Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complex regional pain syndrome — phenotypic characteristics and potential biomarkers

Key Points

  • Complex regional pain syndrome (CRPS) is a persistent pain condition that often results from an injury and usually affects a single limb.

  • An unusually high level of pain during the week after the injury seems to be the most robust risk factor for CRPS development.

  • Post-traumatic inflammation has been identified as a major component of acute CRPS, and growth factors, catecholamines and autoantibodies have also been implicated in CRPS pathogenesis.

  • A growing body of evidence indicates that disturbances of body representation and body perception are key features of the CRPS phenotype.

  • Small non-coding RNAs (microRNAs) are emerging as diagnostic and prognostic biomarkers for CRPS.

  • A single marker for CRPS is unlikely to be found; however, a range of biomarkers might assist in clinical diagnosis and guide prognosis and treatment.

Abstract

Complex regional pain syndrome (CRPS) is a pain condition that usually affects a single limb, often following an injury. The underlying pathophysiology seems to be complex and probably varies between patients. Clinical diagnosis is based on internationally agreed-upon criteria, which consider the reported symptoms, presence of signs and exclusion of alternative causes. Research into CRPS biomarkers to support patient stratification and improve diagnostic certainty is an important scientific focus, and recent progress in this area provides an opportunity for an up-to-date topical review of measurable disease-predictive, diagnostic and prognostic parameters. Clinical and biochemical attributes of CRPS that may aid diagnosis and determination of appropriate treatment are delineated. Findings that predict the development of CRPS and support the diagnosis include trauma-related factors, neurocognitive peculiarities, psychological markers, and local and systemic changes that indicate activation of the immune system. Analysis of signatures of non-coding microRNAs that could predict the treatment response represents a new line of research. Results from the past 5 years of CRPS research indicate that a single marker for CRPS will probably never be found; however, a range of biomarkers might assist in clinical diagnosis and guide prognosis and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical conceptual frameworks for CRPS.
Figure 2: Mast cell accumulation in CRPS.
Figure 3: The possible role of keratinocytes in CRPS pathophysiology.

Similar content being viewed by others

References

  1. Marinus, J. et al. Clinical features and pathophysiology of complex regional pain syndrome. Lancet Neurol. 10, 637–648 (2011).

    Article  Google Scholar 

  2. Birklein, F., O'Neill, D. & Schlereth, T. Complex regional pain syndrome: an optimistic perspective. Neurology 84, 89–96 (2015).

    Article  Google Scholar 

  3. Parkitny, L. et al. Inflammation in complex regional pain syndrome: a systematic review and meta-analysis. Neurology 80, 106–117 (2013).

    Article  CAS  Google Scholar 

  4. Harden, R. N. et al. Validation of proposed diagnostic criteria (the “Budapest Criteria”) for Complex Regional Pain Syndrome. Pain 150, 268–274 (2010).

    Article  Google Scholar 

  5. Beerthuizen, A. et al. Demographic and medical parameters in the development of complex regional pain syndrome type 1 (CRPS1): prospective study on 596 patients with a fracture. Pain 153, 1187–1192 (2012).

    Article  Google Scholar 

  6. Bruehl, S. et al. Complex regional pain syndrome: evidence for warm and cold subtypes in a large prospective clinical sample. Pain 157, 1674–1681 (2016).

    Article  Google Scholar 

  7. Mugge, W., Schouten, A. C., van Hilten, J. J. & van der Helm, F. C. Impaired inhibitory force feedback in fixed dystonia. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 475–484 (2016).

    Article  Google Scholar 

  8. Shi, X. et al. Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to postfracture nociceptive sensitization. Pain 156, 1852–1863 (2015).

    Article  CAS  Google Scholar 

  9. Birklein, F. & Schlereth, T. Complex regional pain syndrome — significant progress in understanding. Pain 156 (Suppl. 1), S94–S103 (2015).

    Article  Google Scholar 

  10. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

  11. Roh, Y. H. et al. Factors associated with complex regional pain syndrome type I in patients with surgically treated distal radius fracture. Arch. Orthop. Trauma Surg. 134, 1775–1781 (2014).

    Article  Google Scholar 

  12. Sumitani, M. et al. Perioperative factors affecting the occurrence of acute complex regional pain syndrome following limb bone fracture surgery: data from the Japanese Diagnosis Procedure Combination database. Rheumatology 53, 1186–1193 (2014).

    Article  Google Scholar 

  13. Moseley, G. L. et al. Intense pain soon after wrist fracture strongly predicts who will develop complex regional pain syndrome: prospective cohort study. J. Pain 15, 16–23 (2014).

    Article  Google Scholar 

  14. Jellad, A., Salah, S. & Ben Salah Frih, Z. Complex regional pain syndrome type I: incidence and risk factors in patients with fracture of the distal radius. Arch. Phys. Med. Rehabil. 95, 487–492 (2014).

    Article  Google Scholar 

  15. Pfau, D. B. et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): reference data for the trunk and application in patients with chronic postherpetic neuralgia. Pain 155, 1002–1015 (2014).

    Article  Google Scholar 

  16. Beerekamp, M. S. et al. Epidemiology of extremity fractures in the Netherlands. Injury 48, 1355–1362 (2017).

    Article  CAS  Google Scholar 

  17. Somersalo, A. et al. Incidence of fractures requiring inpatient care. Acta Orthop. 85, 525–530 (2014).

    Article  Google Scholar 

  18. Margalit, D., Ben Har, L., Brill, S. & Vatine, J. J. Complex regional pain syndrome, alexithymia, and psychological distress. J. Psychosom. Res. 77, 273–277 (2014).

    Article  Google Scholar 

  19. Bean, D. J., Johnson, M. H. & Kydd, R. R. Relationships between psychological factors, pain, and disability in complex regional pain syndrome and low back pain. Clin. J. Pain 30, 647–653 (2014).

    Article  Google Scholar 

  20. Speck, V., Schlereth, T., Birklein, F. & Maihofner, C. Increased prevalence of posttraumatic stress disorder in CRPS. Eur. J. Pain 21, 466–473 (2017).

    Article  CAS  Google Scholar 

  21. Barad, M. J., Ueno, T., Younger, J., Chatterjee, N. & Mackey, S. Complex regional pain syndrome is associated with structural abnormalities in pain-related regions of the human brain. J. Pain 15, 197–203 (2014).

    Article  Google Scholar 

  22. Erpelding, N. et al. Habenula functional resting-state connectivity in pediatric CRPS. J. Neurophysiol. 111, 239–247 (2014).

    Article  Google Scholar 

  23. Baliki, M. N., Mansour, A. R., Baria, A. T. & Apkarian, A. V. Functional reorganization of the default mode network across chronic pain conditions. PLoS ONE 9, e106133 (2014).

    Article  Google Scholar 

  24. Di Pietro, F., Stanton, T. R., Moseley, G. L., Lotze, M. & McAuley, J. H. Interhemispheric somatosensory differences in chronic pain reflect abnormality of the healthy side. Hum. Brain Mapp. 36, 508–518 (2015).

    Article  Google Scholar 

  25. Upadhyay, J., Geber, C., Hargreaves, R., Birklein, F. & Borsook, D. A critical evaluation of validity and utility of translational imaging in pain and analgesia: utilizing functional imaging to enhance the process. Neurosci. Biobehav. Rev. 84, 407–423 (2017).

    Article  Google Scholar 

  26. Di Pietro, F. et al. Primary somatosensory cortex function in complex regional pain syndrome: a systematic review and meta-analysis. J. Pain 14, 1001–1018 (2013).

    Article  Google Scholar 

  27. Torta, D. M., Legrain, V., Rossetti, Y. & Mouraux, A. Prisms for pain. Can visuo-motor rehabilitation strategies alleviate chronic pain? Eur. J. Pain 20, 64–69 (2016).

    Article  CAS  Google Scholar 

  28. Moseley, G. L., Gallace, A., Di Pietro, F., Spence, C. & Iannetti, G. D. Limb-specific autonomic dysfunction in complex regional pain syndrome modulated by wearing prism glasses. Pain 154, 2463–2468 (2013).

    Article  Google Scholar 

  29. Cohen, H. et al. Clinical evidence of parietal cortex dysfunction and correlation with extent of allodynia in CRPS type 1. Eur. J. Pain 17, 527–538 (2013).

    Article  CAS  Google Scholar 

  30. Hall, J. et al. Sensorimotor dysfunction after limb fracture — an exploratory study. Eur. J. Pain 20, 1402–1412 (2016).

    Article  CAS  Google Scholar 

  31. Reinersmann, A. et al. Impaired spatial body representation in complex regional pain syndrome type 1 (CRPS I). Pain 153, 2174–2181 (2012).

    Article  Google Scholar 

  32. Michal, M. et al. Association of neglect-like symptoms with anxiety, somatization, and depersonalization in complex regional pain syndrome. Pain Med. 18, 764–772 (2017).

    PubMed  Google Scholar 

  33. Hall, J. et al. Pain and other symptoms of CRPS can be increased by ambiguous visual stimuli — an exploratory study. Eur. J. Pain 15, 17–22 (2011).

    Article  Google Scholar 

  34. Gierthmuhlen, J. et al. Sensory signs in complex regional pain syndrome and peripheral nerve injury. Pain 153, 765–774 (2012).

    Article  Google Scholar 

  35. Mainka, T. et al. Comparison of muscle and joint pressure-pain thresholds in patients with complex regional pain syndrome and upper limb pain of other origin. Pain 155, 591–597 (2014).

    Article  Google Scholar 

  36. Lenz, M. et al. Bilateral somatosensory cortex disinhibition in complex regional pain syndrome type I. Neurology 77, 1096–1101 (2011).

    Article  CAS  Google Scholar 

  37. Catley, M. J., O'Connell, N. E., Berryman, C., Ayhan, F. F. & Moseley, G. L. Is tactile acuity altered in people with chronic pain? A systematic review and meta-analysis. J. Pain 15, 985–1000 (2014).

    Article  Google Scholar 

  38. Guo, T. Z. et al. Immobilization contributes to exaggerated neuropeptide signaling, inflammatory changes, and nociceptive sensitization after fracture in rats. J. Pain 15, 1033–1045 (2014).

    Article  CAS  Google Scholar 

  39. Lenz, M. et al. Local cytokine changes in complex regional pain syndrome type I (CRPS I) resolve after 6 months. Pain 154, 2142–2149 (2013).

    Article  CAS  Google Scholar 

  40. Kramer, H. H. et al. TNF-α in CRPS and 'normal' trauma — significant differences between tissue and serum. Pain 152, 285–290 (2011).

    Article  Google Scholar 

  41. Kramer, H. H. et al. Osteoprotegerin: a new biomarker for impaired bone metabolism in complex regional pain syndrome? Pain 155, 889–895 (2014).

    Article  CAS  Google Scholar 

  42. Kohr, D. et al. Autoimmunity against the β2 adrenergic receptor and muscarinic-2 receptor in complex regional pain syndrome. Pain 152, 2690–2700 (2011).

    Article  CAS  Google Scholar 

  43. Dubuis, E. et al. Longstanding complex regional pain syndrome is associated with activating autoantibodies against alpha-1a adrenoceptors. Pain 155, 2408–2417 (2014).

    Article  CAS  Google Scholar 

  44. Hendrickson, J. E. et al. Complex regional pain syndrome and dysautonomia in a 14-year-old girl responsive to therapeutic plasma exchange. J. Clin. Apher. 31, 368–374 (2016).

    Article  Google Scholar 

  45. Goebel, A. et al. The passive transfer of immunoglobulin G serum antibodies from patients with longstanding complex regional pain syndrome. Eur. J. Pain 15, 504.e1–504.e6 (2011).

    Google Scholar 

  46. Tekus, V. et al. A CRPS-IgG-transfer-trauma model reproducing inflammatory and positive sensory signs associated with complex regional pain syndrome. Pain 155, 299–308 (2014).

    Article  CAS  Google Scholar 

  47. Reilly, J. M. et al. Effects of serum immunoglobulins from patients with complex regional pain syndrome (CRPS) on depolarisation-induced calcium transients in isolated dorsal root ganglion (DRG) neurons. Exp. Neurol. 277, 96–102 (2016).

    Article  CAS  Google Scholar 

  48. Alexander, G. M. et al. Plasma amino acids changes in complex regional pain syndrome. Pain Res. Treat. 2013, 742407 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Baykal, T., Seferoglu, B., Karsan, O., Kiziltunc, A. & Senel, K. Antioxidant profile in patients with complex regional pain syndrome type I. Int. J. Rheum. Dis. 17, 156–158 (2014).

    Article  CAS  Google Scholar 

  50. Ritz, B. W. et al. Elevated blood levels of inflammatory monocytes (CD14+CD16+) in patients with complex regional pain syndrome. Clin. Exp. Immunol. 164, 108–117 (2011).

    Article  CAS  Google Scholar 

  51. Guo, T. Z., Wei, T., Li, W. W., Li, X. Q., Clark, J. D. & Kingery, W. S. Immobilization contributes to exaggerated neuropeptide signaling, inflammatory changes, and nociceptive sensitization after fracture in rats. J. Pain 15, 1033–1045 (2014).

    Article  CAS  Google Scholar 

  52. Birklein, F. et al. Activation of cutaneous immune responses in complex regional pain syndrome. J. Pain 15, 485–495 (2014).

    Article  CAS  Google Scholar 

  53. Osborne, S. et al. Cutaneous immunopathology of long-standing complex regional pain syndrome. Eur. J. Pain 19, 1516–1526 (2015).

    Article  CAS  Google Scholar 

  54. Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).

    Article  Google Scholar 

  55. Chen, X., Liang, H., Zhang, J., Zen, K. & Zhang, C. Y. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 22, 125–132 (2012).

    Article  CAS  Google Scholar 

  56. El Andaloussi, S., Lakhal, S., Mäger, I. & Wood, M. J. Exosomes for targeted siRNA delivery across biological barriers. Adv. Drug Deliv. Rev. 65, 391–397 (2013).

    Article  CAS  Google Scholar 

  57. Kowal, J., Tkach, M. & Thery, C. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 29, 116–125 (2014).

    Article  CAS  Google Scholar 

  58. Orlova, I. A. et al. MicroRNA modulation in complex regional pain syndrome. J. Transl Med. 9, 195 (2011).

    Article  CAS  Google Scholar 

  59. McDonald, M. K. et al. Functional significance of macrophage-derived exosomes in inflammation and pain. Pain 155, 1527–1539 (2014).

    Article  CAS  Google Scholar 

  60. Mendell, J. T. & Olson, E. N. MicroRNAs in stress signaling and human disease. Cell 148, 1172–1187 (2012).

    Article  CAS  Google Scholar 

  61. McDonald, M. K. et al. Regulation of proinflammatory genes by the circulating microRNA hsa-miR-939. Sci. Rep. 6, 30976 (2016).

    Article  CAS  Google Scholar 

  62. Jin, E. H. et al. Genome-wide expression profiling of complex regional pain syndrome. PLoS ONE 8, e79435 (2013).

    Article  Google Scholar 

  63. Janicki, P. K., Alexander, G. M., Eckert, J., Postula, M. & Schwartzman, R. J. Analysis of common single nucleotide polymorphisms in complex regional pain syndrome: genome wide association study approach and pooled DNA strategy. Pain Med. 17, 2344–2352 (2016).

    Article  Google Scholar 

  64. Bean, D. J., Johnson, M. H. & Kydd, R. R. The outcome of complex regional pain syndrome type 1: a systematic review. J. Pain 15, 677–690 (2014).

    Article  Google Scholar 

  65. Bean, D. J., Johnson, M. H., Heiss-Dunlop, W. & Kydd, R. R. Extent of recovery in the first 12 months of complex regional pain syndrome type-1: a prospective study. Eur. J. Pain 20, 884–894 (2016).

    Article  CAS  Google Scholar 

  66. Bean, D. J., Johnson, M. H., Heiss-Dunlop, W., Lee, A. C. & Kydd, R. R. Do psychological factors influence recovery from complex regional pain syndrome type 1? A prospective study. Pain 156, 2310–2318 (2015).

    Article  Google Scholar 

  67. Barnhoorn, K. J. et al. Are pain-related fears mediators for reducing disability and pain in patients with complex regional pain syndrome type 1? An explorative analysis on pain exposure physical therapy. PLoS ONE 10, e0123008 (2014).

    Article  Google Scholar 

  68. van Eijs, F. et al. Predictors of pain relieving response to sympathetic blockade in complex regional pain syndrome type 1. Anesthesiology 116, 113–121 (2012).

    Article  Google Scholar 

  69. Douglas, S. R. et al. Analgesic response to intravenous ketamine is linked to a circulating microRNA signature in female patients with complex regional pain syndrome. J. Pain 16, 814–824 (2015).

    Article  CAS  Google Scholar 

  70. Shenoda, B. B., Alexander, G. M. & Ajit, S. K. Hsa-miR-34a mediated repression of corticotrophin releasing hormone receptor 1 regulates pro-opiomelanocortin expression in patients with complex regional pain syndrome. J. Transl Med. 14, 64 (2016).

    Article  Google Scholar 

  71. den Hollander, M. et al. Expose or protect? A randomized controlled trial of exposure in vivo versus pain-contingent treatment as usual in patients with complex regional pain syndrome type 1. Pain 157, 2318–2329 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

F.B. acknowledges support from the Deutsche Forschungsgemeinschaft (Germany; grant Bi579/8-1) and the Dietmar-Hopp Foundation. F.B. and C.S. acknowledge support from the European Commission (ncRNAPain, FP7 grant 602133). A.G. has received funding from the Pain Relief Foundation, Liverpool, UK. S.K.A. has received grants from the NIH (National Institute of Neurological Disorders and Stroke 1R21NS082991-01), the Rita Allen Foundation and the Drexel University Clinical and Translational Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, discussions of the content, writing the article, and review and editing of the manuscript before submission.

Corresponding author

Correspondence to Frank Birklein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Further information

ncRNAPain

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birklein, F., Ajit, S., Goebel, A. et al. Complex regional pain syndrome — phenotypic characteristics and potential biomarkers. Nat Rev Neurol 14, 272–284 (2018). https://doi.org/10.1038/nrneurol.2018.20

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2018.20

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing