum. 52, 2307–2312 (2005).

    Article  CAS  Google Scholar 

  18. Martin, C. A. et al. Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp)70 in the rheumatoid joint: possible mechanisms of hsp/DC-mediated cross-priming. J. Immunol. 171, 5736–5742 (2003).

    Article  CAS  Google Scholar 

  19. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  Google Scholar 

  20. Li, Y. & Begovich, A. B. Unraveling the genetics of complex diseases: susceptibility genes for rheumatoid arthritis and psoriasis. Semin. Immunol. doi: 10.1016/j.smim.2009.04.002.

  21. Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 6, e1 (2009).

    Article  Google Scholar 

  22. Klareskog, L., Catrina, A. I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).

    Article  CAS  Google Scholar 

  23. Lebre, M. C. et al. Rheumatoid arthritis synovium contains two subsets of CD83DC-LAMP dendritic cells with distinct cytokine profiles. Am. J. Pathol. 172, 940–950 (2008).

    Article  CAS  Google Scholar 

  24. van der Pouw Kraan, T. C. et al. Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann. Rheum. Dis. 66, 1008–1014 (2007).

    Article  CAS  Google Scholar 

  25. Chabaud, M., Fossiez, F., Taupin, J. L. & Miossec, P. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J. Immunol. 161, 409–414 (1998).

    CAS  PubMed  Google Scholar 

  26. Annunziato, F., Cosmi, L., Liotta, F., Maggi, E. & Romagnani, S. Type 17 T-helper cells—origins, features and possible roles in rheumatic disease. Nat. Rev. Rheumatol. 5, 325–331 (2009).

    Article  CAS  Google Scholar 

  27. Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  Google Scholar 

  28. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).

    Article  CAS  Google Scholar 

  29. Shahrara, S., Pickens, S. R., Dorfleutner, A. & Pope, R. M. IL-17 induces monocyte migration in rheumatoid arthritis. J. Immunol. 182, 3884–3891 (2009).

    Article  CAS  Google Scholar 

  30. Kotake, S. et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103, 1345–1352 (1999).

    Article  CAS  Google Scholar 

  31. Koenders, M. I. et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am. J. Pathol. 167, 141–149 (2005).

    Article  CAS  Google Scholar 

  32. Kirkham, B. W. et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: a two-year prospective study (the DAMAGE study cohort). Arthritis Rheum. 54, 1122–1131 (2006).

    Article  CAS  Google Scholar 

  33. Yamada, H. et al. Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis. Ann. Rheum. Dis. 67, 1299–1304 (2008).

    Article  CAS  Google Scholar 

  34. Chang, M. et al. The inflammatory disease-associated variants in IL12B and IL23R are not associated with rheumatoid arthritis. Arthritis Rheum. 58, 1877–1881 (2008).

    Article  Google Scholar 

  35. Brentano, F. et al. Abundant expression of the interleukin (IL)23 subunit p19, but low levels of bioactive IL23 in the rheumatoid synovium: differential expression and Toll-like receptor-(TLR) dependent regulation of the IL23 subunits, p19 and p40, in rheumatoid arthritis. Ann. Rheum. Dis. 68, 143–150 (2009).

    Article  CAS  Google Scholar 

  36. Wiekowski, M. T. et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J. Immunol. 166, 7563–7570 (2001).

    Article  CAS  Google Scholar 

  37. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  Google Scholar 

  38. Morelli, A. E. & Thomson, A. W. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat. Rev. Immunol. 7, 610–621 (2007).

    Article  CAS  Google Scholar 

  39. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  Google Scholar 

  40. Mahnke, K., Qian, Y., Knop, J. & Enk, A. H. Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 101, 4862–4869 (2003).

    Article  CAS  Google Scholar 

  41. Fujikado, N. et al. Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat. Med. 14, 176–180 (2008).

    Article  CAS  Google Scholar 

  42. Balanescu, A. et al. Early and late effect of infliximab on circulating dendritic cells phenotype in rheumatoid arthritis patients. Int. J. Clin. Pharmacol. Res. 25, 9–18 (2005).

    CAS  PubMed  Google Scholar 

  43. Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233–238 (2001).

    Article  CAS  Google Scholar 

  44. Hill, J. A. et al. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J. Immunol. 171, 538–541 (2003).

    Article  CAS  Google Scholar 

  45. Martin, E., O'Sullivan, B., Low, P. & Thomas, R. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity 18, 155–167 (2003).

    Article  CAS  Google Scholar 

  46. Lan, Y. Y. et al. “Alternatively activated” dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4–Ig. J. Immunol. 177, 5868–5877 (2006).

    Article  CAS  Google Scholar 

  47. Bluestone, J. A., Thomson, A. W., Shevach, E. M. & Weiner, H. L. What does the future hold for cell-based tolerogenic therapy? Nat. Rev. Immunol. 7, 650–654 (2007).

    Article  CAS  Google Scholar 

  48. Fallarino, F., Gizzi, S., Mosci, P., Grohmann, U. & Puccetti, P. Tryptophan catabolism in IDO+ plasmacytoid dendritic cells. Curr. Drug Metab. 8, 209–216 (2007).

    Article  CAS  Google Scholar 

  49. Manches, O. et al. HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J. Clin. Invest. 118, 3431–3439 (2008).

    Article  CAS  Google Scholar 

  50. Chung, D. J. et al. Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 114, 555–563 (2009).

    Article  CAS  Google Scholar 

  51. Bhardwaj, N. et al. IL-6/IFN-β2 in synovial effusions of patients with rheumatoid arthritis and other arthritides. Identification of several isoforms and studies of cellular sources. J. Immunol. 143, 2153–2159 (1989).

    CAS  PubMed  Google Scholar 

  52. Genovese, M. C. et al. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. Arthritis Rheum. 58, 2968–2980 (2008).

    Article  CAS  Google Scholar 

  53. Stanczyk, J., Ospelt, C. & Gay, S. Is there a future for small molecule drugs in the treatment of rheumatic diseases? Curr. Opin. Rheumatol. 20, 257–262 (2008).

    Article  CAS  Google Scholar 

  54. Oukka, M. Th17 cells in immunity and autoimmunity. Ann. Rheum. Dis. 67 (Suppl. 3), iii26–29 (2008).

    CAS  PubMed  Google Scholar 

  55. Cohen, S. B. et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58, 1299–1309 (2008).

    Article  CAS  Google Scholar 

  56. Mellor, A. L. & Munn, D. H. Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat. Rev. Immunol. 8, 74–80 (2008).

    Article  CAS  Google Scholar 

  57. Criado, G., Simelyte, E., Inglis, J. J., Essex, D. & Williams, R. O. Indoleamine 2,3 dioxygenase-mediated tryptophan catabolism regulates accumulation of Th1/Th17 cells in the joint in collagen-induced arthritis. Arthritis Rheum. 60, 1342–1351 (2009).

    Article  Google Scholar 

  58. Bianco, N. R., Kim, S. H., Ruffner, M. A. & Robbins, P. D. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum. 60, 380–389 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Cynthia Magro, William St. Clair, Jonathan Poe, David Pisetsky, Karen Haas, Damian Maseda, and Takashi Matsushita for their assistance and suggestions. This work was supported by grants from the National Institutes of Health (AI56363, CA105001, CA96547, and AI057157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Bhardwaj.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S., Greenberg, J. & Bhardwaj, N. Dendritic cells as targets for therapy in rheumatoid arthritis. Nat Rev Rheumatol 5, 566–571 (2009). https://doi.org/10.1038/nrrheum.2009.185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing