Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tuberculous meningitis

Key Points

  • Tuberculous meningitis (TBM) causes death and disability, with especially high rates of poor outcomes in children and individuals with an HIV-1 co-infection

  • Important risk factors for poor outcome are delayed diagnosis, delayed treatment, advanced disease, and antitubercular drug resistance

  • Intracerebral and spinal pathology in TBM is mediated by a dysregulated inflammatory response that contributes to meningitis, tuberculoma formation, arteritis, obstruction of cerebrospinal fluid (CSF) flow, and vascular complications including stroke

  • Diagnosis of TBM is insensitive and laborious; clinical scoring algorithms are imperfect and few rigorous evaluations of diagnostics have been performed

  • Multidrug antitubercular antibiotic therapy is the mainstay of treatment; however, CSF penetration is probably a major limitation of these therapies, and evidence supporting dosage and treatment combinations is weak

  • The supportive management of TBM complications, which include hyponatraemia, hydrocephalus, hypoxic brain damage and infarction, is poorly understood and researched, but is vital to outcome

Abstract

Tuberculosis remains a global health problem, with an estimated 10.4 million cases and 1.8 million deaths resulting from the disease in 2015. The most lethal and disabling form of tuberculosis is tuberculous meningitis (TBM), for which more than 100,000 new cases are estimated to occur per year. In patients who are co-infected with HIV-1, TBM has a mortality approaching 50%. Study of TBM pathogenesis is hampered by a lack of experimental models that recapitulate all the features of the human disease. Diagnosis of TBM is often delayed by the insensitive and lengthy culture technique required for disease confirmation. Antibiotic regimens for TBM are based on those used to treat pulmonary tuberculosis, which probably results in suboptimal drug levels in the cerebrospinal fluid, owing to poor blood–brain barrier penetrance. The role of adjunctive anti-inflammatory, host-directed therapies — including corticosteroids, aspirin and thalidomide — has not been extensively explored. To address this deficit, two expert meetings were held in 2009 and 2015 to share findings and define research priorities. This Review summarizes historical and current research into TBM and identifies important gaps in our knowledge. We will discuss advances in the understanding of inflammation in TBM and its potential modulation; vascular and hypoxia-mediated tissue injury; the role of intensified antibiotic treatment; and the importance of rapid and accurate diagnostics and supportive care in TBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenesis of tuberculous meningitis.
Figure 2: MRI scans from a patient with stage II tuberculous meningitis.

Similar content being viewed by others

References

  1. Ducomble, T. et al. The burden of extrapulmonary and meningitis tuberculosis: an investigation of national surveillance data, Germany, 2002 to 2009. Euro Surveill. 18, 20436 (2013).

    PubMed  Google Scholar 

  2. Pan, Y. et al. Host and microbial predictors of childhood extrathoracic tuberculosis and tuberculosis meningitis. Pediatr. Infect. Dis. J. 34, 1289–1295 (2015).

    Article  PubMed  Google Scholar 

  3. Trunz, B. B., Fine, P. & Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367, 1173–1180 (2006).

    Article  PubMed  Google Scholar 

  4. World Health Organization. Global Tuberculosis Report 21st edition (WHO, 2016).

  5. Gomes, T. et al. Epidemiology of extrapulmonary tuberculosis in Brazil: a hierarchical model. BMC Infect. Dis. 14, 9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chiang, S. S. et al. Treatment outcomes of childhood tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect. Dis. 14, 947–957 (2014).

    Article  PubMed  Google Scholar 

  7. Marais, S., Pepper, D. J., Schutz, C., Wilkinson, R. J. & Meintjes, G. Presentation and outcome of tuberculous meningitis in a high HIV prevalence setting. PLoS ONE 6, e20077 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rana, F. S. et al. Autopsy study of HIV-1-positive and HIV-1-negative adult medical patients in Nairobi. Kenya. J. Acquir. Immune Def. Syndr. 24, 23–29 (2000).

    Article  CAS  Google Scholar 

  9. Thwaites, G. E. et al. The influence of HIV infection on clinical presentation, response to treatment, and outcome in adults with Tuberculous meningitis. J. Infect. Dis. 192, 2134–2141 (2005).

    Article  PubMed  Google Scholar 

  10. Heemskerk, A. D. et al. Intensified antituberculosis therapy in adults with tuberculous meningitis. N. Engl. J. Med. 374, 124–134 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Tho, D. Q. et al. Influence of antituberculosis drug resistance and Mycobacterium tuberculosis lineage on outcome in HIV-associated tuberculous meningitis. Antimicrob. Agents Chemother. 56, 3074–3079 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rich, A. R. The Pathogenesis of Tuberculosis (C. C. Thomas, 1946).

    Google Scholar 

  13. Donald, P. R. & Schoeman, J. F. Tuberculous meningitis. N. Engl. J. Med. 351, 1719–1720 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Tucker, E. W. et al. Microglia activation in a pediatric rabbit model of tuberculous meningitis. Dis. Model. Mech. 9, 1497–1506 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. van Leeuwen, L. M. et al. Modeling tuberculous meningitis in zebrafish using Mycobacterium marinum. Dis. Model. Mech. 7, 1111–1122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Donald, P. R., Schaaf, H. S. & Schoeman, J. F. Tuberculous meningitis and miliary tuberculosis: the Rich focus revisited. J. Infect. 50, 193–195 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Berenguer, J. et al. Tuberculous meningitis in patients infected with the human immunodeficiency virus. N. Engl. J. Med. 326, 668–672 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Shafer, R. W., Goldberg, R., Sierra, M. & Glatt, A. E. Frequency of Mycobacterium tuberculosis bacteremia in patients with tuberculosis in an area endemic for AIDS. Am. Rev. Respir. Dis. 140, 1611–1613 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Marais, S., Pepper, D. J., Marais, B. J. & Torok, M. E. HIV-associated tuberculous meningitis — diagnostic and therapeutic challenges. Tuberculosis 90, 367–374 (2010).

    Article  PubMed  Google Scholar 

  20. Thwaites, G. E. et al. Effect of antituberculosis drug resistance on response to treatment and outcome in adults with tuberculous meningitis. J. Infect. Dis. 192, 79–88 (2005).

    Article  PubMed  Google Scholar 

  21. Pepper, D. J. et al. Neurologic manifestations of paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome: a case series. Clin. Infect. Dis. 48, e96–e107 (2009).

    Article  PubMed  Google Scholar 

  22. Burn, C. G. & Finley, K. H. The role of hypersensitivity in the production of experimental meningitis: I. Experimental meningitis in tuberculous animals. J. Exp. Med. 56, 203–221 (1932).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peterson, P. K. et al. CD14 receptor-mediated uptake of nonopsonized Mycobacterium tuberculosis by human microglia. Infect. Immun. 63, 1598–1602 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, H. M., Kang, J., Lee, S. J. & Jo, E. K. Microglial activation of the NLRP3 inflammasome by the priming signals derived from macrophages infected with mycobacteria. Glia 61, 441–452 (2013).

    Article  PubMed  Google Scholar 

  25. Ray, G., Aneja, S., Jain, M. & Batra, S. Evaluation of free radical status in CSF in childhood meningitis. Ann. Trop. Paediatr. 20, 115–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Mason, S. et al. A hypothetical astrocyte–microglia lactate shuttle derived from a 1H NMR metabolomics analysis of cerebrospinal fluid from a cohort of South African children with tuberculous meningitis. Metabolomics 11, 822–837 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Thwaites, G. E. et al. Pathophysiology and prognosis in vietnamese adults with tuberculous meningitis. J. Infect. Dis. 188, 1105–1115 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Misra, U. K., Kalita, J., Bhoi, S. K. & Singh, R. K. A study of hyponatremia in tuberculous meningitis. J. Neurol. Sci. 367, 152–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Dhanwal, D. K., Vyas, A., Sharma, A. & Saxena, A. Hypothalamic pituitary abnormalities in tubercular meningitis at the time of diagnosis. Pituitary 13, 304–310 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Rock, R. B. et al. Mycobacterium tuberculosis-induced cytokine and chemokine expression by human microglia and astrocytes: effects of dexamethasone. J. Infect. Dis. 192, 2054–2058 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Simmons, C. P. et al. The clinical benefit of adjunctive dexamethasone in tuberculous meningitis is not associated with measurable attenuation of peripheral or local immune responses. J. Immunol. 175, 579–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Simmons, C. P. et al. Pretreatment intracerebral and peripheral blood immune responses in vietnamese adults with tuberculous meningitis: diagnostic value and relationship to disease severity and outcome. J. Immunol. 176, 2007–2014 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Tsenova, L., Sokol, K., Freedman, V. H. & Kaplan, G. A combination of thalidomide plus antibiotics protects rabbits from mycobacterial meningitis-associated death. J. Infect. Dis. 177, 1563–1572 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Tsenova, L., Bergtold, A., Freedman, V. H., Young, R. A. & Kaplan, G. Tumor necrosis factor α is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system. Proc. Natl Acad. Sci. USA 96, 5657–5662 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Akalin, H., Akdis, A. C., Mistik, R., Helvaci, S. & Kilicturgay, K. Cerebrospinal fluid interleukin-1ß/interleukin-1 receptor antagonist balance and tumor necrosis factor-α concentrations in tuberculous, viral and acute bacterial meningitis. Scand. J. Infect. Dis. 26, 667–674 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Donald, P. R. et al. Concentrations of interferon γ, tumor necrosis factor α, and interleukin-1ß in the cerebrospinal fluid of children treated for tuberculous meningitis. Clin. Infect. Dis. 21, 924–929 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Schoeman, J. F. et al. Adjunctive thalidomide therapy for childhood tuberculous meningitis: results of a randomized study. J. Child Neurol. 19, 250–257 (2004).

    Article  PubMed  Google Scholar 

  38. Yadav, A. et al. Correlation of CSF proinflammatory cytokines with MRI in tuberculous meningitis. Acad. Radiol. 17, 194–200 (2010).

    Article  PubMed  Google Scholar 

  39. Misra, U. K. et al. A study of cytokines in tuberculous meningitis: clinical and MRI correlation. Neurosci. Lett. 483, 6–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Marais, S. et al. Frequency, severity, and prediction of tuberculous meningitis immune reconstitution inflammatory syndrome. Clin. Infect. Dis. 56, 450–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Marais, S. et al. Neutrophil-associated central nervous system inflammation in tuberculous meningitis immune reconstitution inflammatory syndrome. Clin. Infect. Dis. 59, 1638–1647 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marais, S. et al. Inflammasome activation underlies central nervous system deterioration in HIV-associated tuberculosis. J. Infect. Dis. 215, 677–686 (2016).

    PubMed Central  Google Scholar 

  43. Kalita, J., Prasad, S. & Misra, U. K. Predictors of paradoxical tuberculoma in tuberculous meningitis. Int. J. Tuberc. Lung Dis. 18, 486–491 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Thwaites, G. E. et al. Serial MRI to determine the effect of dexamethasone on the cerebral pathology of tuberculous meningitis: an observational study. Lancet Neurol. 6, 230–236 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thomas, M. M. et al. Rapid diagnosis of Mycobacterium tuberculosis meningitis by enumeration of cerebrospinal fluid antigen-specific T-cells. Int. J. Tuberc. Lung Dis. 12, 651–657 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Caccamo, N. et al. Phenotypical and functional analysis of memory and effector human CD8 T cells specific for mycobacterial antigens. J. Immunol. 177, 1780–1785 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Dieli, F. et al. Predominance of Vγ9/Vδ2 T lymphocytes in the cerebrospinal fluid of children with tuberculous meningitis: reversal after chemotherapy. Mol. Med. 5, 301–312 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mansour, A. M. et al. Relationship between intracranial granulomas and cerebrospinal fluid levels of gamma interferon and interleukin-10 in patients with tuberculous meningitis. Clin. Diagn. Lab Immunol. 12, 363–365 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, Q. et al. IP-10 and MIG are compartmentalized at the site of disease during pleural and meningeal tuberculosis and are decreased after antituberculosis treatment. Clin. Vaccine Immunol. 21, 1635–1644 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Green, J. A. et al. Dexamethasone, cerebrospinal fluid matrix metalloproteinase concentrations and clinical outcomes in tuberculous meningitis. PLoS ONE 4, e7277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Green, J. A. et al. Mycobacterium tuberculosis-infected human monocytes down-regulate microglial MMP-2 secretion in CNS tuberculosis via TNFα, NFκB, p38 and caspase 8 dependent pathways. J. Neuroinflamm. 8, 46 (2011).

    Article  CAS  Google Scholar 

  52. Visser, D. H. et al. Host immune response to tuberculous meningitis. Clin. Infect. Dis. 60, 177–187 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Matsuyama, W. et al. Expression of vascular endothelial growth factor in tuberculous meningitis. J. Neurol. Sci. 186, 75–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Misra, U. K., Kalita, J., Singh, A. P. & Prasad, S. Vascular endothelial growth factor in tuberculous meningitis. Int. J. Neurosci. 123, 128–132 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Ozden, M., Kalkan, A., Demirdag, K., Denk, A. & Kilic, S. S. Hepatocyte growth factor (HGF) in patients with hepatitis B and meningitis. J. Infect. 49, 229–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Caws, M. et al. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog. 4, e1000034 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Faksri, K. et al. Epidemiological trends and clinical comparisons of Mycobacterium tuberculosis lineages in Thai TB meningitis. Tuberculosis (Edinb.) 91, 594–600 (2011).

    Article  Google Scholar 

  59. Nicol, M. P. et al. Distribution of strain families of Mycobacterium tuberculosis causing pulmonary and extrapulmonary disease in hospitalized children in Cape Town, South Africa. J. Clin. Microbiol. 43, 5779–5781 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang, J. et al. DNA polymorphism of Mycobacterium tuberculosis PE_PGRS33 gene among clinical isolates of pediatric TB patients and its associations with clinical presentation. Tuberculosis (Edinb.) 91, 287–292 (2011).

    Article  CAS  Google Scholar 

  61. Tobin, D. M. et al. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148, 434–446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thuong, N. et al. Leukotriene A4 hydrolase genotype and HIV infection influence intracerebral inflammation and survival from tuberculous meningitis J. Infect. Dis. 215, 1020–1028 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van Laarhoven, A. et al. Clinical parameters, routine inflammatory markers, and LTA4H genotype as predictors of mortality among 608 patients with tuberculous meningitis in Indonesia. J. Infect. Dis. 215, 1029–1039 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Thwaites, G. E., van Toorn, R. & Schoeman, J. Tuberculous meningitis: more questions, still too few answers. Lancet Neurol. 12, 999–1010 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. van Well, G. T. et al. Twenty years of pediatric tuberculous meningitis: a retrospective cohort study in the western cape of South Africa. Pediatrics 123, e1–e8 (2009).

    Article  PubMed  Google Scholar 

  66. Miftode, E. G. et al. Tuberculous meningitis in children and adults: a 10-year retrospective comparative analysis. PLoS ONE 10, e0133477 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Torok, M. E. et al. Clinical and microbiological features of HIV-associated tuberculous meningitis in Vietnamese adults. PLoS ONE 3, e1772 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Streptomycin in Tuberculosis Trials Commitee, Medical Research Council. Streptomycin treatment of tuberculous meningitis. Lancet 1, 582–596 (1948).

  69. Dhawan, S. R. et al. Predictors of neurological outcome of tuberculous meningitis in childhood: A prospective cohort study from a developing country. J. Child Neurol. 31, 1622–1627 (2016).

    Article  PubMed  Google Scholar 

  70. Brancusi, F., Farrar, J. & Heemskerk, D. Tuberculous meningitis in adults: a review of a decade of developments focusing on prognostic factors for outcome. Future Microbiol. 7, 1101–1116 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Vinnard, C. et al. The long-term mortality of tuberculosis meningitis patients in new york city: a cohort study. Clin. Infect. Dis. 64, 401–407 (2016).

    Google Scholar 

  72. Thwaites, G. E. et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N. Engl. J. Med. 351, 1741–1751 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Garg, R. K., Malhotra, H. S. & Jain, A. Neuroimaging in tuberculous meningitis. Neurol. India 64, 219–227 (2016).

    Article  PubMed  Google Scholar 

  74. van der Merwe, D. J., Andronikou, S., Van Toorn, R. & Pienaar, M. Brainstem ischemic lesions on MRI in children with tuberculous meningitis: with diffusion weighted confirmation. Childs Nerv. Syst. 25, 949–954 (2009).

    Article  PubMed  Google Scholar 

  75. Omar, N., Andronikou, S., van Toorn, R. & Pienaar, M. Diffusion-weighted magnetic resonance imaging of borderzone necrosis in paediatric tuberculous meningitis. J. Med. Imag. Radiat. Oncol. 55, 563–570 (2011).

    Article  Google Scholar 

  76. Singh, B. et al. Computed tomography angiography in patients with tuberculous meningitis. J. Infect. 64, 565–572 (2012).

    Article  PubMed  Google Scholar 

  77. Lu, T. T. et al. Magnetic resonance angiography manifestations and prognostic significance in HIV-negative tuberculosis meningitis. Int. J. Tuberc. Lung Dis. 19, 1448–1454 (2015).

    Article  PubMed  Google Scholar 

  78. Kalita, J., Prasad, S., Maurya, P. K., Kumar, S. & Misra, U. K. MR angiography in tuberculous meningitis. Acta Radiol. 53, 324–329 (2012).

    Article  PubMed  Google Scholar 

  79. Rohlwink, U. K. et al. Imaging features of the brain, cerebral vessels and spine in pediatric tuberculous meningitis with associated hydrocephalus. Pediatr. Infect. Dis. J. 35, e301–e310 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Thwaites, G. E., Chau, T. T. & Farrar, J. J. Improving the bacteriological diagnosis of tuberculous meningitis. J. Clin. Microbiol. 42, 378–379 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Stewart, S. M. The bacteriological diagnosis of tuberculous meningitis. J. Clin. Pathol. 6, 241–242 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Caws, M. et al. Evaluation of the MODS culture technique for the diagnosis of tuberculous meningitis. PLoS ONE 2, e1173 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pai, M. et al. Diagnostic accuracy of nucleic acid amplification tests for tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect. Dis. 3, 633–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Patel, V. B. et al. Diagnostic accuracy of quantitative PCR (Xpert MTB/RIF) for tuberculous meningitis in a high burden setting: a prospective study. PLoS Med. 10, e1001536 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bahr, N. C. et al. Improved diagnostic sensitivity for tuberculous meningitis with Xpert((R)) MTB/RIF of centrifuged CSF. Int. J. Tuberc. Lung Dis. 19, 1209–1215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nhu, N. T. et al. Evaluation of GeneXpert MTB/RIF for diagnosis of tuberculous meningitis. J. Clin. Microbiol. 52, 226–233 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Boyles, T. H. & Thwaites, G. E. Appropriate use of the Xpert(R) MTB/RIF assay in suspected tuberculous meningitis. Int. J. Tuberc. Lung Dis. 19, 276–277 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Bahr, N. C. et al. GeneXpert MTB/Rif to diagnose tuberculous meningitis: perhaps the first test but not the last. Clin. Infect. Dis. 62, 1133–1135 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. World Health Organization. Meeting Report of a Technical Expert Consultation: Non-inferiority Analysis of Xpert MTB/RIF Ultra Compared to Xpert MTB/RIF (WHO, 2017).

  90. Cox, J. A. et al. Accuracy of lipoarabinomannan and Xpert MTB/RIF testing in cerebrospinal fluid to diagnose tuberculous meningitis in an autopsy cohort of HIV-infected adults. J. Clin. Microbiol. 53, 2667–2673 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Patel, V. B. et al. Utility of a novel lipoarabinomannan assay for the diagnosis of tuberculous meningitis in a resource-poor high-HIV prevalence setting. Cerebrospinal Fluid Res. 6, 13 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Patel, V. B. et al. Comparison of a clinical prediction rule and a LAM antigen-detection assay for the rapid diagnosis of TBM in a high HIV prevalence setting. PLoS ONE 5, e15664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu, J., Wang, Z. J., Chen, L. H. & Li, H. H. Diagnostic accuracy of interferon-gamma release assays for tuberculous meningitis: a meta-analysis. Int. J. Tuberc. Lung Dis. 20, 494–499 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Tuon, F. F. et al. Adenosine deaminase and tuberculous meningitis — a systematic review with meta-analysis. Scand. J. Infect. Dis. 42, 198–207 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Xu, H. B., Jiang, R. H., Li, L., Sha, W. & Xiao, H. P. Diagnostic value of adenosine deaminase in cerebrospinal fluid for tuberculous meningitis: a meta-analysis. Int. J. Tuberc. Lung Dis. 14, 1382–1387 (2010).

    PubMed  Google Scholar 

  96. Bullock, M. R. & Welchman, J. M. Diagnostic and prognostic features of tuberculous meningitis on CT scanning. J. Neurol. Neurosurg. Psychiatry 45, 1098–1101 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Andronikou, S., Smith, B., Hatherhill, M., Douis, H. & Wilmshurst, J. Definitive neuroradiological diagnostic features of tuberculous meningitis in children. Pediatr. Radiol. 34, 876–885 (2004).

    Article  PubMed  Google Scholar 

  98. Przybojewski, S., Andronikou, S. & Wilmshurst, J. Objective CT criteria to determine the presence of abnormal basal enhancement in children with suspected tuberculous meningitis. Pediatr. Radiol 36, 687–696 (2006).

    Article  PubMed  Google Scholar 

  99. Botha, H. et al. Reliability and diagnostic performance of CT imaging criteria in the diagnosis of tuberculous meningitis. PLoS ONE 7, e38982 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pienaar, M., Andronikou, S. & van Toorn, R. MRI to demonstrate diagnostic features and complications of TBM not seen with CT. Childs Nerv. Syst. 25, 941–947 (2009).

    Article  PubMed  Google Scholar 

  101. Janse van Rensburg, P., Andronikou, S., van Toorn, R. & Pienaar, M. Magnetic resonance imaging of miliary tuberculosis of the central nervous system in children with tuberculous meningitis. Pediatr. Radiol 38, 1306–1313 (2008).

    Article  PubMed  Google Scholar 

  102. Kalita, J., Misra, U. K. & Nair, P. P. Predictors of stroke and its significance in the outcome of tuberculous meningitis. J. Stroke Cerebrovasc Dis. 18, 251–258 (2009).

    Article  PubMed  Google Scholar 

  103. Dekker, G. et al. MRI findings in children with tuberculous meningitis: a comparison of HIV-infected and non-infected patients. Childs Nerv. Syst. 27, 1943–1949 (2011).

    Article  PubMed  Google Scholar 

  104. Andronikou, S. et al. Value of early follow-up CT in paediatric tuberculous meningitis. Pediatr. Radiol. 35, 1092–1099 (2005).

    Article  PubMed  Google Scholar 

  105. Gambhir, S. et al. Role of 18F-FDG PET in demonstrating disease burden in patients with tuberculous meningitis. J. Neurol. Sci. 370, 196–200 (2016).

    Article  PubMed  Google Scholar 

  106. Solomons, R. S. et al. Chest radiograph findings in children with tuberculous meningitis. Int. J. Tuberc. Lung Dis. 19, 200–204 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Thwaites, G. E. et al. Diagnosis of adult tuberculous meningitis by use of clinical and laboratory features. Lancet 360, 1287–1292 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Sunbul, M., Atilla, A., Esen, S., Eroglu, C. & Leblebicioglu, H. Thwaites' diagnostic scoring and the prediction of tuberculous meningitis. Med. Princ. Pract. 14, 151–154 (2005).

    Article  PubMed  Google Scholar 

  109. Torok, M. E. et al. Validation of a diagnostic algorithm for adult tuberculous meningitis. Am. J. Trop. Med. Hyg. 77, 555–559 (2007).

    Article  PubMed  Google Scholar 

  110. Vibha, D. et al. Validation of diagnostic algorithm to differentiate between tuberculous meningitis and acute bacterial meningitis. Clin. Neurol. Neurosurgery 114, 639–644 (2012).

    Article  Google Scholar 

  111. Zhang, Y. L., Lin, S., Shao, L. Y., Zhang, W. H. & Weng, X. H. Validation of Thwaites' diagnostic scoring system for the differential diagnosis of tuberculous meningitis and bacterial meningitis. Jpn. J. Infect. Dis. 67, 428–431 (2014).

    Article  PubMed  Google Scholar 

  112. Saavedra, J. S. et al. Validation of Thwaites Index for diagnosing tuberculous meningitis in a Colombian population. J. Neurol. Sci. 370, 112–118 (2016).

    Article  PubMed  Google Scholar 

  113. Checkley, A. M., Njalale, Y., Scarborough, M. & Zjilstra, E. E. Sensitivity and specificity of an index for the diagnosis of TB meningitis in patients in an urban teaching hospital in Malawi. Trop. Med. Int. Health 13, 1042–1046 (2008).

    Article  PubMed  Google Scholar 

  114. Marais, S. et al. Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect. Dis. 10, 803–812 (2010).

    Article  PubMed  Google Scholar 

  115. Solomons, R. S., Visser, D. H., Marais, B. J., Schoeman, J. F. & van Furth, A. M. Diagnostic accuracy of a uniform research case definition for TBM in children: a prospective study. Int. J. Tuberc. Lung Dis. 20, 903–908 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Donald, P. R. Cerebrospinal fluid concentrations of antituberculosis agents in adults and children. Tuberculosis (Edinb.) 90, 279–292 (2010).

    Article  CAS  Google Scholar 

  117. Donald, P. R. The chemotherapy of tuberculous meningitis in children and adults. Tuberculosis (Edinb.) 90, 375–392 (2010).

    Article  CAS  Google Scholar 

  118. World Health Organization. Guidance for National Tuberculosis Programmes on the Management of Tuberculosis in Children (WHO, 2014).

  119. Thwaites, G. et al. British Infection Society guidelines for the diagnosis and treatment of tuberculosis of the central nervous system in adults and children. J. Infect. 59, 167–187 (2009).

    Article  PubMed  Google Scholar 

  120. van Toorn, R. et al. Short intensified treatment in children with drug-susceptible tuberculous meningitis. Pediatr. Infect. Dis. J. 33, 248–252 (2014).

    Article  PubMed  Google Scholar 

  121. Savic, R. M. et al. Pediatric tuberculous meningitis: model-based approach to determining optimal doses of the anti-tuberculosis drugs rifampin and levofloxacin for children. Clin. Pharmacol. Ther. 98, 622–629 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ruslami, R. et al. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: an open-label, randomised controlled phase 2 trial. Lancet Infect. Dis. 13, 27–35 (2013).

    Article  PubMed  Google Scholar 

  123. Boeree, M. J. et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect. Dis. 17, 39–49 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Alffenaar, J. W. et al. Pharmacokinetics of moxifloxacin in cerebrospinal fluid and plasma in patients with tuberculous meningitis. Clin. Infect. Dis. 49, 1080–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Thwaites, G. E. et al. Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for tuberculous meningitis. Antimicrob. Agents Chemother. 55, 3244–3253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Seddon, J. A. et al. Impact of drug resistance on clinical outcome in children with tuberculous meningitis. Pediatr. Infect. Dis. J. 31, 711–716 (2012).

    Article  PubMed  Google Scholar 

  127. Shane, S. J., Clowater, R. A. & Riley, C. The treatment of tuberculous meningitis with cortisone and streptomycin. Can. Med. Assoc. J. 67, 13–15 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Prasad, K., Singh, M. B. & Ryan, H. Corticosteroids for managing tuberculous meningitis. Cochrane Database Syst. Rev. 4, CD002244 (2016).

    PubMed  Google Scholar 

  129. Singh, A. K. et al. Paradoxical reaction in tuberculous meningitis: presentation, predictors and impact on prognosis. BMC Infect. Dis. 16, 306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Garg, R. K., Malhotra, H. S. & Kumar, N. Paradoxical reaction in HIV negative tuberculous meningitis. J. Neurol. Sci. 340, 26–36 (2014).

    Article  PubMed  Google Scholar 

  131. Schoeman, J. F., Andronikou, S., Stefan, D. C., Freeman, N. & van Toorn, R. Tuberculous meningitis-related optic neuritis: recovery of vision with thalidomide in 4 consecutive cases. J. Child Neurol. 25, 822–828 (2010).

    Article  PubMed  Google Scholar 

  132. Schoeman, J. F., Fieggen, G., Seller, N., Mendelson, M. & Hartzenberg, B. Intractable intracranial tuberculous infection responsive to thalidomide: report of four cases. J. Child Neurol. 21, 301–308 (2006).

    Article  PubMed  Google Scholar 

  133. Molton, J. S., Huggan, P. J. & Archuleta, S. Infliximab therapy in two cases of severe neurotuberculosis paradoxical reaction. Med. J. Aust. 202, 156–157 (2015).

    Article  PubMed  Google Scholar 

  134. Lee, J. Y., Yim, J. J. & Yoon, B. W. Adjuvant interferon-γ treatment in two cases of refractory tuberculosis of the brain. Clin. Neurol. Neurosurgery 114, 732–734 (2012).

    Article  Google Scholar 

  135. Misra, U. K., Kalita, J. & Nair, P. P. Role of aspirin in tuberculous meningitis: a randomized open label placebo controlled trial. J. Neurol. Sci. 293, 12–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Schoeman, J. F., Janse van Rensburg, A., Laubscher, J. A. & Springer, P. The role of aspirin in childhood tuberculous meningitis. J. Child Neurol. 26, 956–962 (2011).

    Article  PubMed  Google Scholar 

  137. Havlir, D. V. et al. Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N. Engl. J. Med. 365, 1482–1491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Blanc, F. X. et al. Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N. Engl. J. Med. 365, 1471–1481 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Torok, M. E. et al. Timing of initiation of antiretroviral therapy in human immunodeficiency virus (HIV) — associated tuberculous meningitis. Clin. Infect. Dis. 52, 1374–1383 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Figaji, A. A. & Fieggen, A. G. The neurosurgical and acute care management of tuberculous meningitis: evidence and current practice. Tuberculosis (Edinb.) 90, 393–400 (2010).

    Article  Google Scholar 

  141. Murthy, J. M. Management of intracranial pressure in tuberculous meningitis. Neurocrit. Care 2, 306–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Tai, M. S. & Sharma, V. K. Role of transcranial doppler in the evaluation of vasculopathy in tuberculous meningitis. PLoS ONE 11, e0164266 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kilic, T., Elmaci, I., Ozek, M. M. & Pamir, M. N. Utility of transcranial Doppler ultrasonography in the diagnosis and follow-up of tuberculous meningitis-related vasculopathy. Childs Nerv. Syst. 18, 142–146 (2002).

    Article  PubMed  Google Scholar 

  144. van Toorn, R., Schaaf, H. S., Solomons, R., Laubscher, J. A. & Schoeman, J. F. The value of transcranial Doppler imaging in children with tuberculous meningitis. Childs Nerv. Syst. 30, 1711–1716 (2014).

    Article  PubMed  Google Scholar 

  145. Figaji, A. A. et al. Continuous monitoring and intervention for cerebral ischemia in tuberculous meningitis. Pediatr. Crit. Care Med. 9, e25–e30 (2008).

    Article  PubMed  Google Scholar 

  146. Oddo, M. et al. Effect of mannitol and hypertonic saline on cerebral oxygenation in patients with severe traumatic brain injury and refractory intracranial hypertension. J. Neurol. Neurosurg. Psychiatry 80, 916–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Francony, G. et al. Equimolar doses of mannitol and hypertonic saline in the treatment of increased intracranial pressure. Crit. Care Med. 36, 795–800 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Narotam, P. K. et al. Hyponatremic natriuretic syndrome in tuberculous meningitis: the probable role of atrial natriuretic peptide. Neurosurgery 34, 982–988 (1994).

    CAS  PubMed  Google Scholar 

  149. Sterns, R. H. & Silver, S. M. Cerebral salt wasting versus SIADH: what difference? J. Am. Soc. Nephrol. 19, 194–196 (2008).

    Article  PubMed  Google Scholar 

  150. Moller, K., Larsen, F. S., Bie, P. & Skinhoj, P. The syndrome of inappropriate secretion of antidiuretic hormone and fluid restriction in meningitis—how strong is the evidence? Scand. J. Infect. Dis. 33, 13–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Schoeman, J., Donald, P., van Zyl, L., Keet, M. & Wait, J. Tuberculous hydrocephalus: comparison of different treatments with regard to ICP, ventricular size and clinical outcome. Dev. Med. Child Neurol. 33, 396–405 (1991).

    Article  CAS  PubMed  Google Scholar 

  152. Visudhiphan, P. & Chiemchanya, S. Hydrocephalus in tuberculous meningitis in children: treatment with acetazolamide and repeated lumbar puncture. J. Pediatr. 95, 657–660 (1979).

    Article  CAS  PubMed  Google Scholar 

  153. Figaji, A. A., Fieggen, A. G. & Peter, J. C. Endoscopic third ventriculostomy in tuberculous meningitis. Childs Nerv. Syst. 19, 217–225 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Bruwer, G. E., Van der Westhuizen, S., Lombard, C. J. & Schoeman, J. F. Can CT predict the level of CSF block in tuberculous hydrocephalus? Childs Nerv. Syst. 20, 183–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Figaji, A. A., Fieggen, A. G. & Peter, J. C. Re: Endoscopic third ventriculostomy for chronic hydrocephalus after tuberculous meningitis [Jonathan A, Rajshekhar, V Surg Neurol 63 (2005) 32–35]. Surg. Neurol. 64, 95 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Rizvi, I. et al. Ventriculo-peritoneal shunt surgery for tuberculous meningitis: a systematic review. J. Neurol. Sci. 375, 255–263 (2017).

    Article  PubMed  Google Scholar 

  157. Sil, K. & Chatterjee, S. Shunting in tuberculous meningitis: a neurosurgeon's nightmare. Childs Nerv. Syst. 24, 1029–1032 (2008).

    Article  PubMed  Google Scholar 

  158. Figaji, A. A. & Fieggen, A. G. Endoscopic challenges and applications in tuberculous meningitis. World Neurosurg. 79, S24e29–S24e14 (2013).

    Article  Google Scholar 

  159. Goyal, P. et al. A randomized study of ventriculoperitoneal shunt versus endoscopic third ventriculostomy for the management of tubercular meningitis with hydrocephalus. Childs Nerv. Syst. 30, 851–857 (2014).

    Article  PubMed  Google Scholar 

  160. Lamprecht, D., Schoeman, J., Donald, P. & Hartzenberg, H. Ventriculoperitoneal shunting in childhood tuberculous meningitis. Br. J. Neurosurg. 15, 119–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Sharma, R. M. et al. Tubercular meningitis with hydrocephalus with HIV co-infection: role of cerebrospinal fluid diversion procedures. J. Neurosurg. 122, 1087–1095 (2015).

    Article  PubMed  Google Scholar 

  162. Yadav, Y. R. et al. Role of endoscopic third ventriculostomy in tuberculous meningitis with hydrocephalus. Asian J. Neurosurgery 11, 325–329 (2016).

    Article  Google Scholar 

  163. Rajshekhar, V. Surgery for brain tuberculosis: a review. Acta Neurochir. (Wien) 157, 1665–1678 (2015).

    Article  Google Scholar 

  164. Kumar, A., Singh, K. & Sharma, V. Surgery in hydrocephalus of tubercular origin: challenges and management. Acta Neurochir. (Wien) 155, 869–873 (2013).

    Article  Google Scholar 

  165. Lawn, S. D. & Wilkinson, R. J. ART and prevention of HIV-associated tuberculosis. Lancet HIV 2, e221–e222 (2015).

    Article  PubMed  Google Scholar 

  166. Marais, B. J. et al. Standardized methods for enhanced quality and comparability of tuberculous meningitis studies. Clin. Infect. Dis. 64, 501–509 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Esmail, H. et al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography. Nat. Med. 22, 1090–1093 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kumar, G. S. et al. Gene expression profiling of tuberculous meningitis co-infected with HIV. J. Proteom. Bioinform. 5, 235–244 (2012).

    Article  CAS  Google Scholar 

  170. Bratton, D. J., Phillips, P. P. & Parmar, M. K. A multi-arm multi-stage clinical trial design for binary outcomes with application to tuberculosis. BMC Med. Res. Methodol. 13, 139 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Campo, M. et al. Common polymorphisms in the CD43 gene region are associated with tuberculosis disease and mortality. Am. J. Respir. Cell. Mol. Biol. 52, 342–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hoal-Van Helden, E. G. et al. Mannose-binding protein B allele confers protection against tuberculous meningitis. Pediatr. Res. 45, 459–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  173. Rizvi, I. et al. Vitamin D status, vitamin D receptor and toll like receptor-2 polymorphisms in tuberculous meningitis: a case-control study. Infection 44, 633–640 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Zhao, Y. et al. Genetic polymorphisms of CCL1 rs2072069 G/A and TLR2 rs3804099 T/C in pulmonary or meningeal tuberculosis patients. Int. J. Clin. Exp. Pathol. 8, 12608–12620 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Thuong, N. T. et al. A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun. 8, 422–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Graustein, A. D. et al. TLR9 gene region polymorphisms and susceptibility to tuberculosis in Vietnam. Tuberculosis (Edinb.) 95, 190–196 (2015).

    Article  CAS  Google Scholar 

  177. Dissanayeke, S. R. et al. Polymorphic variation in TIRAP is not associated with susceptibility to childhood TB but may determine susceptibility to TBM in some ethnic groups. PLoS ONE 4, e6698 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hawn, T. R. et al. A polymorphism in toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J. Infect. Dis. 194, 1127–1134 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Horne, D. J. et al. Common polymorphisms in the PKP3–SIGIRR–TMEM16J gene region are associated with susceptibility to tuberculosis. J. Infect. Dis. 205, 586–594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Feng, W. X. et al. Tag SNP polymorphism of CCL2 and its role in clinical tuberculosis in Han Chinese pediatric population. PLoS ONE 6, e14652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kumar, R., Singh, S. N. & Kohli, N. A diagnostic rule for tuberculous meningitis. Arch. Dis. Child. 81, 221–224 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Youssef, F. G. et al. Differentiation of tuberculous meningitis from acute bacterial meningitis using simple clinical and laboratory parameters. Diagn. Microbiol. Infect. Dis. 55, 275–278 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Cohen, D. B. et al. Diagnosis of cryptococcal and tuberculous meningitis in a resource-limited African setting. Trop. Med. Int. Health 15, 910–917 (2010).

    Article  PubMed  Google Scholar 

  184. Hristea, A. et al. Clinical prediction rule for differentiating tuberculous from viral meningitis. Int. J. Tuberc. Lung Dis. 16, 793–798 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Dendane, T. et al. A simple diagnostic aid for tuberculous meningitis in adults in Morocco by use of clinical and laboratory features. Int. J. Infect. Dis. 17, e461–e465 (2013).

    Article  PubMed  Google Scholar 

  186. Zhang, B., Lv, K., Bao, J., Lu, C. & Lu, Z. Clinical and laboratory factors in the differential diagnosis of tuberculous and cryptococcal meningitis in adult HIV-negative patients. Intern. Med. 52, 1573–1578 (2013).

    Article  PubMed  Google Scholar 

  187. Qamar, F. N., Rahman, A. J., Iqbal, S. & Humayun, K. Comparison of clinical and CSF profiles in children with tuberculous and pyogenic meningitis; role of CSF protein: glucose ratio as diagnostic marker of tuberculous meningitis. J. Pak. Med. Assoc. 63, 206–210 (2013).

    PubMed  Google Scholar 

Download references

Acknowledgements

Tuberculous Meningitis International Research Consortium members include: Rob Aarnoutse, Reinout Van Crevel, Aarjan van Laarhoven, Sofiati Dian (Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands); Nathan C. Bahr (University of Kansas Medical Center, Kansas City, USA); David R. Boulware (University of Minnesota, Minneapolis, USA); Maxine Caws (Liverpool School of Tropical Medicine, Liverpool, UK); Mark R. Cronan, David Tobin (Duke University School of Medicine, Durham, USA); Kelly Dooley (Johns Hopkins University School of Medicine, Baltimore, USA); Sarah Dunstan (University of Melbourne, Melbourne, Australia); Guo-dong Feng, Xiaodan Shi, Ting Wang (Fourth Military Medical University, Xi'an, People's Republic of China); Anthony Figaji, Suzaan Marais, Helen McIlleron, Graeme Meintjes, Ursula Rohlwink (University of Cape Town, Cape Town, South Africa); Ahmad Rizal, Rovina Ruslami (Padjadjaran University, Bandung, Indonesia); Ravindra K. Garg (King George Medical University, Lucknow, India); Mudit Gupta, Rakesh K. Gupta (Fortis Memorial Research Institute, Gurgaon, India); Sneha Gupta, Rada Savic (University of California, San Francisco, USA); Anna D. Heemskerk, Thuong Thuy Thuong Nguyễn, Mai Thi Hoàng Nguyễn, Vijay Srinivasan, Guy Thwaites, Trâm Thi Bích Trân, Thinh Thi Vân Trân, Anh Thi Ngoc Trân, Trang Hồng Yêng Võ, Marcel Wolbers (Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam); Jayantee Kalita, Usha K. Misra (Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India); Rachel Lai (The Francis Crick Institute, London, UK); Ben J. Marais, Mai Quỳnh Trinh (University of Sydney, Sydney, Australia); Bằng Đức Nguyễn, Yến Bích Nguyễn (Pham Ngoc Thach Hospital for Tuberculosis & Lung Diseases, Ho Chi Minh City, Vietnam); Vinod Patel (University of KwaZulu-Natal, Durban, South Africa); Thomas Pouplin (Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand); Lalita Ramakrishnan (University of Cambridge, Cambridge, UK); Johan F. Schoeman, Regan Solomons, Ronald Van Toorn (University of Stellenbosch, Cape Town, South Africa); James Seddon (Imperial College, London, UK); Javeed Shah (University of Washington, Washington, USA); Jaya S. Tyagi (All India Institute of Medical Sciences, New Delhi, India); Douwe H. Visser (VU University Medical Center, Amsterdam, The Netherlands); Robert J. Wilkinson (Imperial College and The Francis Crick Institute, London, UK and University of Cape Town, South Africa). R.J.W. is supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC00110218), the UK Medical Research Council (FC00110218), and the Wellcome Trust (FC00110218). He also receives support from the Wellcome Trust (104803, 203135) and the National Research Foundation Of South Africa (96841). G.T. is supported by the Wellcome Trust through a Major Overseas Programme grant (106680/Z/14/Z) and an Investigator Award (110179/Z/15/Z).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

R.J.W, U.R., U.K.M., R.v.C., N.T.H.M., K.E.D., M.C., A.F., and G.T. researched data for the article, R.J.W, U.R., U.K.M., R.v.C., K.E.D., M.C., A.F., R. Savic, R. Solomons, and G.T made a substantial contribution to discussion of content, R.J.W., U.R., U.K.M., R.v.C., wrote the article, and all authors contributed to the review and editing of the manuscript before submission.

Corresponding author

Correspondence to Guy E. Thwaites.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Extrapulmonary

Tuberculosis occurring outside the lungs.

Miliary

Disseminated micronodular tuberculosis of the lungs.

Rich focus

The initial intracranial lesion of tuberculous meningitis, as described by Arnold Rich.

Tuberculoma

A clinical manifestation of tuberculosis in which tubercles comglomerate into a firm lump, and so can mimic cancer tumours of many types in medical imaging studies.

Basal exudates

An inflammatory reaction to tuberculosis in the basal cisterns of the brain.

Paradoxical worsening

The worsening of a tuberculosis lesion during otherwise effective antirtubercular or antiretroviral therapy.

Ziehl–Neelsen staining

A technique to visualize Mycobacterium tuberculosis directly by microscopy in pathological samples.

Paucibacillary

Disease associated with very low numbers of bacteria in clinical specimens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilkinson, R., Rohlwink, U., Misra, U. et al. Tuberculous meningitis. Nat Rev Neurol 13, 581–598 (2017). https://doi.org/10.1038/nrneurol.2017.120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing