
Guillain–Barré syndrome (GBS) is the most 
common cause of acute flaccid paralysis,  
and manifests as rapidly evolving 
weakness and sensory disturbance in the 
arms, legs and, in some patients, facial, 
bulbar and respiratory muscles. Many 
patients make a good recovery over the 
months following symptom onset, but in 
severe cases patients can require months of 
intensive care and be left with permanent 
severe weakness, sensory disturbance and 
pain. Furthermore, ~5% of patients die from 
complications, including respiratory failure, 
pneumonia and arrhythmias, making GBS 
a medical emergency with a high morbidity 
and significant mortality.

Descriptions of clinical cases that closely 
resemble the condition we now know as 
GBS were made at least as early as 1859, 
when Jean Baptiste Octave Landry reported 
on “acute ascending paralysis”. His report 
led to use of the term “Landry’s ascending 
paralysis” to describe subacute ascending 
peripheral sensory and motor dysfunction. 
He observed the following:

its differentiation from similar conditions, 
such as polio, which was a highly prevalent 
differential diagnosis for acute flaccid 
weakness. It was not until 1916 that Guillain, 
Barré and Strohl published the paper that 
would define the disease and the next 
100 years of research.

1916 — Guillain, Barré and Strohl
In 1916, Europe was on the brink of 
destruction, the Battle of the Somme had 
killed or wounded over one million men, 
yet Guillain, Barré and Strohl — three army 
physicians at the neurological military centre 
of the French Sixth Army — were discussing 
the cerebrospinal fluid (CSF) constituents and 
tendon reflexes of two paralysed soldiers2. 
In 1891, Walter Essex Wynter had published 
the first use of lumbar CSF sampling with 
a cutdown technique, and in the same year, 
Quincke reported the first use of the lumbar 
puncture3. In 1916, Guillain, Barré and Strohl 
used Quincke’s method to determine the 
protein level and cell count in the CSF of 
their patients.

The three neurologists observed high CSF 
protein levels in the absence of any rise in 
levels of inflammatory cells — their so‑called 
“dissociation albumino‑cytologique”. This 
finding was distinct from the high white cell 
counts seen in the CSF of patients with other 
prevalent causes of acute flaccid paralysis, 
such as syphilis or polio. At the time, the 
finding firmly established that the condition 
was a clinical and pathological entity distinct 
from other infective causes of flaccid paralysis 
— Guillain–Barré syndrome was born.

Our current understanding of GBS allows 
for the finding of normal CSF protein levels, 
especially early in the disease, because we 
know that the CSF protein level might not be 
elevated until the second week, and for CSF 
white cell counts up to 50 cells/μl. Moreover, 
we also now consider a wide clinical 
spectrum to result from the same underlying 
acute immune‑mediated peripheral nerve 
and nerve root inflammation. Nevertheless, 
the original CSF findings remain the CSF 
hallmark and a diagnostically important and 
supportive test result4.

Early controversy
Initially, the awkward eponym Landry–
Guillain–Barré–Strohl syndrome was 

The sensory and motor systems may 
be equally affected. However the main 
problem is usually a motor disorder 
characterised by a gradual diminution 
of muscular strength with flaccid limbs 
without contractures … The paralysis 
moves rapidly from lower to upper areas. 
The progression can be more or less rapid. 
When the paralysis reaches its maximum 
intensity, the danger of asphyxia is always 
imminent. However in eight out of ten 
cases death was avoided. When there is 
a reversal of the paralysis, the recovery 
period involves phenomena opposite 
to those indicated in the development 
period. Patients then either recover very 
quickly, or the disease becomes chronic 
with slow improvement (REF. 1).

Thus, the core clinical features of the 
condition were described, but its aetiology 
and pathogenesis remained obscure to 
mid‑nineteenth and early twentieth century 
neurologists. The focus was on delineating 
the clinical features of this disorder to enable 
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used to describe the condition. By 1927, 
the term had been simplified to Guillain–
Barré syndrome5, even though Strohl had 
been instrumental in the electrographical 
recordings and characterization of the 
loss of tendon reflexes. Guillain and Barré 
continued as highly regarded neurologists 
after the war. Guillain insisted that the 
condition he described was benign, in the 
sense that it was not fatal, and therefore 
resisted the notion that Landry had 
described the same syndrome. Furthermore, 
he and Barré insisted on the high CSF 
protein level and low white cell count 
being necessary to define their syndrome 
and differentiate it from other infectious 
diseases. The clinical features compatible 
with the diagnosis were the subject of much 
debate; for example, the original report 
described no cranial nerve or bladder 
involvement, but with time, Guillain and 
Barré accepted these as possible features.

Early pathological and animal studies
In 1949, while debate continued about the 
nosological limits and essential clinical 
features of GBS, Haymaker and Kernohan 
published a large case series of autopsy 
findings from 50 patients with GBS6. This 
work remains one of the largest and most 
comprehensive pathological studies of GBS, 
although up to a quarter of patients included 
would not satisfy current definitions of 
GBS (for example some had CSF cell counts 
>100 cells/μl). In addition, the use of autopsy 
samples inevitably leads to selection for the 
most severely affected patients. Nonetheless, 
this study was influential because it set 
forth a concept of the pathogenesis of 
GBS. The authors reported nerve oedema 
during the first few days after onset, with 
subsequent focal swelling of myelin sheaths 
and irregularity of axons. They described 
lymphocytic and macrophagic infiltration 
from around day nine, and Schwann cell 
proliferation a few days later. They proposed 
that the cellular response was not the 
primary effector of nerve destruction, but 
secondary to an initial injury, which might 
be humorally mediated. Their proposal 
was the conceptual ancestor of the modern 
hypothesis: initial antibody‑mediated injury 
with subsequent cellular infiltration, further 
damage, then repair.

This proposal of the pathogenesis had 
barely been articulated when, in 1955, 
an animal model of immune‑mediated 
peripheral nerve inflammation — 
experimental allergic neuritis (EAN) 
— was published7. In this study, rabbits 
developed weakness and ataxia ~2 weeks 

somewhat unexplained. A pathological 
spectrum or dichotomy undoubtedly exists, 
with demyelination at one end and axonal 
injury at the other; Haymaker and Kernohan 
might have included a large proportion of 
patients with axonal injury and minimal 
cellular infiltration. Despite the discrepancy, 
human pathological data combined with an 
accessible animal model resulted in wide 
acceptance that the dominant pathological 
process is nerve demyelination mediated by 
T cells and macrophages, a model that has 
shaped our understanding of the disease for 
over 40 years.

Charles Miller Fisher
In 1956, Charles Miller Fisher reported three 
patient case histories in the New England 
Journal of Medicine16; little could he have 
known of the long‑lasting impact these 
reports would have on our understanding of 
GBS. These patients had a triad of areflexia, 
ophthalmoplegia and ataxia, and Fisher 
proposed that they had an unusual variant of 
“idiopathic polyneuritis”. The subacute onset 
and resolution of symptoms, along with the 
finding of albuminocytological dissociation, 
might have been what led him to consider 
the condition to be a variant of GBS with 
“an unusual and unique disturbance of 
peripheral neurons”.

Fisher’s report is a masterpiece of the 
classic clinicoanatomical method of 19th 
and 20th century descriptive neurology, all 
the more remarkable because he saw one  
of the patients much later than the illness and 
drew his conclusions from their account 
and the clinical record. He identified  
signs that the CNS could be involved,  
which ultimately led to the realization  
that Miller Fisher syndrome (MFS), 
Bickerstaff brainstem encephalitis and  
GBS represent different points on the same 
immunopathological spectrum17.

Inadvertent insights
Association with swine flu vaccination
The epidemiology of GBS has been studied 
extensively, largely as a consequence of its 
reported association with the swine flu 
vaccination in 1976. Military recruits at Fort 
Dix in New Jersey, USA, had contracted an 
influenza‑like illness, and several isolates 
from these patients were identified as H1N1 
viruses that were antigenically similar 
to those that caused the great swine flu 
pandemic of 1918. Concern over another 
deadly pandemic led to production of 
enough vaccine to immunize the entire US 
population. 45 million people received the 
vaccine in October 1976. By December, 

after immunization with sciatic nerve 
homogenates in Freund adjuvant (emulsified 
in mineral oil). The animals exhibited 
high CSF protein levels, normal white 
cell counts and lesions in the nerve roots, 
spinal ganglia and peripheral nerves. 
These lesions were characterized by 
perivascular infiltration with mononuclear 
cells, segmental demyelination and some 
axonal degeneration. The disease could be 
transferred to naive animals by injection 
of lymphocytes from immunized animals8. 
This work represented a breakthrough 
in animal modelling of autoimmune 
neuropathy, and enabled systematic 
unravelling of cellular and molecular 
mechanisms behind T‑cell‑mediated 
peripheral nerve demyelination. Subsequent 
work identified the myelin protein P2 
as the neuritogenic factor9,10, showed 
that P2‑specific CD4+ cells are the main 
effector cells10, and revealed the potential 
contribution of autoantibodies11. EAN has 
proven to be a fruitful experimental model, 
and remains widely used.

The pathological features in the original 
report of EAN were at odds with the model 
of pathogenesis described by Haymaker and 
Kernohan. This discrepancy was addressed 
by an autopsy study of 19 patients with 
GBS, conducted at the institution at which 
the EAN model had been developed12. This 
study revealed a temporal and pathological 
profile that closely resembled EAN. Even 
in the earliest stages, marked lymphocytic 
and polymorphonuclear infiltrates were 
seen in peripheral and cranial nerves, 
and even in some terminal motor nerve 
branches. Myelin breakdown was seen in 
motor and sensory nerves, and there was 
retraction of myelin at nodes of Ranvier, 
leading to focal demyelination. Nerve 
roots were sometimes involved, and nerve 
injury was so proximal in some cases that 
changes were seen in the anterior horn 
cells. Patients who had survived the longest 
exhibited muscle denervation. The authors 
concluded that GBS is a “cell‑mediated 
immunologic disorder, in which peripheral 
myelin is attacked by specifically‑sensitized 
lymphocytes”. Subsequent pathological 
studies confirmed these findings13 and 
extended the observations to identify the 
role of macrophages as major effectors of 
myelin stripping14 and axonal injury15.

The discrepancies between the report 
from Haymaker and Kernohan, which 
indicated minimal inflammation in the 
early pathological phase, and studies that 
have implicated T cells and macrophages 
as the main effectors of pathology remain 
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planned surveillance had identified clusters 
of GBS cases, leading to the conclusion that 
the risk of GBS was increased in the first 
6 weeks after immunization (RR 7.6, 95% CI 
6.7–8.6). The immunization program was 
suspended by mid‑December, but continued 
surveillance led to the conclusion that 
many cases of GBS were directly related to 
the vaccine18.

This report has caused nearly 40 years of 
concern and debate about the relationship 
of influenza vaccination — and, by analogy, 
all vaccines —with GBS. The report was 
questioned on several methodological 
issues, and an independent review of the 
GBS cases that were included noted that 
many did not meet the accepted diagnostic 
criteria — the original study consequently 
received fierce criticism19. The US Justice 
Department eventually convened an 
independent assessment of the data by an 
expert panel, who confirmed that, despite 
methodological flaws of the study, the risk 
of GBS was elevated and peaked 2–3 weeks 
after vaccination, with an attributable risk 
of 0.49–0.59 extra cases per 100,000 adult 
vaccinees20. Several subsequent influenza 
immunization programmes have been 
monitored for an increased incidence of 
GBS; in 1998, a retrospective case series of 
patients with GBS confirmed an increased 
risk of GBS (RR 1.7, 95% CI 1.0–2.8) in the 
6 weeks after influenza vaccination21.

Following the controversy precipitated by 
the 1976 swine flu vaccination, the Centers 
for Disease Control and Protection urged 
the National Institute of Neurological and 
Communicative Disorders and Stroke 
to develop more‑stringent diagnostic 
criteria for GBS to ensure more definitive 

case reports emerged of GBS in patients 
who had received ganglioside‑based 
medications28, triggering fears that these 
drugs were causing GBS in some patients. 
Eventually, most countries withdrew 
gangliosides for most indications, although 
controversy over their association with GBS 
persists. Several epidemiological studies 
have indicated no elevated risk of GBS in 
patients treated with gangliosides29,30, and 
no cases of GBS have been reported in 
several trials of the ganglioside GM1 for 
spinal cord injury31.

Electrophysiological developments
Early electrophysiological studies established 
that conduction block in peripheral nerves 
is the neurophysiological hallmark of GBS, 
and that this feature is part of a widespread, 
multifocal demyelinating process in most 
patients32. These clinical findings were 
confirmed by many animal studies in which 
serum from EAN mice or from humans with 
GBS induced acute lesions with conduction 
block in wild‑type mice, and passive transfer 
of serum from animals immunized with 
galactocerebroside or anti‑galactocerebroside 
antibodies caused focal paranodal disruption 
and subsequent demyelination33–35.

These studies helped to clarify the nature 
of the underlying pathological process, and 
others focused on the diagnostic utility of 
electrophysiology. This work established that 
reduced motor amplitudes are the earliest 
changes in GBS, and that serial testing 
detects evolving demyelinating features36,37. 
These findings remain the cornerstone 
of electrodiagnosis in GBS, although 
the subsequently identified pure axonal 
form of GBS (see Axonal GBS, below) has 
different characteristic electrophysiological 
features: reduced compound muscle 
action potential amplitude and reversible 
conduction failure, among others. In early 
GBS, electro physiological findings are 
often normal or difficult to classify, and 
can lead to misclassification of axonal 
forms as acute inflammatory demyelinating 
polyneuropathy (AIDP). Increasing 
recognition of this difficulty has resulted in 
calls for redefining the electrophysiological 
diagnostic criteria for GBS38.

Axonal GBS
By the mid‑1980s, GBS was considered to 
be a primary demyelinating T‑cell‑mediated 
autoimmune disorder of peripheral 
nerves and nerve roots. Secondary 
axonal degeneration and Wallerian‑like 
degeneration after severe demyelination 
was felt to represent the severe end of the 

case ascertainment during monitoring. 
Diagnostic criteria had previously 
been proposed in 1960 (REF. 22), but the 
vaccination controversy led to development 
of the Asbury criteria23, which were further 
clarified in 1981 (REF. 24) and 1990 (REF. 25), 
largely to incorporate advances in neuro‑
physiological techniques. These criteria 
served as the diagnostic standard for 
many clinical trials and epidemiological 
and pathological studies undertaken 
since their development. In 2014, the 
Brighton Collaboration (an international 
collaboration that facilitates the development 
of internationally standardized case 
definitions for various illnesses) developed 
case definition criteria (TABLE 1); use of these 
criteria and their validation in GBS cohorts 
has begun4.

Association with gangliosides
In the 1970s and 1980s, purified gangliosides 
were administered to patients in many 
countries for various neurological disorders. 
Gangliosides are sialylated glycosphingo lipids 
that are enriched in neuronal membranes 
and involved in neuronal processes including 
synaptogenesis, neuritogenesis, neuronal 
precursor migration, neuronal regeneration 
and myelination26. Clinical trials had 
suggested that exogenous gangliosides 
improved symptoms of diabetic neuropathy 
and offered some neuroprotection in 
ischaemic stroke. Promising results had also 
been seen in the prevention and treatment of 
neurodegenerative diseases27.

In the 1990s, the role of anti‑ganglioside 
antibodies in mediating peripheral nerve 
injury in GBS was becoming clearer (see 
Anti‑ganglioside antibodies, below), and 

Table 1 | Brighton criteria for Guillain-Barré syndrome

Diagnostic criteria

Level of diagnostic certainty

1 2 3 4

Bilateral and flaccid weakness of limbs + + + +/−

Decreased or absent deep tendon reflexes in 
weak limbs

+ + + +/−

Monophasic course and time between 
onset-nadir 12 h to 28 days

+ + + +/−

CSF cell count <50/μl + +* - +/−

CSF protein concentration > normal value + +/−* - +/−

NCS findings consistent with one of the 
subtypes of GBS

+ +/− - +/−

Absence of alternative diagnosis for weakness + + + +

+, present; −, absent; +/−, present or absent; GBS, Guillain–Barré syndrome; NCS, nerve conduction studies. 
*If CSF is not collected or results not available, nerve electrophysiology results must be consistent with the 
diagnosis of Guillain-Barré syndrome. Level 1 is the highest level of diagnostic certainty, level 4 is the lowest 
level of diagnostic certainty. Reproduced with permission from Oxford University Press © Fokke, C. et al. 
Brain 137, 33–43 (2014).
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demyelinating process. In 1985, however, 
Thomas Feasby and colleagues cared for 
a patient with severe post‑diarrhoeal GBS 
who became tetraplegic and developed 
respiratory failure within 36 h. Nerve 
conduction studies revealed inexcitable 
nerves — an unusual finding — and she 
died from a cardiac arrest on day 28 after 
onset of weakness. The autopsy revealed 
severe, widespread axonal degeneration 
in the nerve roots and periphery without 
lymphocytic inflammation, rather 
than the usual characteristic segmental 
demyelination. The team were convinced 
they had seen something new and published 
their findings from several similar cases 
in 1986 (REF. 39). Their proposal of a 
pure axonal form of GBS met with much 
scepticism, and Feasby had to fiercely 
defend his findings40 until similar cases were 
reported41 and the concept gained some 
ground by the early 1990s.

acute motor axonal neuropathy (AMAN) 
were coined. The pathology identified in 
this work — macrophage invasion of the 
periaxonal space at the paranodal and nodal 
regions, where there is immunoglobulin and 
complement deposition, and displacement 
of the axon44— is in marked contrast to the 
macrophage‑mediated myelin stripping and 
the antibody and complement deposition 
in Schwann cells in the demyelinating form 
of GBS45,46 (FIG. 1), which became known 
as acute inflammatory demyelinating 
polyneuropathy (AIDP) to reflect the 
pathological distinction from AMAN and 
AMSAN. Subsequent studies confirmed 
the existence of AMAN and AMSAN 
in populations globally, although the 
proportions of patients with GBS subtypes 
vary geographically; for example, AMAN 
and AMSAN are more common in China and 
Asia, whereas AIDP is more common in 
North America and Europe.

Molecular mimicry in pathogenesis
Campylobacter jejuni
Long‑standing recognition that a diarrhoeal 
illness can precede GBS has led many to 
search for an infectious trigger. For example, 
in 1958, Campbell reported antecedent 
respiratory tract infections in 60% of 
patients with GBS in his case series, and 
diarrhoea in 10–20%47. He suggested that 
“the Landry–Guillain–Barré syndrome is 
a nonspecific reaction to several infective 
agents and is possibly due to an abnormal 
antigen–antibody response”.

In 1982, Rhodes and Tattersfield reported 
on a patient with GBS after a diarrhoeal 
illness and whose stool was positive for 
Campylobacter jejuni48. This report was 
soon followed by a retrospective study of 56 
patients with GBS, 38% of whom exhibited 
serological evidence of C. jejuni infection49. 
Numerous subsequent studies documented 
the prevalence of C. jejuni infection 
or seropositivity in patients with GBS, 
confirming the finding to be widespread 
and reproducible50.

In 1993, Yuki and colleagues demonstrated 
that the core lipo‑ oligosaccharides of 
the C. jejuni strains associated with GBS 
have structural similarity with various 
gangliosides present on peripheral nerve 
membranes51, indicating that molecular 
mimicry of gangliosides could contribute  
to GBS. Furthermore, lipo‑oligosaccharides  
from the C. jejuni strains associated with 
MFS were shown to have identical structures 
to that of ganglioside GQ1b52. In 2004, 
Yuki demonstrated that immunization 
of rabbits with the ganglioside‑like 

At a similar time, a collaborative group 
reported on a unique GBS‑like syndrome 
— the Chinese paralytic syndrome (CPS) 
— that occurred in seasonal outbreaks 
among children in rural China42 and was 
characterized by severe flaccid tetraplegia 
that progressed rapidly and often necessitated 
ventilator support. Most patients exhibited 
high CSF protein levels and low or 
absent white cell counts, typical of GBS. 
Electrophysiological recordings of reduced 
motor amplitudes, preserved conduction 
velocities and preserved sensory nerve action 
potentials, however, pointed to a severe 
axonal neuropathy43. Autopsy tissue from 
12 patients did not show demyelination 
typical of GBS, but extensive Wallerian‑like 
degeneration of sensory and/or motor 
axons. The condition was classified as a type 
of GBS and subdivided according to the 
axons affected; the terms acute motor and 
sensory axonal neuropathy (AMSAN) and 
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Figure 1 | Immune-mediated attack on Schwann cells and axons in Guillain–Barré syndrome. 
a | Deposition of the complement product C3d (black) on the outer surface of two fibres (asterisks) 
from a patient with autoimmune demyelinating acute inflammatory demyelinating polyneuropathy 
(AIDP). b | Extensive vesiculation of the myelin sheath in the same patient with AIDP (black arrows 
indicate normal compacted myelin; white arrows indicate abnormal vesiculation of myelin). 
c | Macrophages containing fatty myelin debris are associated with a demyelinated fibre from the same 
patient with AIDP, highlighting the central role inflammatory cells play in the pathogenesis of AIDP. 
(Asterisks label the axon; macrophages labelled with m). d | C3d deposition (arrow) at the node of 
Ranvier in the ventral root in a patient with acute motor axon neuropathy (AMAN). e | Node of Ranvier 
(arrow) on the ventral root, with visible nodal lengthening and two overlying macrophages (arrow-
heads) in a patient with AMAN. f | A macrophage (m) in the internodal axon (a) beginning to extend 
processes towards the periaxonal space (black arrows). Parts a, b and c modified with permission from 
John Wiley and Sons © Hafer-Macko, C. E. et al. Ann. Neurol. 39, 625–635 (1996). Part d modified with 
permission from Annual Reviews © Ho, T. W. et al. Annu. Rev. Neurosci. 21, 187–226 (1998). Parts e and 
f modified with permission from Springer © Griffin, J. W. et al. J. Neurocytol. 25, 33–51 (1996).
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lipo‑oligosaccharides from GBS‑associated 
C. jejuni strains resulted in a subacute flaccid 
tetraplegia and pathological changes similar 
to those seen in AMAN53.

Anti-ganglioside antibodies
In recent decades, the spotlight has fallen 
on the pathogenic mechanism that links 
C. jejuni and molecular mimicry of 
gangliosides with GBS. The presence of 
anti‑GM1 ganglioside IgM antibodies in 
multifocal motor neuropathy has long  
been known, and other anti‑ganglioside  
antibodies were reported in patients 
with GBS in 1988 (REF. 54). In 1990, 
Yuki postulated that anti‑ganglioside 
antibodies might be present in a patient 
with AMAN following C. jejuni enteritis; 
he identified high titres of anti‑GM1 
IgG, which fell with resolution of the 
illness41. Numerous subsequent studies 
established that anti‑GM1 IgG are present 
in a high proportion of patients with GBS, 
mostly those with AMAN or AMSAN55. 
Other anti‑ganglioside antibodies were 
subsequently associated with specific  
clinical subtypes of GBS, including 
anti‑GD1a antibodies with AMAN56  
and anti‑GQ1b and anti‑GT1a with  
acute oropharyngeal palsy57.

In the context of anti‑ganglioside 
antibodies, the condition previously 
described by Miller Fisher took on greater 
significance. The association between 
specific anti ‑ganglioside antibodies  
and specific GBS subtypes became accepted, 
but the proportion of patients who were 
seropositive for these antibodies was 
generally relatively low and of limited 
diagnostic use. By contrast, in 1992 Chiba 
and colleagues detected anti‑GQ1b IgG 
antibodies in six consecutive patients with 
MFS, and consequently proposed that it 
could be a useful diagnostic marker58. This 
report opened the door to a plethora of 
studies that confirmed that the presence 
of anti‑GQ1b IgG antibodies in 80–95% of 
patients with MFS and in many patients with 
MFS–GBS overlap conditions or Bickerstaff 
encephalitis17. Anti‑GQ1b IgG antibodies 
have, therefore, served as a useful clinical 
diagnostic marker of MFS.

A remarkable twist in the anti‑ ganglioside 
antibody story has emerged with the 
discovery that some anti‑ganglio side 
antibodies can only be detected in the 
blood of some patients with techniques 
that involve simultaneous presentation 
of multiple gangliosides or gangliosides 
with other lipids59,60. This observation has 
led to recognition of the fact that specific 

been associated with Zika virus infection, 
and a case–control study from a localized 
outbreak in French Polynesia in 2013–2014 
demonstrated an association and likely 
causative relationship between Zika virus 
infection and GBS75.The estimated incidence 
was 0.24 cases of GBS per 1,000 Zika virus 
infections; although a rare complication, 
in the context of an emerging epidemic or 
pandemic, this incidence of GBS could easily 
overwhelm the hospital and intensive care 
resources of even the best‑equipped and well 
prepared of healthcare services. Additional 
case–control studies are emerging from 
other geographical areas, notably in Latin 
America, that are also reporting a very 
high incidence of Zika‑associated GBS76–78. 
It therefore seems inevitable that this 
emergent form of GBS will continue to occur 
throughout Zika‑affected regions in Asia 
and Africa.

Therapy
In parallel with all the aforementioned 
studies, a small number of trials have 
established the current standard treatments 
for GBS. In combination with meticulous 
medical and intensive care and long‑term 
rehabilitation therapy, plasma exchange 
and intravenous immunoglobulin (IVIg) 
have been shown to improve outcomes for 
patients with GBS.

In 1984, two small clinical trials showed 
some positive effects of plasma exchange 
in GBS79,80, and in 1985, a larger study 
confirmed the effect and demonstrated 
that plasma exchange in patients who were 
unable to walk hastened recovery, especially 
when started within 2 weeks of GBS onset81. 
A subsequent study obtained similar 
results82. Plasma exchange consequently 
became the first proven therapy for GBS, but 
the treatment is not always straightforward 
and carries particular risks for patients with 
autonomic disturbance, which is common 
in GBS.

Largely owing to difficulties in 
performing plasma exchange in the late 
1980s, a group in the Netherlands sought 
an alternative therapy and used fresh frozen 
plasma and then, in subsequent patients, 
IVIg for GBS or chronic inflammatory 
demyelinating polyneuropathy83–85. This 
work led to a clinical trial in the late 1980s 
in which plasma exchange and IVIg were 
compared86. The results showed that IVIg 
was a practical and effective alternative to 
plasma exchange: the proportion of patients 
who showed improvement after 4 weeks was 
higher among patients who received IVIg 
than among those who received plasma 

epitopes present in vivo might depend on 
interactions between multiple molecules  
on the cell membrane, and that this complex 
arrangement is not readily reproduced with 
traditional antibody testing methods61,62. 
Novel diagnostic techniques have been 
developed to begin addressing this issue, 
and might reveal antibodies in patients who 
have hitherto tested seronegative63.

Pathogenic mechanism
The association of anti‑ganglioside 
antibodies with specific GBS subtypes might, 
of course, be an epiphenomenon rather than 
an indication that the antibodies mediate 
pathogenesis. Numerous investigators over 
several decades and several continents 
have attempted to determine whether 
these antibodies are pathogenetic and how 
they mediate damage. In summary, many 
collaborative efforts have demonstrated that 
anti‑GM1 and anti‑GQ1b antibodies bind 
to peripheral nerve and neuromuscular 
junctions64,65, and anti‑GD1a antibodies 
bind to the nodes of Ranvier, paranodal 
myelin and neuromuscular junction66–68. 
Upon binding, the antibodies activate 
the complement cascade, resulting in 
formation of the membrane attack complex, 
disruption of sodium channel clusters at 
the node of Ranvier with disruption of 
nodal architecture69, and calcium influx 
and calpain‑dependent neuronal and glial 
injury at the neuromuscular junction70,71.
This injury can be ameliorated with 
complement inhibitors72,73.

Taken together, these studies have 
revealed a likely pathogenic pathway 
for C. jejuni‑associated GBS, at least in 
AMAN (FIG. 2). The relationship between 
anti‑ganglioside antibodies and AIDP is 
not as clear because less evidence indicates 
associations of anti‑ganglioside antibodies 
with this form of GBS. Notable exceptions, 
however, include evidence of molecular 
mimicry between Mycoplasma pneumoniae, 
production of anti‑galactocerebroside 
antibodies and AIDP74.

GBS and Zika virus
Various viruses can trigger GBS, and in 
2016, it became clear that those viral triggers 
include Zika virus. Since the 1950s, Zika 
virus has been reported as circulating 
sporadically in Africa and Southeast Asia, 
but in 2016, the Zika virus epidemic was 
declared a Public Health Emergency 
of International Concern by the WHO 
owing to rapid spread of the virus across 
Central and South America and elsewhere. 
Numerous neurological complications have 
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exchange. There was initial debate about 
whether IVIg was as effective as plasma 
exchange, and whether treatment‑related 
fluctuations in symptoms in patients who 
receive IVIg would require re‑treatment. 
However, the consensus became that IVIg is 
as effective as plasma exchange, and far more 
straightforward to administer87. IVIg has, 
therefore, become the first‑line treatment 
for GBS in most countries, unless a clinical 
indication favours plasma exchange, or 
the expense of IVIg limits its availability in 
resource‑poor settings.

Outcomes of GBS are improved with 
plasma exchange or IVIg, but many 
patients remain substantially disabled and 
experience ongoing fatigue or chronic 
pain, and mortality remains at 2–3%88. 
Trials have examined whether combined 
plasma exchange and IVIg89, combined IVIg 
and steroids90 or steroids alone91 are more 

assessing whether GBS patients with a poor 
prognosis benefit from a second course of 
IVIg93. The effect of a second course of IVIg 
is also being studied in a nonrandomized 
fashion in the International GBS Outcome 
Study (BOX 1).

A growing body of evidence supports 
the theory that antibody‑mediated 
complement‑ dependent mechanisms 

effective treatments. Disappointingly, none 
of these approaches have been superior to 
standard therapy in the long term, although 
a possible minor short‑term benefit was 
seen with intravenous methylprednisone 
in addition to IVIg92. These negative results 
leave us with only two partially effective 
treatments. Currently, a randomized  
placebo‑controlled trial (SID‑GBS) is 

Box 1 | The International Guillain-Barré Syndrome Outcome Study

The International Guillain-Barré Syndrome Outcome Study is an international, multicentre, 
prospective observational study coordinated by B. C. Jacobs at Erasmus MC in Rotterdam, 
Netherlands. Through this massive international effort, every patient with GBS at participating 
centres will be entered into an observational study in which clinical, electrophysiological, 
cerebrospinal fluid, serum, treatment and outcome data are collected in order to define 
biomarkers for disease activity and recovery, and to develop prognostic models. Recruitment for 
the study began in May 2012, with an original intention to collect data from 1,000 patients. 
Already, the target has been surpassed, with >1,250 patients from 18 countries included to date, 
and continues to recruit patients in many countries from all continents throughout the world.

Nature Reviews | Neurology

Anti-ganglioside 
antibodies

Ca2+

Complement

Membrane 
attack complex

Ganglioside
Axon

Ca2+Na
v

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Macrophage

T cell

APC
B cell

Plasma cell

Paranodal 
detachment

Axonal injury

C. jejuni

Ganglioside
molecular mimic

Figure 2 | Proposed mechanism of Guillain–Barré syndrome 
pathogenesis mediated by Campylobacter jejuni. A molecular mimic 
of gangliosides in C. jejuni leads to the production of anti-ganglioside 
antibodies that bind to gangliosides in the axonal membrane at  
the node of Ranvier. Consequent activation of complement leads to dis-

ruption of voltage-gated sodium channel (NaV) clusters, disruption  
of the nodal architecture, and formation of the membrane attack com-
plex, which leads to calcium influx. These changes cause axonal injury  
and attract macrophages, which can then migrate between the  
axon and myelin.
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underlie the pathogenesis of GBS94, and 
ongoing clinical trials are exploring whether 
specific complement inhibition can improve 
outcomes of GBS. One drug currently in 
trials is eculizumab, an anti‑C5 monoclonal 
antibody that is licensed for the treatment of 
paroxysmal nocturnal haemoglobinuria. In 
a mouse model of GBS, eculizumab has been 
shown to prevent complement‑ mediated 
injury95, and in a pilot study in patients with 
multifocal motor neuropathy, it proved safe 
and tolerable96. At present, eculizumab is 
being tested in two randomized, blinded, 
placebo‑controlled trials: the Inhibition 
of Complement Activation in GBS study 
(ICA‑GBS)97 and the Japanese Eculizumab 
Trial for GBS (JET‑GBS)98. In both studies, 
patients receive standard therapy with IVIg 
or plasma exchange with either eculizumab or 
placebo. Both trials have now completed and 
are due to report their results shortly.

Conclusions and outstanding questions
In the 100 years since the first landmark 
description of GBS, we have made 
considerable progress in understanding 
the nature of the disease and the 
mechanisms that lead to its development 
(FIG. 3). In particular, our understanding 
of the pathology and pathogenesis of 
AMAN has increased considerably in 
recent decades, with a detailed picture 
now emerging of antibody‑ mediated and 
complement‑ mediated disruption of the 
neuronal membrane. Nevertheless, many 
uncertainties remain.

The relative contributions of T cells, 
macrophages and antibodies in AIDP remain 
unclear, as most patients with this condition 
remain seronegative for anti‑ganglioside 
antibodies with the use of traditional antibody 
detection methods. We do not know whether 
these patients express an as yet unidentified 
autoantibody, or whether the immunopatho‑
genesis is fundamentally different in this 
pathological subtype. Similarly, we do not 
yet know whether complement inhibition 
will prove to be an effective therapy for GBS 
and, if so, whether it will benefit only patients 
with AMAN, in whom there is considerable 
evidence for the role of complement in 
pathogenesis, or also patients with AIDP.

One reason GBS has proven difficult to 
study is that it is a heterogenous disorder, 
and even interested clinicians and centres 
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Figure 3 | Timeline showing the major mile-
stones in Guillain–Barré syndrome (GBS). CSF, 
cerebrospinal fluid; EAN, experimental autoim-
mune neuritis; IVIg, intravenous immunoglobulin.

▶

P E R S P E C T I V E S

NATURE REVIEWS | NEUROLOGY  ADVANCE ONLINE PUBLICATION | 7

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



see relatively few cases each year. Global 
collaboration through initiatives such as 
the International Guillain–Barré Syndrome 
Outcome Study (BOX 1) is likely to enable 
development of biomarkers, prognostic tools 
and personalized therapy, and provide a 
clearer understanding of the aetiology and 
pathogenesis of GBS so that we can answer 
the remaining, long‑standing questions.

In the 100th anniversary year of GBS, a 
new challenge has also come to the fore in 
the association of Zika virus infection with 
GBS. An immediate and pressing question 
is how countries that are experiencing 
or anticipating a Zika virus outbreak can 
prepare for the expected increase in cases 
of GBS, which threaten to overwhelm 
hospital and intensive care services. The 
immediacy of the challenge also highlights 
the importance of building on our progress 
so far, and gaining an even greater 
understanding of GBS in the years to come.
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FURTHER INFORMATION
The Brighton Collaboration: www.brightoncollaboration.org
International Guillain-Barré Outcome Study:  
https://gbsstudies.erasmusmc.nl/home
To celebrate the progress made in the 100 years since 
Guillain, Barré and Strohl’s case report, an international 
symposium was held in Glasgow, UK, in June 2016. To mark 
the event, the Peripheral Nerve Society published a free 
multi-author textbook summarizing the landmark studies 
and events in the history of GBS research. This book is freely 
available as an e-book from www.pnsociety.com.
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