Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours

Key Points

  • Intracranial radiotherapy leads to permanent and substantial cognitive disability in 50–90% of patients

  • The pathophysiology of radiotherapy-associated cognitive disability remains poorly understood and there are no effective preventive measures or long-term treatments

  • Historically, most research has addressed markers of damage and the cognitive decline that appears 6 months to 1 year or more after irradiation

  • More-sensitive imaging techniques have revealed subtle evidence of CNS damage much sooner than 6 months after radiation

  • These early forms of CNS damage can persist and synergize over time to cause long-term, irreversible deficits in neurons and supporting cell lineages that are vital to cognition

  • Consideration of early forms of radiation-induced CNS damage could help to identify early treatments that can reverse degenerative processes before they cause permanent disability

Abstract

Standard treatment of primary and metastatic brain tumours includes high-dose megavoltage-range radiation to the cranial vault. About half of patients survive >6 months, and many attain long-term control or cure. However, 50–90% of survivors exhibit disabling cognitive dysfunction. The radiation-associated cognitive syndrome is poorly understood and has no effective prevention or long-term treatment. Attention has primarily focused on mechanisms of disability that appear at 6 months to 1 year after radiotherapy. However, recent studies show that CNS alterations and dysfunction develop much earlier following radiation exposure. This finding has prompted the hypothesis that subtle early forms of radiation-induced CNS damage could drive chronic pathophysiological processes that lead to permanent cognitive decline. This Review presents evidence of acute radiation-triggered CNS inflammation, injury to neuronal lineages, accessory cells and their progenitors, and loss of supporting structure integrity. Moreover, injury-related processes initiated soon after irradiation could synergistically alter the signalling microenvironment in progenitor cell niches in the brain and the hippocampus, which is a structure critical to memory and cognition. Progenitor cell niche degradation could cause progressive neuronal loss and cognitive disability. The concluding discussion addresses future directions and potential early treatments that might reverse degenerative processes before they can cause permanent cognitive disability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of early CNS injury in brain tumour patients receiving radiotherapy.
Figure 2: Symptoms of radiation-induced CNS injury and cognitive decline.
Figure 3: Pathogenesis of radiation-induced long-term cognitive decline.
Figure 4: Vasculopathy and oligodendrocyte depletion underlie radiation-induced white matter damage.
Figure 5: The severity of radiation-induced white matter damage increases with age.
Figure 6: Dose-dependent cortical thinning.
Figure 7: Dose-dependent hippocampal atrophy.

Similar content being viewed by others

References

  1. Chi, A. & Komaki, R. Treatment of brain metastasis from lung cancer. Cancers (Basel) 2, 2100–2137 (2010).

    Article  CAS  Google Scholar 

  2. Shi, L. et al. Aging masks detection of radiation-induced brain injury. Brain Res. 1385, 307–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greene-Schloesser, D., Moore, E. & Robbins, M. E. Molecular pathways: radiation-induced cognitive impairment. Clin. Cancer Res. 19, 2294–2300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moore, E. D., Kooshki, M., Wheeler, K. T., Metheny-Barlow, L. J. & Robbins, M. E. Differential expression of Homer1a in the hippocampus and cortex likely plays a role in radiation-induced brain injury. Radiat. Res. 181, 21–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, P. H. et al. Radiation induces acute alterations in neuronal function. PLoS ONE 7, e37677 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McTyre, E., Scott, J. & Chinnaiyan, P. Whole brain radiotherapy for brain metastasis. Surg. Neurol. Int. 4, S236–S244 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Owonikoko, T. K. et al. Current approaches to the treatment of metastatic brain tumours. Nat. Rev. Clin. Oncol. 11, 203–222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McDuff, S. G. et al. Neurocognitive assessment following whole brain radiation therapy and radiosurgery for patients with cerebral metastases. J. Neurol. Neurosurg. Psychiatry 84, 1384–1391 (2013).

    Article  PubMed  Google Scholar 

  9. Marsh, J. C., Gielda, B. T., Herskovic, A. M. & Abrams, R. A. Cognitive sparing during the administration of whole brain radiotherapy and prophylactic cranial irradiation: current concepts and approaches. J. Oncol. 2010, 198208 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jenrow, K. A. et al. Selective inhibition of microglia-mediated neuroinflammation mitigates radiation-induced cognitive impairment. Radiat. Res. 179, 549–556 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lippitz, B. et al. Stereotactic radiosurgery in the treatment of brain metastases: the current evidence. Cancer Treat. Rev. 40, 48–59 (2014).

    Article  PubMed  Google Scholar 

  12. Phillips, M. H., Stelzer, K. J., Griffin, T. W., Mayberg, M. R. & Winn, H. R. Stereotactic radiosurgery: a review and comparison of methods. J. Clin. Oncol. 12, 1085–1099 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Bilimagga, R. S. et al. Role of palliative radiotherapy in brain metastases. Indian J. Palliat. Care 15, 71–75 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wadasadawala, T., Gupta, S., Bagul, V. & Patil, N. Brain metastases from breast cancer: management approach. J. Cancer Res. Ther. 3, 157–165 (2007).

    Article  PubMed  Google Scholar 

  15. Packer, R. J. et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children's Cancer Group study. J. Clin. Oncol. 17, 2127–2136 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Davis, C. M. et al. Effects of X-ray radiation on complex visual discrimination learning and social recognition memory in rats. PLoS ONE 9, e104393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, L., Molina, D. P., Robbins, M. E., Wheeler, K. T. & Brunso-Bechtold, J. K. Hippocampal neuron number is unchanged 1 year after fractionated whole-brain irradiation at middle age. Int. J. Radiat. Oncol. Biol. Phys. 71, 526–532 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Greene-Schloesser, D. et al. Radiation-induced brain injury: a review. Front. Oncol. 2, 73 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Palmer, S. L., Reddick, W. E. & Gajjar, A. Understanding the cognitive impact on children who are treated for medulloblastoma. J. Pediatr. Psychol. 32, 1040–1049 (2007).

    Article  PubMed  Google Scholar 

  20. [No authors listed.] Outcomes of cancer treatment for technology assessment and cancer treatment guidelines. American Society of Clinical Oncology. J. Clin. Oncol. 14, 671–679 (1996).

  21. Gustafsson, M., Edvardsson, T. & Ahlstrom, G. The relationship between function, quality of life and coping in patients with low-grade gliomas. Support. Care Cancer 14, 1205–1212 (2006).

    Article  PubMed  Google Scholar 

  22. Frost, M. H. & Sloan, J. A. Quality of life measurements: a soft outcome — or is it? Am. J. Manag. Care 8, S574–S579 (2002).

    PubMed  Google Scholar 

  23. Lin, N. U. et al. Challenges relating to solid tumour brain metastases in clinical trials, part 2: neurocognitive, neurological, and quality-of-life outcomes. A report from the RANO group. Lancet Oncol. 14, e407–e416 (2013).

    Article  PubMed  Google Scholar 

  24. Lee, Y. W., Cho, H. J., Lee, W. H. & Sonntag, W. E. Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets. Biomol. Ther. (Seoul) 20, 357–370 (2012).

    Article  CAS  Google Scholar 

  25. Attia, A., Page, B. R., Lesser, G. J. & Chan, M. Treatment of radiation-induced cognitive decline. Curr. Treat. Options Oncol. 15, 539–550 (2014).

    Article  PubMed  Google Scholar 

  26. Rooney, J. W. & Laack, N. N. Pharmacological interventions to treat or prevent neurocognitive decline after brain radiation. CNS Oncol. 2, 531–541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Connor, M. et al. Dose-dependent white matter damage after brain radiotherapy. Radiother. Oncol. http://dx.doi.org/10.1016/j.radonc.2016.10.003 (2016).

  28. Armstrong, C. L., Gyato, K., Awadalla, A. W., Lustig, R. & Tochner, Z. A. A critical review of the clinical effects of therapeutic irradiation damage to the brain: the roots of controversy. Neuropsychol. Rev. 14, 65–86 (2004).

    Article  PubMed  Google Scholar 

  29. Shi, L. et al. Maintenance of white matter integrity in a rat model of radiation-induced cognitive impairment. J. Neurol. Sci. 285, 178–184 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Parihar, V. K. et al. Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain Struct. Funct. 220, 1161–1171 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Ljubimova, N. V., Levitman, M. K., Plotnikova, E. D. & Eidus, L. Endothelial cell population dynamics in rat brain after local irradiation. Br. J. Radiol. 64, 934–940 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Peiffer, A. M. et al. Neuroanatomical target theory as a predictive model for radiation-induced cognitive decline. Neurology 80, 747–753 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Parihar, V. K. & Limoli, C. L. Cranial irradiation compromises neuronal architecture in the hippocampus. Proc. Natl Acad. Sci. USA 110, 12822–12827 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Agarwal, S., Manchanda, P., Vogelbaum, M. A., Ohlfest, J. R. & Elmquist, W. F. Function of the blood–brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma. Drug Metab. Dispos. 41, 33–39 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Furnari, F. B. et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21, 2683–2710 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Puhalla, S. et al. Unsanctifying the sanctuary: challenges and opportunities with brain metastases. Neuro Oncol. 17, 639–651 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Packer, R. J., Zhou, T., Holmes, E., Vezina, G. & Gajjar, A. Survival and secondary tumors in children with medulloblastoma receiving radiotherapy and adjuvant chemotherapy: results of Children's Oncology Group trial A9961. Neuro Oncol. 15, 97–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Ruben, J. D. et al. Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 65, 499–508 (2006).

    Article  PubMed  Google Scholar 

  40. Chen, J. et al. Radiation induced temporal lobe necrosis in patients with nasopharyngeal carcinoma: a review of new avenues in its management. Radiat. Oncol. 6, 128 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dropcho, E. J. Neurotoxicity of radiation therapy. Neurol. Clin. 28, 217–234 (2010).

    Article  PubMed  Google Scholar 

  42. Sheline, G. E., Wara, W. M. & Smith, V. Therapeutic irradiation and brain injury. Int. J. Radiat. Oncol. Biol. Phys. 6, 1215–1228 (1980).

    Article  CAS  PubMed  Google Scholar 

  43. Saury, J. M. & Emanuelson, I. Cognitive consequences of the treatment of medulloblastoma among children. Pediatr. Neurol. 44, 21–30 (2011).

    Article  PubMed  Google Scholar 

  44. Deng, W., Aimone, J. B. & Gage, F. H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci. 11, 339–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoffmann, M. The human frontal lobes and frontal network systems: an evolutionary, clinical, and treatment perspective. ISRN Neurol. 2013, 892459 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Parihar, V. K. et al. What happens to your brain on the way to Mars. Sci. Adv. 1, e1400256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fuster, J. M. Frontal lobe and cognitive development. J. Neurocytol. 31, 373–385 (2002).

    Article  PubMed  Google Scholar 

  48. Braun, U. et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl Acad. Sci. USA 112, 11678–11683 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Murphy, E. S. et al. Review of cranial radiotherapy-induced vasculopathy. J. Neurooncol. 122, 421–429 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Pellmar, T. C., Schauer, D. A. & Zeman, G. H. Time- and dose-dependent changes in neuronal activity produced by X radiation in brain slices. Radiat. Res. 122, 209–214 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Padovani, L., Andre, N., Constine, L. S. & Muracciole, X. Neurocognitive function after radiotherapy for paediatric brain tumours. Nat. Rev. Neurol. 8, 578–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Panagiotakos, G. et al. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS ONE 2, e588 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gangloff, H. & Haley, T. J. Effects of X-irradiation on spontaneous and evoked brain electrical activity in cats. Radiat. Res. 12, 694–704 (1960).

    Article  CAS  PubMed  Google Scholar 

  54. Bassant, M. H. & Court, L. Effects of whole-body gamma irradiation on the activity of rabbit hippocampal neurons. Radiat. Res. 75, 593–606 (1978).

    Article  CAS  PubMed  Google Scholar 

  55. Pellmar, T. C. & Lepinski, D. L. Gamma radiation (5–10 Gy) impairs neuronal function in the guinea pig hippocampus. Radiat. Res. 136, 255–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Gerstner, H. B., Brooks, P. M. & Smith, S. A. Effect of X-radiation on the flow of perfusion fluid through the isolated rabbit's ear. Am. J. Physiol. 182, 459–461 (1955).

    Article  CAS  PubMed  Google Scholar 

  57. Krueger, H., Wagelie, E. G. & Bogart, R. Radiation and responses of rabbit ear artery to xylene, alcohol, and epinephrine. Radiat. Res. 30, 420–430 (1967).

    Article  CAS  PubMed  Google Scholar 

  58. Li, Y. Q., Chen, P., Haimovitz-Friedman, A., Reilly, R. M. & Wong, C. S. Endothelial apoptosis initiates acute blood–brain barrier disruption after ionizing radiation. Cancer Res. 63, 5950–5956 (2003).

    CAS  PubMed  Google Scholar 

  59. Brown, W. R., Thore, C. R., Moody, D. M., Robbins, M. E. & Wheeler, K. T. Vascular damage after fractionated whole-brain irradiation in rats. Radiat. Res. 164, 662–668 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Finet, P., Rooijakkers, H., Godfraind, C. & Raftopoulos, C. Delayed compressive angiomatous degeneration in a case of mesial temporal lobe epilepsy treated by γ knife radiosurgery: case report. Neurosurgery 67, 218–220 (2010).

    Article  PubMed  Google Scholar 

  61. Desai, S. S., Paulino, A. C., Mai, W. Y. & Teh, B. S. Radiation-induced moyamoya syndrome. Int. J. Radiat. Oncol. Biol. Phys. 65, 1222–1227 (2006).

    Article  PubMed  Google Scholar 

  62. Ullrich, N. J. et al. Moyamoya following cranial irradiation for primary brain tumors in children. Neurology 68, 932–938 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Hahn, C. A. et al. Dose-dependent effects of radiation therapy on cerebral blood flow, metabolism, and neurocognitive dysfunction. Int. J. Radiat. Oncol. Biol. Phys. 73, 1082–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Abayomi, O. K. Pathogenesis of cognitive decline following therapeutic irradiation for head and neck tumors. Acta Oncol. 41, 346–351 (2002).

    Article  PubMed  Google Scholar 

  65. Calvo, W., Hopewell, J. W., Reinhold, H. S. & Yeung, T. K. Time- and dose-related changes in the white matter of the rat brain after single doses of X rays. Br. J. Radiol. 61, 1043–1052 (1988).

    Article  CAS  PubMed  Google Scholar 

  66. Filley, C. M. White matter dementia. Ther. Adv. Neurol. Disord. 5, 267–277 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhao, W. et al. Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. Int. J. Radiat. Oncol. Biol. Phys. 67, 6–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, T. C. et al. Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment. Radiat. Res. 178, 46–56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hansson, E. Astroglia from defined brain regions as studied with primary cultures. Prog. Neurobiol. 30, 369–397 (1988).

    Article  CAS  PubMed  Google Scholar 

  70. Pal, B. Astrocytic actions on extrasynaptic neuronal currents. Front. Cell. Neurosci. 9, 474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hamilton, N. B. & Attwell, D. Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11, 227–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Hwang, S. Y. et al. Ionizing radiation induces astrocyte gliosis through microglia activation. Neurobiol. Dis. 21, 457–467 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Ho, G., Zhang, C. & Zhuo, L. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity. Toxicol. Appl. Pharmacol. 221, 76–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Chiang, C. S., McBride, W. H. & Withers, H. R. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother. Oncol. 29, 60–68 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Moore, E. D., Kooshki, M., Metheny-Barlow, L. J., Gallagher, P. E. & Robbins, M. E. Angiotensin-(1–7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic. Biol. Med. 65, 1060–1068 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Li, Y. Q., Jay, V. & Wong, C. S. Oligodendrocytes in the adult rat spinal cord undergo radiation-induced apoptosis. Cancer Res. 56, 5417–5422 (1996).

    CAS  PubMed  Google Scholar 

  77. Kurita, H. et al. Radiation-induced apoptosis of oligodendrocytes in the adult rat brain. Neurol. Res. 23, 869–874 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Tsuruda, J. S. et al. Radiation effects on cerebral white matter: MR evaluation. AJR Am. J. Roentgenol. 149, 165–171 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, S. et al. Radiation induced brain injury: assessment of white matter tracts in a pre-clinical animal model using diffusion tensor MR imaging. J. Neurooncol. 112, 9–14 (2013).

    Article  PubMed  Google Scholar 

  80. Hellstrom, N. A., Bjork-Eriksson, T., Blomgren, K. & Kuhn, H. G. Differential recovery of neural stem cells in the subventricular zone and dentate gyrus after ionizing radiation. Stem Cells 27, 634–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Ming, G. L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mizumatsu, S. et al. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res. 63, 4021–4027 (2003).

    CAS  PubMed  Google Scholar 

  83. Kalm, M., Karlsson, N., Nilsson, M. K. & Blomgren, K. Loss of hippocampal neurogenesis, increased novelty-induced activity, decreased home cage activity, and impaired reversal learning one year after irradiation of the young mouse brain. Exp. Neurol. 247, 402–409 (2013).

    Article  PubMed  Google Scholar 

  84. Manda, K., Ueno, M. & Anzai, K. Cranial irradiation-induced inhibition of neurogenesis in hippocampal dentate gyrus of adult mice: attenuation by melatonin pretreatment. J. Pineal Res. 46, 71–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Tada, E., Parent, J. M., Lowenstein, D. H. & Fike, J. R. X-Irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience 99, 33–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Rola, R. et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp. Neurol. 188, 316–330 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Raber, J. et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat. Res. 162, 39–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, H. et al. Ionizing radiation perturbs cell cycle progression of neural precursors in the subventricular zone without affecting their long-term self-renewal. ASN Neuro http://dx.doi.org/10.1177/1759091415578026 (2015).

  89. Monje, M. L., Mizumatsu, S., Fike, J. R. & Palmer, T. D. Irradiation induces neural precursor-cell dysfunction. Nat. Med. 8, 955–962 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Tofilon, P. J. & Fike, J. R. The radioresponse of the central nervous system: a dynamic process. Radiat. Res. 153, 357–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Acharya, M. M. et al. Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction. Cancer Res. 71, 4834–4845 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Acharya, M. M., Roa, D. E., Bosch, O., Lan, M. L. & Limoli, C. L. Stem cell transplantation strategies for the restoration of cognitive dysfunction caused by cranial radiotherapy. J. Vis. Exp. http://dx.doi.org/10.3791/3107 (2011).

  93. Warrington, J. P., Csiszar, A., Mitschelen, M., Lee, Y. W. & Sonntag, W. E. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS ONE 7, e30444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Monje, M. L., Toda, H. & Palmer, T. D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Lee, W. H., Sonntag, W. E., Mitschelen, M., Yan, H. & Lee, Y. W. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int. J. Radiat. Biol. 86, 132–144 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ballesteros-Zebadua, P., Chavarria, A., Celis, M. A., Paz, C. & Franco-Perez, J. Radiation-induced neuroinflammation and radiation somnolence syndrome. CNS Neurol. Disord. Drug Targets 11, 937–949 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Kyrkanides, S. et al. Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. Brain Res. Mol. Brain Res. 104, 159–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Monje, M. L. et al. Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann. Neurol. 62, 515–520 (2007).

    Article  PubMed  Google Scholar 

  99. Ekdahl, C. T., Claasen, J. H., Bonde, S., Kokaia, Z. & Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl Acad. Sci. USA 100, 13632–13637 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Ingraham, J. P., Forbes, M. E., Riddle, D. R. & Sonntag, W. E. Aging reduces hypoxia-induced microvascular growth in the rodent hippocampus. J. Gerontol. A Biol. Sci. Med. Sci. 63, 12–20 (2008).

    Article  PubMed  Google Scholar 

  101. Park, J. A., Choi, K. S., Kim, S. Y. & Kim, K. W. Coordinated interaction of the vascular and nervous systems: from molecule- to cell-based approaches. Biochem. Biophys. Res. Commun. 311, 247–253 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Licht, T. et al. Reversible modulations of neuronal plasticity by VEGF. Proc. Natl Acad. Sci. USA 108, 5081–5086 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Kang, S. G. et al. Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery 67, 711–720 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kim, J. H., Jenrow, K. A. & Brown, S. L. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat. Oncol. J. 32, 103–115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Robbins, M. E., Bourland, J. D., Cline, J. M., Wheeler, K. T. & Deadwyler, S. A. A model for assessing cognitive impairment after fractionated whole-brain irradiation in nonhuman primates. Radiat. Res. 175, 519–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gonzalez Burgos, I., Nikonenko, I. & Korz, V. Dendritic spine plasticity and cognition. Neural Plast. 2012, 875156 (2012).

    PubMed  PubMed Central  Google Scholar 

  107. Frankfurt, M. & Luine, V. The evolving role of dendritic spines and memory: interaction(s) with estradiol. Horm. Behav. 74, 28–36 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Schwechter, B. & Tolias, K. F. Cytoskeletal mechanisms for synaptic potentiation. Commun. Integr. Biol. 6, e27343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hains, A. B., Yabe, Y. & Arnsten, A. F. Chronic stimulation of alpha-2A-adrenoceptors with guanfacine protects rodent prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Neurobiol. Stress 2, 1–9 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Pereira, A. C. et al. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering. Proc. Natl Acad. Sci. USA 111, 18733–18738 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Brizzee, K. R., Ordy, J. M., Kaack, M. B. & Beavers, T. Effect of prenatal ionizing radiation on the visual cortex and hippocampus of newborn squirrel monkeys. J. Neuropathol. Exp. Neurol. 39, 523–540 (1980).

    Article  CAS  PubMed  Google Scholar 

  113. Shors, T. J., Anderson, M. L., Curlik, D. M. II & Nokia, M. S. Use it or lose it: how neurogenesis keeps the brain fit for learning. Behav. Brain Res. 227, 450–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Kirby, E. D., Kuwahara, A. A., Messer, R. L. & Wyss-Coray, T. Adult hippocampal neural stem and progenitor cells regulate the neurogenic niche by secreting VEGF. Proc. Natl Acad. Sci. USA 112, 4128–4133 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Seib, D. R. & Martin-Villalba, A. Neurogenesis in the normal ageing hippocampus: a mini-review. Gerontology 61, 327–335 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Christian, K. M., Song, H. & Ming, G. L. Functions and dysfunctions of adult hippocampal neurogenesis. Annu. Rev. Neurosci. 37, 243–262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lie, D. C. et al. Wnt signaling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Acharya, M. M., Christie, L. A., Hazel, T. G., Johe, K. K. & Limoli, C. L. Transplantation of human fetal-derived neural stem cells improves cognitive function following cranial irradiation. Cell Transplant. 23, 1255–1266 (2014).

    Article  PubMed  Google Scholar 

  120. Bostrom, M., Kalm, M., Karlsson, N., Hellstrom Erkenstam, N. & Blomgren, K. Irradiation to the young mouse brain caused long-term, progressive depletion of neurogenesis but did not disrupt the neurovascular niche. J. Cereb. Blood Flow Metab. 33, 935–943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Snyder, J. S., Kee, N. & Wojtowicz, J. M. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J. Neurophysiol. 85, 2423–2431 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Wong, C. S. & Van der Kogel, A. J. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol. Interv. 4, 273–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Shiraishi-Yamaguchi, Y. & Furuichi, T. The Homer family proteins. Genome Biol. 8, 206 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Roloff, A. M., Anderson, G. R., Martemyanov, K. A. & Thayer, S. A. Homer 1a gates the induction mechanism for endocannabinoid-mediated synaptic plasticity. J. Neurosci. 30, 3072–3081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Celikel, T. et al. Select overexpression of homer1a in dorsal hippocampus impairs spatial working memory. Front. Neurosci. 1, 97–110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tappe-Theodor, A., Fu, Y., Kuner, R. & Neugebauer, V. Homer1a signaling in the amygdala counteracts pain-related synaptic plasticity, mGluR1 function and pain behaviors. Mol. Pain 7, 38 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhou, F. W. & Roper, S. N. Impaired hippocampal memory function and synaptic plasticity in experimental cortical dysplasia. Epilepsia 53, 850–859 (2012).

    Article  PubMed  Google Scholar 

  128. Ehlers, M. D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Deisseroth, K. et al. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42, 535–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Ge, S. et al. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Prust, M. J. et al. Standard chemoradiation for glioblastoma results in progressive brain volume loss. Neurology 85, 683–691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Karunamuni, R. et al. Dose-dependent cortical thinning after partial brain irradiation in high-grade glioma. Int. J. Radiat. Oncol. Biol. Phys. 94, 297–304 (2016).

    Article  PubMed  Google Scholar 

  133. Seibert, T. M. et al. Selective vulnerability of cerebral cortex regions to radiation dose-dependent atrophy. [abstract] Int. J. Radiat. Oncol. Biol. Phys. 96, S177–304 (2016).

    Article  Google Scholar 

  134. Karunamuni, R. A. et al. Radiation sparing of cerebral cortex in brain tumor patients using quantitative neuroimaging. Radiother. Oncol. 118, 29–34 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Olsson, E. et al. Hippocampal volumes in patients exposed to low-dose radiation to the basal brain. A case–control study in long-term survivors from cancer in the head and neck region. Radiat. Oncol. 7, 202 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Nolen, S. C. et al. The effects of sequential treatments on hippocampal volumes in malignant glioma patients. J. Neurooncol. 129, 433–441 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Seibert, T. M. et al. Radiation dose-dependent hippocampal atrophy detected with longitudinal volumetric MRI. Int. J. Radiat. Oncol. Biol. Phys. http://dx.doi.org/10.1016/j.ijrobp.2016.10.035 (2016).

  138. Walecki, J. et al. Role of short TE 1H-MR spectroscopy in monitoring of post-operation irradiated patients. Eur. J. Radiol. 30, 154–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Sundgren, P. C. et al. Metabolic alterations: a biomarker for radiation-induced normal brain injury-an MR spectroscopy study. J. Magn. Reson. Imaging 29, 291–297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Movsas, B. et al. Quantifying radiation therapy-induced brain injury with whole-brain proton MR spectroscopy: initial observations. Radiology 221, 327–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Robbins, M. E. et al. Imaging radiation-induced normal tissue injury. Radiat. Res. 177, 449–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, S. et al. Radiation induced brain injury: assessment of white matter tracts in a pre-clinical animal model using diffusion tensor MR imaging. J. Neurooncol. 112, 9–15 (2013).

    Article  PubMed  Google Scholar 

  143. White, N. S. et al. Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer Res. 74, 4638–4652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. Diffusion tensor imaging of the brain. Neurotherapeutics 4, 316–329 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Chan, K. C. et al. MRI of late microstructural and metabolic alterations in radiation-induced brain injuries. J. Magn. Reson. Imaging 29, 1013–1020 (2009).

    Article  PubMed  Google Scholar 

  146. Ravn, S., Holmberg, M., Sorensen, P., Frokjaer, J. B. & Carl, J. Differences in supratentorial white matter diffusion after radiotherapy — new biomarker of normal brain tissue damage? Acta Oncol. 52, 1314–1319 (2013).

    Article  PubMed  Google Scholar 

  147. Haris, M. et al. Serial diffusion tensor imaging to characterize radiation-induced changes in normal-appearing white matter following radiotherapy in patients with adult low-grade gliomas. Radiat. Med. 26, 140–150 (2008).

    Article  PubMed  Google Scholar 

  148. Nagesh, V. et al. Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor imaging study. Int. J. Radiat. Oncol. Biol. Phys. 70, 1002–1010 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Zhu, T. et al. Effect of the maximum dose on white matter fiber bundles using longitudinal diffusion tensor imaging. Int. J. Radiat. Oncol. Biol. Phys. 96, 696–705 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Qiu, D., Kwong, D. L., Chan, G. C., Leung, L. H. & Khong, P. L. Diffusion tensor magnetic resonance imaging finding of discrepant fractional anisotropy between the frontal and parietal lobes after whole-brain irradiation in childhood medulloblastoma survivors: reflection of regional white matter radiosensitivity? Int. J. Radiat. Oncol. Biol. Phys. 69, 846–851 (2007).

    Article  PubMed  Google Scholar 

  151. Chapman, C. H. et al. Regional variation in brain white matter diffusion index changes following chemoradiotherapy: a prospective study using tract-based spatial statistics. PLoS ONE 8, e57768 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chapman, C. H. et al. Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline. Int. J. Radiat. Oncol. Biol. Phys. 82, 2033–2040 (2012).

    Article  PubMed  Google Scholar 

  153. Khong, P. L. et al. White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J. Clin. Oncol. 24, 884–890 (2006).

    Article  PubMed  Google Scholar 

  154. Meyers, C. A., Weitzner, M. A., Valentine, A. D. & Levin, V. A. Methylphenidate therapy improves cognition, mood, and function of brain tumor patients. J. Clin. Oncol. 16, 2522–2527 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Brown, P. D. et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol. 15, 1429–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. McGough, J. J. et al. Once-daily OROS methylphenidate is safe and well tolerated in adolescents with attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 16, 351–356 (2006).

    Article  PubMed  Google Scholar 

  157. Parsons, C. G., Danysz, W. & Quack, G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist — a review of preclinical data. Neuropharmacology 38, 735–767 (1999).

    Article  CAS  PubMed  Google Scholar 

  158. NRG Oncology. NRGOncology.org [online] NRG-CC001: a randomized phase III Trial of memantine and whole-brain radiotherapy with or without hippocampal avoidance in patients with brain metastases. https://www.nrgoncology.org/Clinical-Trials/NRG-CC001 (2015).

  159. Howard, R. et al. Donepezil and memantine for moderate-to-severe Alzheimer's disease. N. Engl. J. Med. 366, 893–903 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Kleinberg, L. Neurocognitive challenges in brain tumor survivors: is there anything we can do? J. Clin. Oncol. 33, 1633–1636 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Fathpour, P. et al. Bevacizumab treatment for human glioblastoma. Can it induce cognitive impairment? Neuro Oncol. 16, 754–756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Calabrese, B. & Halpain, S. Essential role for the PKC target MARCKS in maintaining dendritic spine morphology. Neuron 48, 77–90 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Hains, A. B. et al. Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Proc. Natl Acad. Sci. USA 106, 17957–17962 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Starr, P. Midostaurin the first targeted therapy to improve survival in AML: potentially practice-changing. Am. Health Drug Benefits 9, 1–21 (2016).

    PubMed  PubMed Central  Google Scholar 

  165. Cifelli, J. L., Dozier, L., Chung, T. S., Patrick, G. N. & Yang, J. Benzothiazole amphiphiles promote the formation of dendritic spines in primary hippocampal neurons. J. Biol. Chem. 291, 11981–11992 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Williams, C. A. & Lavik, E. B. Engineering the CNS stem cell microenvironment. Regen. Med. 4, 865–877 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Tysseling-Mattiace, V. M. et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 28, 3814–3823 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang, H. D., Dunnavant, F. D., Jarman, T. & Deutch, A. Y. Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology 29, 1230–1238 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Pleasure, D., Soulika, A., Singh, S. K., Gallo, V. & Bannerman, P. Inflammation in white matter: clinical and pathophysiological aspects. Ment. Retard. Dev. Disabil. Res. Rev. 12, 141–146 (2006).

    Article  PubMed  Google Scholar 

  170. Nunes, M. C. et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med. 9, 439–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Burger, P. C., Mahley, M. S. Jr, Dudka, L. & Vogel, F. S. The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 44, 1256–1272 (1979).

    Article  CAS  PubMed  Google Scholar 

  172. Fujii, O. et al. White matter changes on magnetic resonance imaging following whole-brain radiotherapy for brain metastases. Radiat. Med. 24, 345–350 (2006).

    Article  PubMed  Google Scholar 

  173. Mabbott, D. J., Noseworthy, M. D., Bouffet, E., Rockel, C. & Laughlin, S. Diffusion tensor imaging of white matter after cranial radiation in children for medulloblastoma: correlation with IQ. Neuro Oncol. 8, 244–252 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Chiang, C. S., McBride, W. H. & Withers, H. R. Myelin-associated changes in mouse brain following irradiation. Radiother. Oncol. 27, 229–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  175. Nakagaki, H., Brunhart, G., Kemper, T. L. & Caveness, W. F. Monkey brain damage from radiation in the therapeutic range. J. Neurosurg. 44, 3–11 (1976).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.A.H.-G. has received funding from NIH (grants #1KL2TR001444 and #UL1TR000100), and has received the American Cancer Society Pilot Award ACS-IRG 70-002.

Author information

Authors and Affiliations

Authors

Contributions

M.T.M., C.R.M., and J.A.H.-G. contributed to researching the data, writing and reviewing of the manuscript. S.K. provided substantial contributions to the discussion of the content and revising of the manuscript.

Corresponding authors

Correspondence to Milan T. Makale or Santosh Kesari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

WHO description of health

PowerPoint slides

Glossary

Whole-brain radiotherapy

Entire brain and brainstem are irradiated to treat a tumour.

Partial-brain radiotherapy

Irradiation treatment of the tumour or tumour bed and surrounding margin; moreover, some healthy brain tissue is subject to incidental irradiation.

Diffusion tensor imaging

Models the motion of water as an ellipse, with derived metrics allowing the study of white matter integrity.

Delayed Match-to-Sample

A test used to assess non-verbal elements of short-term memory in humans and primates: the participant must recall whether a stimulus matches a previously presented 'sample' stimulus.

Homer1a

Homer1a is a protein expressed by neurons that selectively inhibits the binding of family 1 metabotropic glutamate receptor (mGluR) to the synapse.

Diffusion-weighted imaging

Measures and models the diffusion of water at the cellular level.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makale, M., McDonald, C., Hattangadi-Gluth, J. et al. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol 13, 52–64 (2017). https://doi.org/10.1038/nrneurol.2016.185

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.185

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer