Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Limb-girdle muscular dystrophies — international collaborations for translational research

Key Points

  • New sequencing technologies, including whole-exome and whole-genome sequencing, combined with increased data sharing and international research collaborations, are resulting in the identification of new limb-girdle muscular dystrophy (LGMD) subtypes and diagnosis of additional patients

  • These technologies are also providing evidence that added complexities, including intronic and regulatory mutations, oligogenic inheritance and modifier gene effects, could have a role in the hardest-to-diagnose forms of LGMD

  • The increased molecular and pathogenetic understanding of LGMD subtypes is now calling into question their original classification by phenotype, and new systems-based and pathway-based classification systems may be required

  • 'Trial readiness', which includes preparation of patient cohorts, care standards, outcome measures, and biomarkers stratified according to genes and/or pathways, is a key concept for translation of basic research to the clinic

  • Collaboration between patients, industry and academia is essential in the translational pathway towards therapy development and clinical trials

Abstract

The limb-girdle muscular dystrophies (LGMDs) are a diverse group of genetic neuromuscular conditions that usually manifest in the proximal muscles of the hip and shoulder girdles. Since the identification of the first gene associated with the phenotype in 1994, an extensive body of research has identified the genetic defects responsible for over 30 LGMD subtypes, revealed an increasingly varied phenotypic spectrum, and exposed the need to move towards a systems-based understanding of the molecular pathways affected. New sequencing technologies, including whole-exome and whole-genome sequencing, are continuing to expand the range of genes and phenotypes associated with the LGMDs, and new computational approaches are helping clinicians to adapt to this new genomic medicine paradigm. However, 60 years on from the first description of LGMD, no curative therapies exist, and systematic exploration of the natural history is still lacking. To enable rapid translation of basic research to the clinic, well-phenotyped and genetically characterized patient cohorts are a necessity, and appropriate outcome measures and biomarkers must be developed through natural history studies. Here, we review the international collaborations that are addressing these translational research issues, and the lessons learned from large-scale LGMD sequencing programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical aspects of LGMD subtypes.
Figure 2: Pathophysiological mechanisms in LGMD.
Figure 3: Translational research projects in LGMD.
Figure 4
Figure 5: Components of trial readiness in LGMD.
Figure 6: The translational pathway.

Similar content being viewed by others

References

  1. Walton, J. N. & Nattrass, F. J. On the classification, natural history and treatment of the myopathies. Brain 77, 169–231 (1954).

    CAS  PubMed  Google Scholar 

  2. Fanin, M., Nascimbeni, A. C., Fulizio, L. & Angelini, C. The frequency of limb girdle muscular dystrophy 2A in northeastern Italy. Neuromuscul. Disord. 15, 218–224 (2005).

    PubMed  Google Scholar 

  3. Narayanaswami, P. et al. Evidence-based guideline summary: diagnosis and treatment of limb-girdle and distal dystrophies: report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular and Electrodiagnostic Medicine. Neurology 83, 1453–1463 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Nigro, V. & Savarese, M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol. 33, 1–12 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Murphy, A. P. & Straub, V. The classification, natural history and treatment of the limb girdle muscular dystrophies. J. Neuromuscul. Dis. 2 (Suppl. 2), 7–19 (2015).

    Google Scholar 

  6. Hauser, M. A. et al. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum. Mol. Genet. 9, 2141–2147 (2000).

    CAS  PubMed  Google Scholar 

  7. Muchir, A. et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum. Mol. Genet. 9, 1453–1459 (2000).

    CAS  PubMed  Google Scholar 

  8. Minetti, C. et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat. Genet. 18, 365–368 (1998).

    CAS  PubMed  Google Scholar 

  9. McNally, E. Caveolin-3 in muscular dystrophy. Hum. Mol. Genet. 7, 871–877 (1998).

    CAS  PubMed  Google Scholar 

  10. Sarparanta, J. et al. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat. Genet. 44, 450–455 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Harms, M. B. et al. Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann. Neurol. 71, 407–416 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Greenberg, S. A. et al. Etiology of limb girdle muscular dystrophy 1D/1E determined by laser capture microdissection proteomics. Ann. Neurol. 71, 141–145 (2012).

    PubMed  Google Scholar 

  13. Hedberg, C., Melberg, A., Kuhl, A., Jenne, D. & Oldfors, A. Autosomal dominant myofibrillar myopathy with arrhythmogenic right ventricular cardiomyopathy 7 is caused by a DES mutation. Eur. J. Hum. Genet. 20, 984–985 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Melia, M. J. et al. Limb-girdle muscular dystrophy 1F is caused by a microdeletion in the transportin 3 gene. Brain 136, 1508–1517 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Vieira, N. M. et al. A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G). Hum. Mol. Genet. 23, 4103–4110 (2014).

    CAS  PubMed  Google Scholar 

  16. Beckmann, J. S. et al. A gene for limb-girdle muscular dystrophy maps to chromosome 15 by linkage. C. R. Acad. Sci. III 312, 141–148 (1991).

    CAS  PubMed  Google Scholar 

  17. Richard, I. et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81, 27–40 (1995).

    CAS  PubMed  Google Scholar 

  18. Bashlr, R. et al. A gene for autosomal recessive limb-girdle muscular dystrophy maps to chromosome 2p. Hum. Mol. Genet. 3, 455–457 (1994).

    Google Scholar 

  19. Liu, J. et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat. Genet. 20, 31–36 (1998).

    CAS  PubMed  Google Scholar 

  20. Bashir, R. et al. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat. Genet. 20, 37–42 (1998).

    CAS  PubMed  Google Scholar 

  21. Azlbi, K. et al. Severe childhood autosomal recessive muscular dystrophy with the deficiency of the 50 kDa dystrophin-associated glycoprotein maps to chromosome 13q12. Hum. Mol. Genet. 2, 1423–1428 (1993).

    Google Scholar 

  22. Noguchi, S. et al. Mutations in the dystrophin-associated protein γ-sarcoglycan in chromosome 13 muscular dystrophy. Science 270, 819–822 (1995).

    CAS  PubMed  Google Scholar 

  23. Roberds, S. L. et al. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 78, 625–633 (1994).

    CAS  PubMed  Google Scholar 

  24. Piccolo, F. et al. Primary adhalinopathy: a common cause of autosomal recessive muscular dystrophy of variable severity. Nat. Genet. 10, 243–245 (1995).

    CAS  PubMed  Google Scholar 

  25. Lim, L. E. et al. β-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat. Genet. 11, 257–265 (1995).

    CAS  PubMed  Google Scholar 

  26. Bönnemann, C. G. et al. β-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nat. Genet. 11, 266–273 (1995).

    PubMed  Google Scholar 

  27. Passos-Bueno, M. Linkage analysis in autosomal recessive limb-girdle muscular dystrophy (AR LGMD) maps a sixth form to 5q33–34 (LGMD2F) and indicates that there is at least one more subtype of AR LGMD. Hum. Mol. Genet. 5, 815–820 (1996).

    CAS  PubMed  Google Scholar 

  28. Nigro, V. et al. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the δ-sarcoglycan gene. Nat. Genet. 14, 195–198 (1996).

    CAS  PubMed  Google Scholar 

  29. Moreira, E. S. et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat. Genet. 24, 163–166 (2000).

    CAS  PubMed  Google Scholar 

  30. Weiler, T. et al. A gene for autosomal recessive limb-girdle muscular dystrophy in Manitoba Hutterites maps to chromosome region 9q31–q33: evidence for another limb-girdle muscular dystrophy locus. Am. J. Hum. Genet. 63, 140–147 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Frosk, P. et al. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am. J. Hum. Genet. 70, 663–672 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Brockington, M. et al. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum. Mol. Genet. 10, 2851–2859 (2001).

    CAS  PubMed  Google Scholar 

  33. Hackman, P. et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am. J. Hum. Genet. 71, 492–500 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Balci, B. et al. An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker–Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul. Disord. 15, 271–275 (2005).

    PubMed  Google Scholar 

  35. Jarry, J. et al. A novel autosomal recessive limb-girdle muscular dystrophy with quadriceps atrophy maps to 11p13–p12. Brain 130, 368–380 (2007).

    CAS  PubMed  Google Scholar 

  36. Bolduc, V. et al. Recessive mutations in the putative calcium-activated chloride channel anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am. J. Hum. Genet. 86, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Murakami, T. et al. Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Ann. Neurol. 60, 597–602 (2006).

    CAS  PubMed  Google Scholar 

  38. Godfrey, C. et al. Fukutin gene mutations in steroid-responsive limb girdle muscular dystrophy. Ann. Neurol. 60, 603–610 (2006).

    CAS  PubMed  Google Scholar 

  39. Biancheri, R. et al. POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem. Biophys. Res. Commun. 363, 1033–1037 (2007).

    CAS  PubMed  Google Scholar 

  40. Clement, E. M. et al. Mild POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch. Neurol. 65, 137–141 (2008).

    PubMed  Google Scholar 

  41. Raducu, M., Baets, J., Fano, O., Van Coster, R. & Cruces, J. Promoter alteration causes transcriptional repression of the POMGNT1 gene in limb-girdle muscular dystrophy type 2O. Eur. J. Hum. Genet. 20, 945–952 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hara, Y. et al. A dystroglycan mutation associated with limb-girdle muscular dystrophy. N. Engl. J. Med. 364, 939–946 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gundesli, H. et al. Mutation in exon 1f of PLEC, leading to disruption of plectin isoform 1f, causes autosomal-recessive limb-girdle muscular dystrophy. Am. J. Hum. Genet. 87, 834–841 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cetin, N. et al. A novel desmin mutation leading to autosomal recessive limb-girdle muscular dystrophy: distinct histopathological outcomes compared with desminopathies. J. Med. Genet. 50, 437–443 (2013).

    CAS  PubMed  Google Scholar 

  45. Bögershausen, N. et al. Recessive TRAPPC11 mutations cause a disease spectrum of limb girdle muscular dystrophy and myopathy with movement disorder and intellectual disability. Am. J. Hum. Genet. 93, 181–190 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Carss, K. J. et al. Mutations in GDP-mannose pyrophosphorylase b cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am. J. Hum. Genet. 93, 29–41 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tasca, G. et al. Limb-girdle muscular dystrophy with α-dystroglycan deficiency and mutations in the ISPD gene. Neurology 80, 963–965 (2013).

    CAS  PubMed  Google Scholar 

  48. Preisler, N. et al. Late-onset Pompe disease is prevalent in unclassified limb-girdle muscular dystrophies. Mol. Genet. Metab. 110, 287–289 (2013).

    CAS  PubMed  Google Scholar 

  49. Chardon, J. W. et al. LIMS2 mutations are associated with a novel muscular dystrophy, severe cardiomyopathy and triangular tongues. Clin. Genet. 88, 558–5564 (2015).

    CAS  PubMed  Google Scholar 

  50. Schindler, R. F. et al. POPDC1S201F causes muscular dystrophy and arrhythmia by affecting protein trafficking. J. Clin. Invest. 126, 239–253 (2016).

    PubMed  Google Scholar 

  51. Wells, L. The O-mannosylation pathway: glycosyltransferases and proteins implicated in congenital muscular dystrophy. J. Biol. Chem. 288, 6930–6935 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Endo, T. Glycobiology of α-dystroglycan and muscular dystrophy. J. Biochem. 157, 1–12 (2015).

    CAS  PubMed  Google Scholar 

  53. Yoshida-Moriguchi, T. & Campbell, K. P. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 25, 702–713 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Vissing, J., Sveen, M. L. & Duno, M. O. 22 dominant inheritance of limb girdle muscular dystrophy type 2A. Neuromuscul. Disord. 21, 750 (2011).

    Google Scholar 

  55. Ghaoui, R. et al. Use of whole-exome sequencing for diagnosis of limb-girdle muscular dystrophy: outcomes and lessons learned. JAMA Neurol. 72, 1424–1432 (2015).

    PubMed  Google Scholar 

  56. Biancalana, V. & Laporte, J. Diagnostic use of massively parallel sequencing in neuromuscular diseases: towards an integrated diagnosis. J. Neuromuscul. Dis. 2, 193–203 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. Chae, J. H. et al. Utility of next generation sequencing in genetic diagnosis of early onset neuromuscular disorders. J. Med. Genet. 52, 208–216 (2015).

    CAS  PubMed  Google Scholar 

  58. Ankala, A. et al. A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield. Ann. Neurol. 77, 206–214 (2014).

    PubMed  Google Scholar 

  59. Cabrera-Serrano, M. et al. Expanding the phenotype of GMPPB mutations. Brain 138, 836–844 (2015).

    PubMed  Google Scholar 

  60. Lek, M. & MacArthur, D. The challenge of next generation sequencing in the context of neuromuscular diseases. J. Neuromuscul. Dis. 1, 135–149 (2014).

    PubMed  Google Scholar 

  61. Boycott, K. M., Dyment, D. A., Sawyer, S. L., Vanstone, M. R. & Beaulieu, C. L. Identification of genes for childhood heritable diseases. Annu. Rev. Med. 65, 19–31 (2014).

    CAS  PubMed  Google Scholar 

  62. Rodger, S. et al. The TREAT-NMD care and trial site registry: an online registry to facilitate clinical research for neuromuscular diseases. Orphanet J. Rare Dis. 8, 171 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Bushby, K., Lynn, S. & Straub, T. Collaborating to bring new therapies to the patient — the TREAT-NMD model. Acta Myol. 28, 12–15 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Knoppers, B. M., Harris, J. R., Budin- Ljøsne, I. & Dove, E. S. A human rights approach to an international code of conduct for genomic and clinical data sharing. Hum. Genet. 133, 895–903 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Lappalainen, I. et al. The European Genome-phenome Archive of human data consented for biomedical research. Nat. Genet. 47, 692–695 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Thompson, R. et al. RD-Connect: an integrated platform connecting databases, registries, biobanks and clinical bioinformatics for rare disease research. J. Gen. Intern. Med. 29, S780–S787 (2014).

    PubMed  Google Scholar 

  67. Monaco, L., Crimi, M. & Wang, C. M. The challenge for a European network of biobanks for rare diseases taken up by RD-Connect. Pathobiology 81, 231–236 (2014).

    CAS  PubMed  Google Scholar 

  68. MacArthur, D. G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Di Fruscio, G., Garofalo, A., Mutarelli, M., Savarese, M. & Nigro, V. Are all the previously reported genetic variants in limb girdle muscular dystrophy genes pathogenic? Eur. J. Hum. Genet. 24, 73–77 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Norwood, F. L. et al. Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain 132, 3175–3186 (2009).

    PubMed  Google Scholar 

  71. Köhler, S. et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42, D966–D974 (2014).

    PubMed  Google Scholar 

  72. Philippakis, A. A. et al. The Matchmaker Exchange: a platform for rare disease gene discovery. Hum. Mutat. 36, 915–921 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Faravelli, I., Nizzardo, M., Comi, G. P. & Corti, S. Spinal muscular atrophy — recent therapeutic advances for an old challenge. Nat. Rev. Neurol. 11, 351–359 (2015).

    CAS  PubMed  Google Scholar 

  74. Jirka, S. & Aartsma-Rus, A. An update on RNA-targeting therapies for neuromuscular disorders. Curr. Opin. Neurol. 28, 515–521 (2015).

    CAS  PubMed  Google Scholar 

  75. Klein, A. F., Dastidar, S., Furling, D. & Chuah, M. K. Therapeutic approaches for dominant muscle diseases: highlight on myotonic dystrophy. Curr. Gene Ther. 15, 329–337 (2015).

    CAS  PubMed  Google Scholar 

  76. Straub, V. & Bertoli, M. Where do we stand in trial readiness for autosomal recessive limb girdle muscular dystrophies? Neuromuscul. Disord. 26, 111–125 (2016).

    PubMed  Google Scholar 

  77. Bushby, K. Looking forward to new therapies: a personal perspective on the translational landscape for muscular dystrophies. J. Neuromuscul. Dis. 2, 83–87 (2015).

    Google Scholar 

  78. Bladen, C. L. et al. The TREAT-NMD Duchenne muscular dystrophy registries: conception, design, and utilization by industry and academia. Hum. Mutat. 34, 1449–1457 (2013).

    PubMed  Google Scholar 

  79. Bladen, C. L. et al. Mapping the differences in care for 5,000 spinal muscular atrophy patients, a survey of 24 national registries in North America, Australasia and Europe. J. Neurol. 261, 152–163 (2013).

    PubMed  Google Scholar 

  80. Walter, M. C. et al. Treatment of dysferlinopathy with deflazacort: a double-blind, placebo-controlled clinical trial. Orphanet J. Rare Dis. 8, 26 (2013).

    PubMed  PubMed Central  Google Scholar 

  81. Burch, P. M. et al. Muscle-derived proteins as serum biomarkers for monitoring disease progression in three forms of muscular dystrophy. J. Neuromuscul. Dis. 2, 241–255 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Mascalzoni, D. et al. International Charter of principles for sharing bio-specimens and data. Eur. J. Hum. Genet. 23, 721–728 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreements 305444 (RD-Connect) and 305121 (Neuromics). TREAT-NMD was funded under EU FP6 contract no. 036825 (2007–2011) and TREAT-NMD Operating Grant — Second Public Health Programme (contract no. 2012 3307). Funding has also been received from the Jain Foundation, the LGMD2I Research Fund, Genzyme and Ultragenyx Pharmaceutical.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all stages of the preparation of this article.

Corresponding author

Correspondence to Volker Straub.

Ethics declarations

Competing interests

V.S. is or has been a principal investigator for trials sponsored by Genzyme, GSK, Prosensa/Biomarin, ISIS Pharmaceuticals, and Sarepta. He has received speaker honoraria from Genzyme and has been a member of the company's international Pompe advisory board. He also is or has been on advisory boards for Acceleron Pharma, Audentes Therapeutics, Bristol-Myers Squibb, Italfarmaco, Nicox, Pfizer, Prosensa, Santhera, Summit Therapeutics and TrophyNOD. He has research collaborations with Ultragenyx pharmaceutical and Genzyme/Sanofi. None of the industry collaborations pose a conflict of interest for this Review article. R.T. declares no competing interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, R., Straub, V. Limb-girdle muscular dystrophies — international collaborations for translational research. Nat Rev Neurol 12, 294–309 (2016). https://doi.org/10.1038/nrneurol.2016.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.35

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research