Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Parkinsonism, movement disorders and genetics in frontotemporal dementia

Key Points

  • Atypical parkinsonism is a common presentation in patients with frontotemporal dementia (FTD)

  • Richardson syndrome in FTD is most commonly associated with mutations in the MAPT gene

  • A corticobasal syndrome is most frequently observed in patients who have mutations in the gene that encodes progranulin

  • C9orf72 gene expansions are the most common cause of hereditary motor neuron disease with FTD, and might present in combination with symmetrical parkinsonism

  • Mutations in the VCP, TARDBP and TREM2 genes are rare causes of parkinsonism and motor neuron disease in FTD

  • Stereotypies are common in patients with FTD, and should aid diagnosis

Abstract

Frontotemporal dementia (FTD) refers to a group of clinically and genetically heterogeneous neurodegenerative disorders that are a common cause of adult-onset behavioural and cognitive impairment. FTD often presents in combination with various hyperkinetic or hypokinetic movement disorders, and evidence suggests that various genetic mutations underlie these different presentations. Here, we review the known syndromatic–genetic correlations in FTD. Although no direct genotype–phenotype correlations have been identified, mutations in multiple genes have been associated with various presentations. Mutations in the genes that encode microtubule-associated protein tau (MAPT) and progranulin (PGRN) can manifest as symmetrical parkinsonism, including the phenotypes of Richardson syndrome and corticobasal syndrome (CBS). Expansions in the C9orf72 gene are most frequently associated with familial FTD, typically combined with motor neuron disease, but other manifestations, such as symmetrical parkinsonism, CBS and multiple system atrophy-like presentations, have been described in patients with these mutations. Less common gene mutations, such as those in TARDBP, CHMP2B, VCP, FUS and TREM2, can also present as atypical parkinsonism. The most common hyperkinetic movement disorders in FTD are motor and vocal stereotypies, which have been observed in up to 78% of patients with autopsy-proven FTD. Other hyperkinetic movements, such as chorea, orofacial dyskinesias, myoclonus and dystonia, are also observed in some patients with FTD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brain abnormalities that contribute to the pathogenesis of parkinsonism and stereotypies in frontotemporal dementia.
Figure 2: Suggested genetic mutations that should be tested for according to motor presentations.

Similar content being viewed by others

References

  1. Mercy, L., Hodges, J. R., Dawson, K., Barker, R. A. & Brayne, C. Incidence of early-onset dementias in Cambridgeshire, United Kingdom. Neurology 71, 1496–1499 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Perry, D. C. & Miller, B. L. Frontotemporal dementia. Semin. Neurol. 33, 336–341 (2013).

    Article  PubMed  Google Scholar 

  3. Seltman, R. E. & Matthews, B. R. Frontotemporal lobar degeneration: epidemiology, pathology, diagnosis and management. CNS Drugs 26, 841–870 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Teichmann, M. et al. Deciphering logopenic primary progressive aphasia: a clinical, imaging and biomarker investigation. Brain 136, 3474–3488 (2013).

    Article  PubMed  Google Scholar 

  5. Fujioka, S. & Wszolek, Z. K. Clinical aspects of familial forms of frontotemporal dementia associated with parkinsonism. J. Mol. Neurosci. 45, 359–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siuda, J., Fujioka, S. & Wszolek, Z. K. Parkinsonian syndrome in familial frontotemporal dementia. Parkinsonism Relat. Disord. 20, 957–964 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Neary, D. et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51, 1546–1554 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. The Lund and Manchester groups. Clinical and neuropathological criteria for frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 57, 416–418 (1994).

  10. Diehl-Schmid, J. et al. Extrapyramidal signs, primitive reflexes and incontinence in fronto-temporal dementia. Eur. J. Neurol. 14, 860–864 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Padovani, A., Agosti, C., Premi, E., Bellelli, G. & Borroni, B. Extrapyramidal symptoms in frontotemporal dementia: prevalence and clinical correlations. Neurosci. Lett. 422, 39–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Ling, H. et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 133, 2045–2057 (2010).

    Article  PubMed  Google Scholar 

  13. Stamelou, M., Quinn, N. P. & Bhatia, K. P. 'Atypical' atypical parkinsonism: new genetic conditions presenting with features of progressive supranuclear palsy, corticobasal degeneration, or multiple system atrophy — a diagnostic guide. Mov. Disord. 28, 1184–1199 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Respondek, G. et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov. Disord. 29, 1758–1766 (2014).

    Article  PubMed  Google Scholar 

  15. Armstrong, M. J. et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 80, 496–503 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mathew, R., Bak, T. H. & Hodges, J. R. Diagnostic criteria for corticobasal syndrome: a comparative study. J. Neurol. Neurosurg. Psychiatry 83, 405–410 (2012).

    Article  PubMed  Google Scholar 

  17. Dickson, D. W., Ahmed, Z., Algom, A. A., Tsuboi, Y. & Josephs, K. A. Neuropathology of variants of progressive supranuclear palsy. Curr. Opin. Neurol. 23, 394–400 (2010).

    Article  PubMed  Google Scholar 

  18. Williams, D. R. et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson's syndrome and PSP-parkinsonism. Brain 128, 1247–1258 (2005).

    Article  PubMed  Google Scholar 

  19. Foster, N. L. et al. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann. Neurol. 41, 706–715 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Ludolph, A. C. et al. Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options. Eur. J. Neurol. 16, 297–309 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu, C. E. et al. The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch. Neurol. 67, 161–170 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. van Swieten, J. C. & Heutink, P. Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurol. 7, 965–974 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Boeve, B. F. & Hutton, M. Refining frontotemporal dementia with parkinsonism linked to chromosome 17: introducing FTDP-17 (MAPT) and FTDP-17 (PGRN). Arch. Neurol. 65, 460–464 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rohrer, J. D. et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology 73, 1451–1456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arima, K. et al. Two brothers with frontotemporal dementia and parkinsonism with an N279K mutation of the tau gene. Neurology 54, 1787–1795 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Yasuda, M. et al. A mutation in the microtubule- associated protein tau in pallido–nigro–luysian degeneration. Neurology 53, 864–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Pickering-Brown, S. M. et al. Inherited frontotemporal dementia in nine British families associated with intronic mutations in the tau gene. Brain 125, 732–751 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Bermingham, N., Cowie, T. F., Paine, M., Storey, E. & McLean, C. Frontotemporal dementia and parkinsonism linked to chromosome 17 in a young Australian patient with the G389R Tau mutation. Neuropathol. Appl. Neurobiol. 34, 366–370 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Rossi, G. et al. The G389R mutation in the MAPT gene presenting as sporadic corticobasal syndrome. Mov. Disord. 23, 892–895 (2008).

    Article  PubMed  Google Scholar 

  32. Tacik, P. et al. A novel tau mutation in exon 12, p. Q336H, causes hereditary pick disease. J. Neuropathol. Exp. Neurol. 74, 1042–1052 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Tacik, P. et al. A novel tau mutation, p. K317N, causes globular glial tauopathy. Acta Neuropathol. 130, 199–214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chaunu, M. P. et al. Juvenile frontotemporal dementia with parkinsonism associated with tau mutation G389R. J. Alzheimers Dis. 37, 769–776 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Lossos, A. et al. Frontotemporal dementia and parkinsonism with the P301S tau gene mutation in a Jewish family. J. Neurol. 250, 733–740 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Sperfeld, A. D. et al. FTDP-17: an early phenotype with parkinsonism and epileptic seizures caused by a novel mutation. Ann. Neurol. 46, 708–715 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Werber, E., Klein, C., Grünfeld, J. & Rabey, J. M. Phenotypic presentation of frontotemporal dementia with parkinsonism-chromosome 17 type P301S in a patient of Jewish–Algerian origin. Mov. Disord. 18, 595–598 (2003).

    Article  PubMed  Google Scholar 

  38. Boeve, B. F. et al. Longitudinal characterization of two siblings with frontotemporal dementia and parkinsonism linked to chromosome 17 associated with the S305N tau mutation. Brain 128, 752–772 (2005).

    Article  PubMed  Google Scholar 

  39. Skoglund, L. et al. The tau S305S mutation causes frontotemporal dementia with parkinsonism. Eur. J. Neurol. 15, 156–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Lynch, T. et al. Clinical characteristics of a family with chromosome 17-linked disinhibition−dementia−parkinsonism−amyotrophy complex. Neurology 44, 1878–1884 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Rohrer, J. D. et al. Novel L284R MAPT mutation in a family with an autosomal dominant progressive supranuclear palsy syndrome. Neurodegener. Dis. 8, 149–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Ogaki, K. et al. Analyses of the MAPT, PGRN, and C9orf72 mutations in Japanese patients with FTLD, PSP, and CBS. Parkinsonism Relat. Disord. 19, 15–20 (2013).

    Article  PubMed  Google Scholar 

  43. Spina, S. et al. The tauopathy associated with mutation +3 in intron 10 of tau: characterization of the MSTD family. Brain 131, 72–89 (2008).

    Article  PubMed  Google Scholar 

  44. Baba, Y. et al. Clinical and genetic features of families with frontotemporal dementia and parkinsonism linked to chromosome 17 with a P301S tau mutation. J. Neural Transm. (Vienna) 114, 947–950 (2007).

    Article  CAS  Google Scholar 

  45. Kouri, N. et al. Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathol. 127, 271–282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kelly, B. J. et al. Prominent phenotypic variability associated with mutations in progranulin. Neurobiol. Aging 30, 739–751 (2009).

    Article  CAS  Google Scholar 

  47. Le Ber, I. et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain 131, 732–746 (2008).

    Article  PubMed  Google Scholar 

  48. Davion, S. et al. Clinicopathologic correlation in PGRN mutations. Neurology 69, 1113–1121 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Masellis, M. et al. Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. Brain 129, 3115–3123 (2006).

    Article  PubMed  Google Scholar 

  50. Josephs, K. A. et al. Neuropathologic features of frontotemporal lobar degeneration with ubiquitin-positive inclusions with progranulin gene (PGRN) mutations. J. Neuropathol. Exp. Neurol. 66, 142–151 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Spina, S. et al. Corticobasal syndrome associated with the A9D progranulin mutation. J. Neuropathol. Exp. Neurol. 66, 892–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Benussi, L. et al. A novel deletion in progranulin gene is associated with FTDP-17 and CBS. Neurobiol. Aging 29, 427–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Benussi, L. et al. Progranulin Leu271LeufsX10 is one of the most common FTLD and CBS associated mutations worldwide. Neurobiol. Dis. 33, 379–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Rusina, R. et al. FTLD-TDP with motor neuron disease, visuospatial impairment and a progressive supranuclear palsy-like syndrome: broadening the clinical phenotype of TDP-43 proteinopathies. A report of three cases. BMC Neurol. 11, 50 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khan, B. K. et al. Atypical, slowly progressive behavioural variant frontotemporal dementia associated with C9ORF72 hexanucleotide expansion. J. Neurol. Neurosurg. Psychiatry 83, 358–364 (2012).

    Article  PubMed  Google Scholar 

  57. Van Langenhove, T. et al. Distinct clinical characteristics of C9orf72 expansion carriers compared with GRN, MAPT, and nonmutation carriers in a Flanders–Belgian FTLD cohort. JAMA Neurol. 70, 365–373 (2013).

    Article  PubMed  Google Scholar 

  58. Boeve, B. F. et al. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain 135, 765–783 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. O'Dowd, S. et al. C9ORF72 expansion in amyotrophic lateral sclerosis/frontotemporal dementia also causes parkinsonism. Mov. Disord. 27, 1072–1074 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Goldman, J. S. et al. Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72. JAMA Neurol. 71, 771–774 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cooper-Knock, J. et al. C9ORF72 expansions, parkinsonism, and Parkinson disease: a clinicopathologic study. Neurology 81, 808–811 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lindquist, S. G. et al. Corticobasal and ataxia syndromes widen the spectrum of C9ORF72 hexanucleotide expansion disease. Clin. Genet. 83, 279–283 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Snowden, J. S. et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135, 693–708 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Daoud, H. et al. Investigation of C9orf72 repeat expansions in Parkinson's disease. Neurobiol. Aging 34, 1710.e7–1710.e9 (2013).

    Article  CAS  Google Scholar 

  65. Harms, M. B. et al. Parkinson disease is not associated with C9ORF72 repeat expansions. Neurobiol. Aging 34, 1519.e1–1519.e2 (2013).

    Article  CAS  Google Scholar 

  66. Xi, Z. et al. Investigation of c9orf72 in 4 neurodegenerative disorders. Arch. Neurol. 69, 1583–1590 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lesage, S. et al. C9orf72 repeat expansions are a rare genetic cause of parkinsonism. Brain 136, 385–391 (2013).

    Article  PubMed  Google Scholar 

  68. Majounie, E. et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 11, 323–330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nuytemans, K. et al. C9ORF72 intermediate repeat copies are a significant risk factor for Parkinson disease. Ann. Hum. Genet. 77, 351–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Akimoto, C. et al. No GGGGCC-hexanucleotide repeat expansion in C9ORF72 in parkinsonism patients in Sweden. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 26–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Cooper-Knock, J., Shaw, P. J. & Kirby, J. The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathol. 127, 333–345 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dombroski, B. A. et al. C9orf72 hexanucleotide repeat expansion and Guam amyotrophic lateral sclerosis-parkinsonism-dementia complex. JAMA Neurol. 70, 742–745 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Floris, G. et al. Frontotemporal dementia with psychosis, parkinsonism, visuo-spatial dysfunction, upper motor neuron involvement associated to expansion of C9ORF72: a peculiar phenotype? J. Neurol. 259, 1749–1751 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Snowden, J. S. et al. Psychosis, C9ORF72 and dementia with Lewy bodies. J. Neurol. Neurosurg. Psychiatry 83, 1031–1032 (2012).

    Article  PubMed  Google Scholar 

  75. Robinson, A., Davidson, Y., Snowden, J. S. & Mann, D. M. C9ORF72 in dementia with Lewy bodies. J. Neurol. Neurosurg. Psychiatry 85, 1435–1436 (2014).

    Article  PubMed  Google Scholar 

  76. Morgan, S. et al. Differentiation of frontotemporal dementia from dementia with Lewy bodies using FP-CIT SPECT. J. Neurol. Neurosurg. Psychiatry 83, 1063–1070 (2012).

    Article  PubMed  Google Scholar 

  77. Johnson, J. O. et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857–864 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spina, S. et al. Phenotypic variability in three families with valosin-containing protein mutation. Eur. J. Neurol. 20, 251–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Majounie, E. et al. Mutational analysis of the VCP gene in Parkinson's disease. Neurobiol. Aging 33, 209.e1–209.e2 (2012).

    Article  CAS  Google Scholar 

  80. Gydesen, S. et al. Chromosome 3 linked frontotemporal dementia (FTD-3). Neurology 59, 1585–1594 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Deng, H., Gao, K. & Jankovic, J. The role of FUS gene variants in neurodegenerative diseases. Nat. Rev. Neurol. 10, 337–348 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Isaacs, A. M., Johannsen, P., Holm, I. & Nielsen, J. E. & FReJA consortium. Frontotemporal dementia caused by CHMP2B mutations. Curr. Alzheimer Res. 8, 246–251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yan, J. et al. Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology 75, 807–814 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Seelaar, H. et al. Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration. J. Neurol. 257, 747–753 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Josephs, K. A. et al. Caudate atrophy on MRI is a characteristic feature of FTLD-FUS. Eur. J. Neurol. 17, 969–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mosca, L. et al. Wide phenotypic spectrum of the TARDBP gene: homozygosity of A382T mutation in a patient presenting with amyotrophic lateral sclerosis, Parkinson's disease, and frontotemporal lobar degeneration, and in neurologically healthy subject. Neurobiol. Aging 33, 1846.e1–1846.e4 (2012).

    Article  CAS  Google Scholar 

  87. Quadri, M. et al. Broadening the phenotype of TARDBP mutations: the TARDBP Ala382Thr mutation and Parkinson's disease in Sardinia. Neurogenetics 12, 203–209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rayaprolu, S. et al. TARDBP mutations in Parkinson's disease. Parkinsonism Relat. Disord. 19, 312–315 (2013).

    Article  PubMed  Google Scholar 

  89. Fujita, Y., Ikeda, M., Yanagisawa, T., Senoo, Y. & Okamoto, K. Different clinical and neuropathologic phenotypes of familial ALS with A315E TARDBP mutation. Neurology 77, 1427–1431 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Borghero, G. et al. A patient carrying a homozygous p.A382T TARDBP missense mutation shows a syndrome including ALS, extrapyramidal symptoms, and FTD. Neurobiol. Aging 32, 2327.e1–2327.e5 (2011).

    Article  CAS  Google Scholar 

  91. Espay, A. J. et al. Rapidly progressive atypical parkinsonism associated with frontotemporal lobar degeneration and motor neuron disease. J. Neurol. Neurosurg. Psychiatry 82, 751–753 (2011).

    Article  PubMed  Google Scholar 

  92. Kabashi, E. et al. No TARDBP mutations in a French Canadian population of patients with Parkinson disease. Arch. Neurol. 66, 281–282 (2009).

    Article  PubMed  Google Scholar 

  93. Ticozzi, N. et al. Mutational analysis of TARDBP in neurodegenerative diseases. Neurobiol. Aging 32, 2096–2099 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Takahashi, K., Rochford, C. D. & Neumann, H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 201, 647–657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bianchin, M. M. et al. Nasu–Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy — PLOSL): a dementia associated with bone cystic lesions. From clinical to genetic and molecular aspects. Cell. Mol. Neurobiol. 24, 1–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Giraldo, M. et al. Variants in triggering receptor expressed on myeloid cells 2 are associated with both behavioral variant frontotemporal lobar degeneration and Alzheimer's disease. Neurobiol. Aging 34, 2077.e11–2077.e18 (2013).

    Article  CAS  Google Scholar 

  97. Guerreiro, R. et al. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368, 117–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Le Ber, I. et al. Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiol. Aging 35, 2419.e23–2419.e25 (2014).

    Article  CAS  Google Scholar 

  99. Guerreiro, R. J. et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol. 70, 78–84 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rayaprolu, S. et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson's disease. Mol. Neurodegener. 8, 19 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cairns, N. J. et al. α-internexin is present in the pathological inclusions of neuronal intermediate filament inclusion disease. Am. J. Pathol. 164, 2153–2161 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cairns, N. J. et al. Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology 63, 1376–1384 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Molina-Porcel, L. et al. Clinical and pathological heterogeneity of neuronal intermediate filament inclusion disease. Arch. Neurol. 65, 272–275 (2008).

    Article  PubMed  Google Scholar 

  104. Wong, T. H. et al. PRKAR1B mutation associated with a new neurodegenerative disorder with unique pathology. Brain 137, 1361–1373 (2014).

    Article  PubMed  Google Scholar 

  105. Mendez, M. F. & Shapira, J. S. The spectrum of recurrent thoughts and behaviors in frontotemporal dementia. CNS Spectr. 13, 202–208 (2008).

    Article  PubMed  Google Scholar 

  106. Shigenobu, K. et al. The Stereotypy Rating Inventory for frontotemporal lobar degeneration. Psychiatry Res. 110, 175–187 (2002).

    Article  PubMed  Google Scholar 

  107. Mateen, F. J. & Josephs, K. A. The clinical spectrum of stereotypies in frontotemporal lobar degeneration. Mov. Disord. 24, 1237–1240 (2009).

    Article  PubMed  Google Scholar 

  108. Jankovic, J. in Principles and Practice of Movement Disorders 2nd edn Ch. 17 (eds Fahn, S., Jankovic, J. & Hallett, M.) 380–388 (Churchill Linvingstone, 2011).

    Google Scholar 

  109. Edwards, M. J., Lang, A. E. & Bhatia, K. P. Stereotypies: a critical appraisal and suggestion of a clinically useful definition. Mov. Disord. 27, 179–185 (2012).

    Article  PubMed  Google Scholar 

  110. Ames, D., Cummings, J. L., Wirshing, W. C., Quinn, B. & Mahler, M. Repetitive and compulsive behavior in frontal lobe degenerations. J. Neuropsychiatry Clin. Neurosci. 6, 100–113 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Prioni, S. et al. Stereotypic behaviors in degenerative dementias. J. Neurol. 259, 2452–2459 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Miller, B. L. et al. A study of the Lund–Manchester research criteria for frontotemporal dementia: clinical and single-photon emission CT correlations. Neurology 48, 937–942 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Bozeat, S., Gregory, C. A., Ralph, M. A. & Hodges, J. R. Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease? J. Neurol. Neurosurg. Psychiatry 69, 178–186 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nyatsanza, S. et al. A study of stereotypic behaviours in Alzheimer's disease and frontal and temporal variant frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 74, 1398–1402 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Snowden, J. S. et al. Distinct behavioural profiles in frontotemporal dementia and semantic dementia. J. Neurol. Neurosurg. Psychiatry 70, 323–332 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ikeda, M. et al. Efficacy of fluvoxamine as a treatment for behavioral symptoms in frontotemporal lobar degeneration patients. Dement. Geriatr. Cogn. Disord. 17, 117–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Ondo, W. G. Tetrabenazine treatment for stereotypies and tics associated with dementia. J. Neuropsychiatry Clin. Neurosci. 24, 208–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Jankovic, J. & Clarence-Smith, K. Tetrabenazine for the treatment of chorea and other hyperkinetic movement disorders. Expert Rev. Neurother. 11, 1509–1523 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Nielsen, T. R., Bruhn, P., Nielsen, J. E. & Hjermind, L. E. Behavioral variant of frontotemporal dementia mimicking Huntington's disease. Int. Psychogeriatr. 22, 674–677 (2010).

    Article  PubMed  Google Scholar 

  120. Kovacs, G. G. et al. TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov. Disord. 24, 1843–1847 (2009).

    Article  PubMed  Google Scholar 

  121. Wider, C. et al. Progranulin gene mutation with an unusual clinical and neuropathologic presentation. Mov. Disord. 23, 1168–1173 (2008).

    Article  PubMed  Google Scholar 

  122. Hensman Moss, D. J. et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 82, 292–299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dejesus-Hernandez, M. et al. Analysis of the C9orf72 repeat in Parkinson's disease, essential tremor and restless legs syndrome. Parkinsonism Relat. Disord. 19, 198–201 (2013).

    Article  PubMed  Google Scholar 

  124. Caviness, J. N. Myoclonus and neurodegenerative disease — what's in a name? Parkinsonism Relat. Disord. 9, 185–192 (2003).

    Article  PubMed  Google Scholar 

  125. Curcio, S. A. et al. A large Calabrian kindred segregating frontotemporal dementia. J. Neurol. 249, 911–922 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Bruni, A. C. et al. Heterogeneity within a large kindred with frontotemporal dementia: a novel progranulin mutation. Neurology 69, 140–147 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Pail, M., Matej, R., Husarova, I. & Rektorova, I. Generalized myoclonus as a prominent symptom in a patient with FTLD-TDP. J. Neurol. 260, 1681–1683 (2013).

    Article  PubMed  Google Scholar 

  128. Vanek, Z. & Jankovic, J. Dystonia in corticobasal degeneration. Mov. Disord. 16, 252–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Stamelou, M., Alonso-Canovas, A. & Bhatia, K. P. Dystonia in corticobasal degeneration: a review of the literature on 404 pathologically proven cases. Mov. Disord. 27, 696–702 (2012).

    Article  PubMed  Google Scholar 

  130. Merner, N. D. et al. Exome sequencing identifies FUS mutations as a cause of essential tremor. Am. J. Hum. Genet. 91, 313–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Deng, H., Liang, H. & Jankovic, J. F-box only protein 7 gene in parkinsonian-pyramidal disease. JAMA Neurol. 70, 20–24 (2013).

    Article  PubMed  Google Scholar 

  132. Hopfner, F. et al. The impact of rare variants in FUS in essential tremor. Mov. Disord. 30, 721–724 (2015).

    Article  PubMed  Google Scholar 

  133. Ishii, K. et al. Cerebral glucose metabolism in patients with frontotemporal dementia. J. Nucl. Med. 39, 1875–1878 (1998).

    CAS  PubMed  Google Scholar 

  134. Jeong, Y. et al. 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J. Nucl. Med. 46, 233–239 (2005).

    PubMed  Google Scholar 

  135. Diehl-Schmid, J. et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol. Aging 28, 42–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Garibotto, V. et al. Subcortical and deep cortical atrophy in frontotemporal lobar degeneration. Neurobiol. Aging 32, 875–884 (2011).

    Article  PubMed  Google Scholar 

  137. Looi, J. C. et al. Caudate nucleus volumes in frontotemporal lobar degeneration: differential atrophy in subtypes. AJNR Am. J. Neuroradiol. 29, 1537–1543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Looi, J. C. et al. Putaminal volume in frontotemporal lobar degeneration and Alzheimer disease: differential volumes in dementia subtypes and controls. AJNR Am. J. Neuroradiol. 30, 1552–1560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Halabi, C. et al. Patterns of striatal degeneration in frontotemporal dementia. Alzheimer Dis. Assoc. Disord. 27, 74–83 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rinne, J. O. et al. Striatal dopamine transporter and extrapyramidal symptoms in frontotemporal dementia. Neurology 58, 1489–1493 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Sedaghat, F. et al. Evaluation of dopaminergic function in frontotemporal dementia using I-FP-CIT single photon emission computed tomography. Neurodegener. Dis. 4, 382–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Carecchio, M. et al. Evidence of pre-synaptic dopaminergic deficit in a patient with a novel progranulin mutation presenting with atypical parkinsonism. J. Alzheimers Dis. 38, 747–752 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Ittner, L. M. et al. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc. Natl Acad. Sci. USA 105, 15997–16002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pal, P. K. et al. Positron emission tomography in pallido–ponto–nigral degeneration (PPND) family (frontotemporal dementia with parkinsonism linked to chromosome 17 and point mutation in tau gene). Parkinsonism Relat. Disord. 7, 81–88 (2001).

    Article  PubMed  Google Scholar 

  145. Selemon, L. D. & Goldman-Rakic, P. S. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J. Neurosci. 5, 776–794 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kobayashi, K. et al. KP1 expression of ghost Pick bodies, amyloid P-positive astrocytes and selective nigral degeneration in early onset Picks disease. Clin. Neuropathol. 18, 240–249 (1999).

    CAS  PubMed  Google Scholar 

  147. Woolley, J. D. et al. Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia. Neurology 69, 1424–1433 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Josephs, K. A., Whitwell, J. L. & Jack, C. R. Jr. Anatomic correlates of stereotypies in frontotemporal lobar degeneration. Neurobiol. Aging. 29, 1859–1863 (2008).

    Article  PubMed  Google Scholar 

  149. Diehl-Schmid, J., Onur, O. A., Kuhn, J., Gruppe, T. & Drzezga, A. Imaging frontotemporal lobar degeneration. Curr. Neurol. Neurosci. Rep. 14, 489 (2014).

    Article  PubMed  Google Scholar 

  150. Gómez-Tortosa, E. et al. Plasma progranulin levels in cortical dementia phenotypes with asymmetric perisylvian atrophy. Eur. J. Neurol. 20, 1319–1324 (2013).

    Article  PubMed  Google Scholar 

  151. Finch, N. et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 132, 583–591 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Le Ber, I. Genetics of frontotemporal lobar degeneration: an up-date and diagnosis algorithm. Rev. Neurol. (Paris) 169, 811–819 (2013).

    Article  CAS  Google Scholar 

  153. Rostgaard, N., Waldemar, G., Nielsen, J. E. & Simonsen, A. H. Cerebrospinal fluid biomarkers in familial forms of Alzheimer's disease and frontotemporal dementia. Dement. Geriatr. Cogn. Disord. 40, 54–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Fekete, R. et al. Exome sequencing in familial corticobasal degeneration. Parkinsonism Relat. Disord. 19, 1049–1052 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Dani, M. Edison, P. & Brooks, D. J. Imaging biomarkers in tauopathies. Parkinsonism Relat. Disord. 22, S26–S28 (2016).

    Article  PubMed  Google Scholar 

  156. Zhang, J. Mapping neuroinflammation in frontotemporal dementia with molecular PET imaging. J. Neuroinflamm. 12, 108 (2015).

    Article  CAS  Google Scholar 

  157. Bang, J., Spina, S. & Miller, B. L. Frontotemporal dementia. Lancet 386, 1672–1682 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.F.B.-C researched data for the article. Both authors made substantial contributions to discussion of the content, wrote the article and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Joseph Jankovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baizabal-Carvallo, J., Jankovic, J. Parkinsonism, movement disorders and genetics in frontotemporal dementia. Nat Rev Neurol 12, 175–185 (2016). https://doi.org/10.1038/nrneurol.2016.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing