Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spinal muscular atrophy—recent therapeutic advances for an old challenge

Key Points

  • Spinal muscular atrophy (SMA) is the most common cause of infant death resulting from genetic defect

  • Children affected by SMA present with various degrees of muscular wasting, along with a complex profile of accompanying symptoms

  • No effective therapy for SMA is currently available in clinical practice

  • An increasing comprehension of SMA pathophysiology, including the characterization of SMN1 and SMN2 genes and SMN protein functions, has led to the development of multiple experimental therapeutic strategies

  • Therapeutic approaches aim to replace or correct the faulty SMN1 gene, promote exon 7 inclusion in SMN2, increase SMN2 promoter activity, or stabilize and protect full-length and Δ7 SMN proteins

  • Worldwide, several clinical trials evaluating the efficacy of these approaches are ongoing

Abstract

In the past decade, improved understanding of spinal muscular atrophy (SMA) aetiopathogenesis has brought us to a historical turning point: we are at the verge of development of disease-modifying treatments for this hitherto incurable disease. The increasingly precise delineation of molecular targets within the survival of motor neuron (SMN) gene locus has led to the development of promising therapeutic strategies. These novel avenues in treatment for SMA include gene therapy, molecular therapy with antisense oligonucleotides, and small molecules that aim to increase expression of SMN protein. Stem cell studies of SMA have provided an in vitro model for SMA, and stem cell transplantation could be used as a complementary strategy with a potential to treat the symptomatic phases of the disease. Here, we provide an overview of established data and novel insights into SMA pathogenesis, including discussion of the crucial function of the SMN protein. Preclinical evidence and recent advances from ongoing clinical trials are thoroughly reviewed. The final remarks are dedicated to future clinical perspectives in this rapidly evolving field, with a broad discussion on the comparison between the outlined therapeutic approaches and the remaining open questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the clinical characteristics of SMA.
Figure 2: Differential diagnoses in suspected SMA.
Figure 3: iPSC-derived motor neurons exhibit SMA-like features.
Figure 4: Therapeutic strategies in SMA.

Similar content being viewed by others

References

  1. Werdnig, G. Two early infantile hereditary cases of progressive muscular atrophy simulating dystrophy, but on a neural basis. 1891. Arch. Neurol. 25, 276–278 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Brzustowicz, L. M. et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–133. Nature 344, 540–541 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Arnold, W. D., Kassar, D. & Kissel, J. T. Spinal muscular atrophy: diagnosis and management in a new therapeutic era. Muscle Nerve 51, 157–167 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Darras, B. T. Non-5q spinal muscular atrophies: the alphanumeric soup thickens. Neurology 77, 312–314 (2011).

    Article  PubMed  Google Scholar 

  5. Rossor, A. M. et al. Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2. Brain 138, 293–310 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sugarman, E. A. et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur. J. Hum. Genet. 20, 27–32 (2012).

    Article  PubMed  Google Scholar 

  7. Prior, T. W. et al. Newborn and carrier screening for spinal muscular atrophy. Am. J. Med. Genet. A. 152A, 1608–1616 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Finkel, R. S. et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 83, 810–817 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Munsat, T. L. & Davies, K. E. International SMA consortium meeting. (26–28 June 1992, Bonn, Germany). Neuromuscul. Disord. 2, 423–428 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Feldkötter, M., Schwarzer, V., Wirth, R., Wienker, T. F. & Wirth, B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am. J. Hum. Genet. 70, 358–368 (2002).

    Article  PubMed  Google Scholar 

  11. Cho, S. & Dreyfuss, G. A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev. 24, 438–442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mercuri, E., Bertini, E. & Iannaccone, S. T. Childhood spinal muscular atrophy: controversies and challenges. Lancet Neurol. 11, 443–452 (2012).

    Article  PubMed  Google Scholar 

  13. Wang, C. H. et al. Consensus statement for standard of care in spinal muscular atrophy. J. Child. Neurol. 22, 1027–1049 (2007).

    Article  PubMed  Google Scholar 

  14. Shababi, M. et al. Cardiac defects contribute to the pathology of spinal muscular atrophy models. Hum. Mol. Genet. 19, 4059–4071 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Rudnik-Schöneborn, S. et al. Congenital heart disease is a feature of severe infantile spinal muscular atrophy. J. Med. Genet. 45, 635–638 (2008).

    Article  PubMed  Google Scholar 

  16. Palladino, A. et al. Cardiac involvement in patients with spinal muscular atrophies. Acta Myol. 30, 175–178 (2011).

    PubMed  PubMed Central  Google Scholar 

  17. Iannaccone, S. T. Modern management of spinal muscular atrophy. J. Child. Neurol. 22, 974–978 (2007).

    Article  PubMed  Google Scholar 

  18. Durkin, E. T., Schroth, M. K., Helin, M. & Shaaban, A. F. Early laparoscopic fundoplication and gastrostomy in infants with spinal muscular atrophy type I. J. Pediatr. Surg. 43, 2031–2037 (2008).

    Article  PubMed  Google Scholar 

  19. Joyce, N. C., Hache, L. P. & Clemens, P. R. Bone health and associated metabolic complications in neuromuscular diseases. Phys. Med. Rehabil. Clin. N. Am. 23, 773–799 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Verrillo, E. et al. Sleep architecture in infants with spinal muscular atrophy type 1. Sleep Med. 15, 1246–1250 (2014).

    Article  PubMed  Google Scholar 

  21. Kaufmann, P. et al. Observational study of spinal muscular atrophy type 2 and 3: functional outcomes over 1 year. Arch. Neurol. 68, 779–786 (2011).

    Article  PubMed  Google Scholar 

  22. Yuan, P. & Jiang, L. Clinical characteristics of three subtypes of spinal muscular atrophy in children. Brain Dev. 37, 537–541 (2014).

    Article  PubMed  Google Scholar 

  23. Piepers, S. et al. A natural history study of late onset spinal muscular atrophy types 3b and 4. J. Neurol. 255, 1400–1404 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Prior, T. W., Nagan, N., Sugarman, E. A., Batish, S. D. & Braastad, C. Technical standards and guidelines for spinal muscular atrophy testing. Genet. Med. 13, 686–694 (2011).

    Article  PubMed  Google Scholar 

  25. Rudnik–Schöneborn, S. et al. Clinical utility gene card for: proximal spinal muscular atrophy. Eur. J. Hum. Genet. 20, (2012).

    Article  CAS  Google Scholar 

  26. D'Amico, A., Mercuri, E., Tiziano, F. D. & Bertini, E. Spinal muscular atrophy. Orphanet J. Rare Dis. 6, 71 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vilchis, Z. et al. The high frequency of genetic diseases in hypotonic infants referred by neuropediatrics. Am. J. Med. Genet. A. 164A, 1702–1705 (2014).

    Article  PubMed  Google Scholar 

  28. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Ogino, S. & Wilson, R. B. Genetic testing and risk assessment for spinal muscular atrophy (SMA). Hum. Genet. 111, 477–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Scully, M. A., Farrell, P. M., Ciafaloni, E., Griggs, R. C. & Kwon, J. M. Cystic fibrosis newborn screening: a model for neuromuscular disease screening? Ann. Neurol. 77, 189–197 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Swoboda, K. J. SMN-targeted therapeutics for spinal muscular atrophy: are we SMArt enough yet? J. Clin. Invest. 124, 487–490 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kolb, S. J. NeuroNEXT SMA biomarkers study. Ann. Neurol. 74, A8 (2013).

    Article  PubMed  Google Scholar 

  33. Castro, D. & Iannaccone, S. T. Spinal muscular atrophy: therapeutic strategies. Curr. Treat. Options Neurol. 16, 316 (2014).

    Article  PubMed  Google Scholar 

  34. Monani, U. R. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 8, 1177–1183 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Lorson, C. L., Hahnen, E., Androphy, E. J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl Acad. Sci. USA 96, 6307–6311 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burnett, B. G. et al. Regulation of SMN protein stability. Mol. Cell. Biol. 29, 1107–1115 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Elsheikh, B. et al. An analysis of disease severity based on SMN2 copy number in adults with spinal muscular atrophy. Muscle Nerve 40, 652–656 (2009).

    Article  PubMed  Google Scholar 

  38. Prior, T. W., Swoboda, K. J., Scott, H. D. & Hejmanowski, A. Q. Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. Am. J. Med. Genet. A. 130A, 307–310 (2004).

    Article  PubMed  Google Scholar 

  39. Schrank, B. et al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc. Natl Acad. Sci. USA 94, 9920–9925 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Monani, U. R. et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet. 9, 333–339 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Le, T. T. et al. SMNΔ7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum. Mol. Genet. 14, 845–857 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Bevan, A. K. et al. Early heart failure in the SMNΔ7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. Hum. Mol. Genet. 19, 3895–3905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Butchbach, M. E. R., Edwards, J. D., Schussler, K. R. & Burghes, A. H. A novel method for oral delivery of drug compounds to the neonatal SMNΔ7 mouse model of spinal muscular atrophy. J. Neurosci. Methods 161, 285–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Foust, K. D. et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat. Biotechnol. 28, 271–274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dominguez, E. et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum. Mol. Genet. 20, 681–693 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Cherry, J. J. et al. Enhancement of SMN protein levels in a mouse model of spinal muscular atrophy using novel drug-like compounds. EMBO Mol. Med. 5, 1035–1050 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  47. Ebert, A. D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Sareen, D. et al. Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy. PLoS ONE 7, e39113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Corti, S. et al. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci. Transl. Med. 4, 165ra162 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Vitte, J. et al. Refined characterization of the expression and stability of the SMN gene products. Am. J. Pathol. 171, 1269–1280 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, J. & Dreyfuss, G. A cell system with targeted disruption of the SMN gene: functional conservation of the SMN protein and dependence of Gemin2 on SMN. J. Biol. Chem. 276, 9599–9605 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Pellizzoni, L., Kataoka, N., Charroux, B. & Dreyfuss, G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95, 615–624 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Eggert, C., Chari, A., Laggerbauer, B. & Fischer, U. Spinal muscular atrophy: the RNP connection. Trends Mol. Med. 12, 113–121 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Pellizzoni, L. Chaperoning ribonucleoprotein biogenesis in health and disease. EMBO Rep. 8, 340–345 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chari, A. et al. An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135, 497–509 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Battle, D. J. et al. The SMN complex: an assembly machine for RNPs. Cold Spring Harb. Symp. Quant. Biol. 71, 313–320 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Kolb, S. J., Battle, D. J. & Dreyfuss, G. Molecular functions of the SMN complex. J. Child. Neurol. 22, 990–994 (2007).

    Article  PubMed  Google Scholar 

  58. Gabanella, F. et al. Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs. PLoS ONE 2, e921 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gabanella, F., Carissimi, C., Usiello, A. & Pellizzoni, L. The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation. Hum. Mol. Genet. 14, 3629–3642 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Burghes, A. H. & Beattie, C. E. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat. Rev. Neurosci. 10, 597–609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boulisfane, N. et al. Impaired minor tri-snRNP assembly generates differential splicing defects of U12-type introns in lymphoblasts derived from a type I SMA patient. Hum. Mol. Genet. 20, 641–648 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Pellizzoni, L., Yong, J. & Dreyfuss, G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 298, 1775–1779 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Z. et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133, 585–600 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, D. K., Tisdale, S., Lotti, F. & Pellizzoni, L. SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin. Cell Dev. Biol. 32, 22–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Kariya, S. et al. Requirement of enhanced survival motoneuron protein imposed during neuromuscular junction maturation. J. Clin. Invest. 124, 785–800 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oprea, G. E. et al. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 320, 524–527 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McWhorter, M. L., Monani, U. R., Burghes, A. H. & Beattie, C. E. Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J. Cell Biol. 162, 919–931 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rossoll, W. et al. Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum. Mol. Genet. 11, 93–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Rossoll, W. & Bassell, G. J. Spinal muscular atrophy and a model for survival of motor neuron protein function in axonal ribonucleoprotein complexes. Results Probl. Cell Differ. 48, 289–326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hubers, L. et al. HuD interacts with survival motor neuron protein and can rescue spinal muscular atrophy-like neuronal defects. Hum. Mol. Genet. 20, 553–579 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Martinez, T. L. et al. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy. J. Neurosci. 32, 8703–8715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goulet, B. B., Kothary, R. & Parks, R. J. At the “junction” of spinal muscular atrophy pathogenesis: the role of neuromuscular junction dysfunction in SMA disease progression. Curr. Mol. Med. 13, 1160–1174 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Fayzullina, S. & Martin, L. J. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of spinal muscular atrophy (SMA). PLoS ONE 9, e93329 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Boyer, J. G. et al. Early onset muscle weakness and disruption of muscle proteins in mouse models of spinal muscular atrophy. Skelet. Muscle 3, 24 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hunter, G., Aghamaleky Sarvestany, A., Roche, S. L., Symes, R. C. & Gillingwater, T. H. SMN-dependent intrinsic defects in Schwann cells in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 23, 2235–2250 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Imlach, W. L. et al. SMN is required for sensory-motor circuit function in Drosophila. Cell 151, 427–439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Prior, T. W. et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am. J. Hum. Genet. 85, 408–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jarecki, J. et al. Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy. Hum. Mol. Genet. 14, 2003–2018 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Cherry, J. J. et al. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev. Technol. 12, 315–341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lorson, M. A. & Lorson, C. L. SMN-inducing compounds for the treatment of spinal muscular atrophy. Future Med. Chem. 4, 2067–2084 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Thurmond, J. et al. Synthesis and biological evaluation of novel 2,4-diaminoquinazoline derivatives as SMN2 promoter activators for the potential treatment of spinal muscular atrophy. J. Med. Chem. 51, 449–469 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Yuo, C.-Y., Lin, H.-H., Chang, Y.-S., Yang, W.-K. & Chang, J.-G. 5-(N-ethyl-N-isopropyl)-amiloride enhances SMN2 exon 7 inclusion and protein expression in spinal muscular atrophy cells. Ann. Neurol. 63, 26–34 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Bowerman, M., Murray, L. M., Boyer, J. G., Anderson, C. L. & Kothary, R. Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy. BMC Med. 10, 24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bowerman, M., Beauvais, A., Anderson, C. L. & Kothary, R. Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model. Hum. Mol. Genet. 19, 1468–1478 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Miller, R. G. et al. A placebo-controlled trial of gabapentin in spinal muscular atrophy. J. Neurol. Sci. 191, 127–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Wirth, B., Garbes, L. & Riessland, M. How genetic modifiers influence the phenotype of spinal muscular atrophy and suggest future therapeutic approaches. Curr. Opin. Genet. Dev. 23, 330–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Swoboda, K. J. et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann. Neurol. 57, 704–712 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Passini, M. A. et al. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J. Clin. Invest. 120, 1253–1264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Valori, C. F. et al. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci. Transl. Med. 2, 35ra42 (2010).

    Article  PubMed  CAS  Google Scholar 

  90. Mitrpant, C. et al. Improved antisense oligonucleotide design to suppress aberrant SMN2 gene transcript processing: towards a treatment for spinal muscular atrophy. PLoS ONE 8, e62114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Duque, S. I. et al. A large animal model of spinal muscular atrophy and correction of phenotype. Ann. Neurol. 77, 399–414 (2014).

    Article  CAS  Google Scholar 

  92. Gray, S. J., Nagabhushan Kalburgi, S., McCown, T. J. & Jude Samulski, R. Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther. 20, 450–459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Bevan, A. K. et al. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol. Ther. 19, 1971–1980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Meyer, K. et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol. Ther. 23, 477–487 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Asokan, A., Schaffer, D. V. & Jude Samulski, R. The AAV vector toolkit: poised at the clinical crossroads. Mol. Ther. 20, 699–708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Singh, N. K., Singh, N. N., Androphy, E. J. & Singh, R. N. Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol. Cell. Biol. 26, 1333–1346 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Williams, J. H. et al. Oligonucleotide-mediated survival of motor neuron protein expression in CNS improves phenotype in a mouse model of spinal muscular atrophy. J. Neurosci. 29, 7633–7638 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Passini, M. A. et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci. Transl. Med. 3, 72ra18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hua, Y. et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 24, 1634–1644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Keil, J. M. et al. A short antisense oligonucleotide ameliorates symptoms of severe mouse models of spinal muscular atrophy. Mol. Ther. Nucleic Acids 3, e174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mitrpant, C. et al. Improved antisense oligonucleotide design to suppress aberrant SMN2 gene transcript processing: towards a treatment for spinal muscular atrophy. PLoS ONE 8, e62114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hua, Y. et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478, 123–126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhou, H. et al. A novel morpholino oligomer targeting ISS-N1 improves rescue of severe spinal muscular atrophy transgenic mice. Hum. Gene Ther. 24, 331–342 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Osman, E. Y. et al. Morpholino antisense oligonucleotides targeting intronic repressor Element1 improve phenotype in SMA mouse models. Hum. Mol. Genet. 23, 4832–4845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rigo, F. et al. Pharmacology of a central nervous system delivered 2′-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J. Pharmacol. Exp. Ther. 350, 46–55 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Nizzardo, M. et al. Effect of combined systemic and local morpholino treatment on the spinal muscular atrophy Δ7 mouse model phenotype. Clin. Ther. 36, 340–356.e5 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Titus, S. et al. High throughput screening for SMA. Probe Reports from the NIH Molecular Libraries Program [online], (2010).

    Google Scholar 

  109. Makhortova, N. R. et al. A screen for regulators of survival of motor neuron protein levels. Nat. Chem. Biol. 7, 544–552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hastings, M. L. et al. Tetracyclines that promote SMN2 exon 7 splicing as therapeutics for spinal muscular atrophy. Sci. Transl. Med. 1, 5ra12 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Naryshkin, N. A. et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support from Ministry of Health (GR-2009-1483560) and Cariplo grant (2012-0513) to S.C., and Telethon grant (GGP14025) to M.N. are gratefully acknowledged. All authors gratefully acknowledge the support from Associazione Amici del Centro Dino Ferrari.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and I.F. researched data for the article. S.C., I.F. and G.P.C. wrote the manuscript. All authors substantially contributed to discussion of content and reviewing, editing and revising of manuscript.

Corresponding author

Correspondence to Stefania Corti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faravelli, I., Nizzardo, M., Comi, G. et al. Spinal muscular atrophy—recent therapeutic advances for an old challenge. Nat Rev Neurol 11, 351–359 (2015). https://doi.org/10.1038/nrneurol.2015.77

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.77

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research