Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Remote ischaemic conditioning—a new paradigm of self-protection in the brain

Subjects

Key Points

  • Remote ischaemic conditioning remotely triggers self-protective pathways in the brain and can be easily administered by repetitive inflation and deflation of a blood pressure cuff on the limb

  • The exact mechanisms of signal transmission and remote organ protection are unknown, but both circulating mediators and neural mechanisms have central roles

  • Results of a trial of RIC in acute ischaemic stroke suggest that it is of benefit when administered during ischaemia

  • Acute RIC should be tested during the transfer of patients to comprehensive stroke centres, for use with mechanical thrombectomy, and in patients who have had a cardiac arrest

  • Two small clinical trials showed that chronic daily RIC at home for >6 months reduced the risk of stroke and transient ischaemic attacks in patients with symptomatic intracranial atherosclerosis

  • Chronic daily RIC is a promising therapy for chronic neurological conditions, such as white matter disease and vascular cognitive impairment

Abstract

Remote ischaemic conditioning (RIC) triggers endogenous protective pathways in distant organs such as the kidney, heart and brain, and represents an exciting new paradigm in neuroprotection. RIC involves repetitive inflation and deflation of a blood pressure cuff on the limb, and is safe and feasible. The exact mechanism of signal transmission from the periphery to the brain is not known, but both humoral factors and an intact nervous system seem to have critical roles. Early-phase clinical trials have already been conducted to test RIC in the prehospital setting in acute ischaemic stroke, and in subarachnoid haemorrhage for the prevention of delayed cerebral ischaemia. Furthermore, two small randomized clinical trials in patients with symptomatic intracranial atherosclerosis have shown that RIC can reduce recurrence of stroke and have neuroprotective activity. RIC represents a highly practical and translatable therapy for acute, subacute, and chronic neurological diseases with an ischaemic or inflammatory basis. In this Review, we consider the principles and mechanisms of RIC, evidence from preclinical models and clinical trials that RIC is beneficial in neurological disease, and how the procedure might be used in the future in disorders such as vascular cognitive impairment and traumatic brain injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protocols of remote ischaemic conditioning in the acute and chronic settings.
Figure 2: Ischaemic preconditioning in the heart by various methods reduces the size of an infarct.
Figure 3: Possible mechanisms by which the signal initiated by remote limb preconditioning is transmitted to the brain to bring about protection against ischaemia.
Figure 4: Trial profile of the prehospital acute stroke trial.108,109

Similar content being viewed by others

References

  1. Iadecola, C. & Anrather, J. Stroke research at a crossroad: asking the brain for directions. Nat. Neurosci. 14, 1363–1368 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Albers, G. W. et al. Stroke Treatment Academic Industry Roundtable (STAIR) recommendations for maximizing the use of intravenous thrombolytics and expanding treatment options with intra-arterial and neuroprotective therapies. Stroke 42, 2645–2650 (2011).

    Article  PubMed  Google Scholar 

  3. Murry, C. E., Jennings, R. B. & Reimer, K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Kharbanda, R. K. et al. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106, 2881–2883 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Bøtker, H. E. et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375, 727–734 (2010).

    Article  PubMed  Google Scholar 

  6. Vander Heide, R. Clinically useful cardioprotection: ischemic preconditioning then and now. J. Cardiovasc. Pharmacol. Ther. 16, 251–254 (2011).

    Article  PubMed  Google Scholar 

  7. Sloth, A. D. et al. Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention. Eur. Heart J. 35, 168–175 (2014).

    Article  PubMed  Google Scholar 

  8. Pei, H. et al. Remote ischemic preconditioning reduces perioperative cardiac and renal events in patients undergoing elective coronary intervention: a meta-analysis of 11 randomized trials. PLoS ONE 9, e115500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brevoord, D. et al. Remote ischemic conditioning to protect against ischemia–reperfusion injury: a systematic review and meta-analysis. PLoS ONE 7, e42179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davies, W. R. et al. Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: the CRISP stent trial long-term follow-up. Circ. Cardiovasc. Interv. 6, 246–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Hoole, S. P. et al. Cardiac Remote Ischemic Preconditioning in Coronary Stenting (CRISP Stent) Study: a prospective, randomized control trial. Circulation 119, 820–827 (2009).

    Article  PubMed  Google Scholar 

  12. Er, F. et al. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial). Circulation 126, 296–303 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Zarbock, A. et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA 313, 2133–2141 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Arumugam, T. V., Gleichmann, M., Tang, S. C. & Mattson, M. P. Hormesis/preconditioning mechanisms, the nervous system and aging. Ageing Res. Rev. 5, 165–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Calabrese, E. J. Converging concepts: adaptive response, preconditioning, and the Yerkes–Dodson Law are manifestations of hormesis. Ageing Res. Rev. 7, 8–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Mattson, M. P. Hormesis defined. Ageing Res. Rev. 7, 1–7 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Dawson, D. A., Furuya, K., Gotoh, J., Nakao, Y. & Hallenbeck, J. M. Cerebrovascular hemodynamics and ischemic tolerance: lipopolysaccharide-induced resistance to focal cerebral ischemia is not due to changes in severity of the initial ischemic insult, but is associated with preservation of microvascular perfusion. J. Cereb. Blood Flow Metab. 19, 616–623 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Bolli, R. The late phase of preconditioning. Circ. Res. 87, 972–983 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Guo, Y. et al. Demonstration of an early and a late phase of ischemic preconditioning in mice. Am. J. Physiol. 275, H1375–H1387 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hausenloy, D. J. & Yellon, D. M. The second window of preconditioning (SWOP) where are we now? Cardiovasc. Drugs Ther. 24, 235–254 (2010).

    Article  PubMed  Google Scholar 

  21. Loukogeorgakis, S. P. et al. Remote ischemic preconditioning provides early and late protection against endothelial ischemia–reperfusion injury in humans: role of the autonomic nervous system. J. Am. Coll. Cardiol. 46, 450–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Wei, M. et al. Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. Circ. Res. 108, 1220–1225 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Rohailla, S. et al. Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS ONE 9, e111291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Whittaker, P. & Przyklenk, K. Reduction of infarct size in vivo with ischemic preconditioning: mathematical evidence for protection via non-ischemic tissue. Basic Res. Cardiol. 89, 6–15 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Przyklenk, K., Bauer, B., Ovize, M., Kloner, R. A. & Whittaker, P. Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87, 893–899 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Gho, B. C., Schoemaker, R. G., van den Doel, M. A., Duncker, D. J. & Verdouw, P. D. Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94, 2193–2200 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Birnbaum, Y., Hale, S. L. & Kloner, R. A. Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 96, 1641–1646 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt, M. R. et al. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am. J. Physiol. Heart Circ. Physiol. 292, H1883–H1890 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Gross, G. J., Baker, J. E., Moore, J., Falck, J. R. & Nithipatikom, K. Abdominal surgical incision induces remote preconditioning of trauma (RPCT) via activation of bradykinin receptors (BK2R) and the cytochrome P450 epoxygenase pathway in canine hearts. Cardiovasc. Drugs Ther. 25, 517–522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gross, G. J., Hsu, A., Gross, E. R., Falck, J. R. & Nithipatikom, K. Factors mediating remote preconditioning of trauma in the rat heart: central role of the cytochrome p450 epoxygenase pathway in mediating infarct size reduction. J. Cardiovasc. Pharmacol. Ther. 18, 38–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Jones, W. K. et al. Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation 120 (11 Suppl.), S1–S9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ren, X., Wang, Y. & Jones, W. K. TNF-α is required for late ischemic preconditioning but not for remote preconditioning of trauma. J. Surg. Res. 121, 120–129 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Redington, K. L. et al. Remote cardioprotection by direct peripheral nerve stimulation and topical capsaicin is mediated by circulating humoral factors. Basic Res. Cardiol. 107, 241 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Dahl, N. A. & Balfour, W. M. Prolonged anoxic survival due to anoxia pre-exposure: brain ATP, lactate, and pyruvate. Am. J. Physiol. 207, 452–456 (1964).

    Article  CAS  PubMed  Google Scholar 

  35. Lu, G. W., Yu, S., Li, R. H., Cui, X. Y. & Gao, C. Y. Hypoxic preconditioning: a novel intrinsic cytoprotective strategy. Mol. Neurobiol. 31, 255–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Kitagawa, K. et al. 'Ischemic tolerance' phenomenon found in the brain. Brain Res. 528, 21–24 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, J., Graham, S. H., Zhu, R. L. & Simon, R. P. Stress proteins and tolerance to focal cerebral ischemia. J. Cereb. Blood Flow Metab. 16, 566–577 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Ottani, F. et al. Prodromal angina limits infarct size. A role for ischemic preconditioning. Circulation 91, 291–297 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Kloner, R. A. et al. Prospective temporal analysis of the onset of preinfarction angina versus outcome: an ancillary study in TIMI-9B. Circulation 97, 1042–1045 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Herrett, E. et al. Association between clinical presentations before myocardial infarction and coronary mortality: a prospective population-based study using linked electronic records. Eur. Heart J. 35, 2363–2371 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Moncayo, J., de Freitas, G. R., Bogousslavsky, J., Altieri, M. & van Melle, G. Do transient ischemic attacks have a neuroprotective effect? Neurology 54, 2089–2094 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Weih, M. et al. Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? Stroke 30, 1851–1854 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Sitzer, M. et al. Transient ischaemic attack preceding anterior circulation infarction is independently associated with favourable outcome. J. Neurol. Neurosurg. Psychiatry 75, 659–660 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wegener, S. et al. Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke 35, 616–621 (2004).

    Article  PubMed  Google Scholar 

  45. Weber, R., Diener, H. C., Weimar, C. & German Stroke Study Collaboration. Why do acute ischemic stroke patients with a preceding transient ischemic attack present with less severe strokes? Insights from the German Stroke Study. Eur. Neurol. 66, 265–270 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Johnston, S. C. Ischemic preconditioning from transient ischemic attacks? Data from the Northern California TIA Study. Stroke 35 (11 Suppl. 1), 2680–2682 (2004).

    Article  PubMed  Google Scholar 

  47. Connolly, M. et al. Peripheral vascular disease as remote ischemic preconditioning, for acute stroke. Clin. Neurol. Neurosurg. 115, 2124–2129 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Malhotra, S., Naggar, I., Stewart, M. & Rosenbaum, D. M. Neurogenic pathway mediated remote preconditioning protects the brain from transient focal ischemic injury. Brain Res. 1386, 184–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Wei, D., Ren, C., Chen, X. & Zhao, H. The chronic protective effects of limb remote preconditioning and the underlying mechanisms involved in inflammatory factors in rat stroke. PLoS ONE 7, e30892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Donato, M. et al. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp. Physiol. 98, 425–434 (2013).

    Article  PubMed  Google Scholar 

  51. Steensrud, T. et al. Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine. Am. J. Physiol. Heart Circ. Physiol. 299, H1598–H1603 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Mastitskaya, S. et al. Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc. Res. 95, 487–494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shimizu, M. et al. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin. Sci. (Lond.) 117, 191–200 (2009).

    Article  CAS  Google Scholar 

  54. Konstantinov, I. E. et al. Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism. Transplantation 79, 1691–1695 (2005).

    Article  PubMed  Google Scholar 

  55. Jensen, R. V., Støttrup, N. B., Kristiansen, S. B. & Bøtker, H. E. Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients. Basic Res. Cardiol. 107, 285 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Hausenloy, D. J. et al. Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res. Cardiol. 105, 677–686 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nakamura, M., Nakakimura, K., Matsumoto, M. & Sakabe, T. Rapid tolerance to focal cerebral ischemia in rats is attenuated by adenosine A1 receptor antagonist. J. Cereb. Blood Flow Metab. 22, 161–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Xiao, L., Lu, R., Hu, C. P., Deng, H. W. & Li, Y. J. Delayed cardioprotection by intestinal preconditioning is mediated by calcitonin gene-related peptide. Eur. J. Pharmacol. 427, 131–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Rassaf, T. et al. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ. Res. 114, 1601–1610 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Brzozowski, T. et al. Ischemic preconditioning of remote organs attenuates gastric ischemia-reperfusion injury through involvement of prostaglandins and sensory nerves. Eur. J. Pharmacol. 499, 201–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Hess, D. C., Hoda, M. N. & Khan, M. B. Humoral mediators of remote ischemic conditioning: important role of eNOS/NO/nitrite. Acta Neurochir. Suppl. 121, 45–48 (2015).

    Article  Google Scholar 

  62. Davidson, S. M. et al. Remote ischaemic preconditioning involves signalling through the SDF-1α/CXCR4 signalling axis. Basic Res. Cardiol. 108, 377 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Cai, Z. P., Parajuli, N., Zheng, X. & Becker, L. Remote ischemic preconditioning confers late protection against myocardial ischemia-reperfusion injury in mice by upregulating interleukin-10. Basic Res. Cardiol. 107, 277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, J. et al. MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res. Cardiol. 109, 423 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Kim-Shapiro, D. B. & Gladwin, M. T. Mechanisms of nitrite bioactivation. Nitric Oxide 38, 58–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Liu, C. et al. Mechanisms of human erythrocytic bioactivation of nitrite. J. Biol. Chem. 290, 1281–1294 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Konstantinov, I. E. et al. The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol. Genomics 19, 143–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Ong, S. B., Dongworth, R. K., Cabrera-Fuentes, H. A. & Hausenloy, D. J. Role of the MPTP in conditioning the heart—translatability and mechanism. Br. J. Pharmacol. 172, 2074–2084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun, J. et al. Protective effect of delayed remote limb ischemic postconditioning: role of mitochondrial KATP channels in a rat model of focal cerebral ischemic reperfusion injury. J. Cereb. Blood Flow Metab. 32, 851–859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shiva, S. Nitrite: a physiological store of nitric oxide and modulator of mitochondrial function. Redox Biol. 1, 40–44 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shiva, S. et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J. Exp. Med. 204, 2089–2102 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Soriano, F. X. et al. Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J. Neurosci. 26, 4509–4518 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Celso Constantino, L., Tasca, C. I. & Boeck, C. R. The role of NMDA receptors in the development of brain resistance through pre- and postconditioning. Aging Dis. 5, 430–441 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Shimizu, M., Konstantinov, I. E., Kharbanda, R. K., Cheung, M. H. & Redington, A. N. Effects of intermittent lower limb ischaemia on coronary blood flow and coronary resistance in pigs. Acta Physiol. (Oxf.) 190, 103–109 (2007).

    Article  CAS  Google Scholar 

  75. Kono, Y. et al. Remote ischemic conditioning improves coronary microcirculation in healthy subjects and patients with heart failure. Drug Des. Devel. Ther. 8, 1175–1181 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Zhao, L. & Nowak, T. S. Jr, CBF changes associated with focal ischemic preconditioning in the spontaneously hypertensive rat. J. Cereb. Blood Flow Metab. 26, 1128–1140 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Hoyte, L. C., Papadakis, M., Barber, P. A. & Buchan, A. M. Improved regional cerebral blood flow is important for the protection seen in a mouse model of late phase ischemic preconditioning. Brain Res. 1121, 231–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Hoda, M. N. et al. Remote ischemic perconditioning is effective after embolic stroke in ovariectomized female mice. Transl. Stroke Res. 5, 484–490 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hoda, M. N. et al. A 2 × 2 factorial design for the combination therapy of minocycline and remote ischemic perconditioning: efficacy in a preclinical trial in murine thromboembolic stroke model. Exp. Transl. Stroke Med. 6, 10 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hoda, M. N. et al. Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke 43, 2794–2799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Khan, M. B. et al. Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment. Transl. Stroke Res. 6, 69–77 (2015).

    Article  PubMed  Google Scholar 

  82. Meng, R. et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology 79, 1853–1861 (2012).

    Article  PubMed  Google Scholar 

  83. Curry, A. et al. Exercise pre-conditioning reduces brain inflammation in stroke via tumor necrosis factor-α, extracellular signal-regulated kinase 1/2 and matrix metalloproteinase-9 activity. Neurol. Res. 32, 756–762 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Kloner, R. A., Speakman, M. T. & Przyklenk, K. Ischemic preconditioning: a plea for rationally targeted clinical trials. Cardiovasc. Res. 55, 526–533 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Shinton, R. & Sagar, G. Lifelong exercise and stroke. BMJ 307, 231–234 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wannamethee, G. & Shaper, A. G. Physical activity and stroke in British middle aged men. BMJ 304, 597–601 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, F., Wu, Y. & Jia, J. Exercise preconditioning and brain ischemic tolerance. Neuroscience 177, 170–176 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, Q., Zhang, L., Yang, X., Wan, Y. & Jia, J. The effects of exercise preconditioning on cerebral blood flow change and endothelin-1 expression after cerebral ischemia in rats. J. Stroke Cerebrovasc Dis. 23, 1696–1702 (2014).

    Article  PubMed  Google Scholar 

  89. Tomai, F. Warm up phenomenon and preconditioning in clinical practice. Heart 87, 99–100 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kloner, R. A. & Jennings, R. B. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation 104, 2981–2989 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Kloner, R. A. & Jennings, R. B. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation 104, 3158–3167 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Marber, M. S., Joy, M. D. & Yellon, D. M. Is warm-up in angina ischaemic preconditioning? Br. Heart J. 72, 213–215 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tomai, F. et al. Mechanisms of the warm-up phenomenon. Eur. Heart J. 17, 1022–1027 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Williams, R. P., Manou-Stathopoulou, V., Redwood, S. R. & Marber, M. S. 'Warm-up Angina': harnessing the benefits of exercise and myocardial ischaemia. Heart 100, 106–114 (2014).

    Article  PubMed  Google Scholar 

  95. Domenech, R., Macho, P., Schwarze, H. & Sánchez, G. Exercise induces early and late myocardial preconditioning in dogs. Cardiovasc. Res. 55, 561–566 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Michelsen, M. M. et al. Exercise-induced cardioprotection is mediated by a bloodborne, transferable factor. Basic Res. Cardiol. 107, 260 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Ren, C. et al. Remote ischemic post-conditioning reduced brain damage in experimental ischemia/reperfusion injury. Neurol. Res. 33, 514–519 (2011).

    Article  PubMed  Google Scholar 

  98. Ren, C., Gao, X., Steinberg, G. K. & Zhao, H. Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience 151, 1099–1103 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Ren, C. et al. Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res. 1288, 88–94 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hahn, C. D., Manlhiot, C., Schmidt, M. R., Nielsen, T. T. & Redington, A. N. Remote ischemic per-conditioning: a novel therapy for acute stroke? Stroke 42, 2960–2962 (2011).

    Article  PubMed  Google Scholar 

  101. Ren, C. et al. Limb remote ischemic per-conditioning in combination with post-conditioning reduces brain damage and promotes neuroglobin expression in the rat brain after ischemic stroke. Restor. Neurol. Neurosci. 33, 369–379 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, X. et al. Remote ischemic postconditioning alleviates cerebral ischemic injury by attenuating endoplasmic reticulum stress-mediated apoptosis. Transl. Stroke Res. 5, 692–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Zhou, Y. et al. Remote limb ischemic postconditioning protects against neonatal hypoxic-ischemic brain injury in rat pups by the opioid receptor/Akt pathway. Stroke 42, 439–444 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Drunalini Perera, P. N. et al. Delayed remote ischemic postconditioning improves long term sensory motor deficits in a neonatal hypoxic ischemic rat model. PLoS ONE 9, e90258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xu, J. et al. Remote ischemic pre- and postconditioning improve postresuscitation myocardial and cerebral function in a rat model of cardiac arrest and resuscitation. Crit. Care Med. 43, e12–e18 (2015).

    Article  PubMed  Google Scholar 

  106. Dave, K. R., Saul, I., Prado, R., Busto, R. & Perez-Pinzon, M. A. Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neurosci. Lett. 404, 170–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Jensen, H. A. et al. Remote ischemic preconditioning protects the brain against injury after hypothermic circulatory arrest. Circulation 123, 714–721 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Hougaard, K. D. et al. Remote ischemic perconditioning in thrombolysed stroke patients: randomized study of activating endogenous neuroprotection—design and MRI measurements. Int. J. Stroke 8, 141–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Hougaard, K. D. et al. Remote ischemic perconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke: a randomized trial. Stroke 45, 159–167 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Geng, X. et al. Effect of remote ischemic postconditioning on an intracerebral hemorrhage stroke model in rats. Neurol. Res. 34, 143–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Fang, H. et al. CD36-mediated hematoma absorption following intracerebral hemorrhage: negative regulation by TLR4 signaling. J. Immunol. 192, 5984–5992 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vaibhav, K. et al. Repeated remote ischemic conditioning (RIC) after intracerebral hemorrhage regulates macrophage polarization and CD36 expression to promote hematoma resolution [abstract]. Stroke 46, AWP253 (2015).

    Google Scholar 

  113. Nor, A. M. et al. Agreement between ambulance paramedic- and physician-recorded neurological signs with Face Arm Speech Test (FAST) in acute stroke patients. Stroke 35, 1355–1359 (2004).

    Article  PubMed  Google Scholar 

  114. Brandler, E. S., Sharma, M., Sinert, R. H. & Levine, S. R. Prehospital stroke scales in urban environments: a systematic review. Neurology 82, 2241–2249 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. You, J. S. et al. Predictive value of the Cincinnati Prehospital Stroke Scale for identifying thrombolytic candidates in acute ischemic stroke. Am. J. Emerg. Med. 31, 1699–1702 (2013).

    Article  PubMed  Google Scholar 

  116. Pérez de la Ossa, N. et al. Design and validation of a prehospital stroke scale to predict large arterial occlusion: the rapid arterial occlusion evaluation scale. Stroke 45, 87–91 (2014).

    Article  PubMed  Google Scholar 

  117. Qureshi, A. I. Acute hypertensive response in patients with stroke: pathophysiology and management. Circulation 118, 176–187 (2008).

    Article  PubMed  Google Scholar 

  118. Hess, D. C., Hoda, M. N. & Bhatia, K. Remote limb perconditioning [corrected] and postconditioning: will it translate into a promising treatment for acute stroke? Stroke 44, 1191–1197 (2013).

    Article  PubMed  Google Scholar 

  119. Saver, J. L. & Gornbein, J. Treatment effects for which shift or binary analyses are advantageous in acute stroke trials. Neurology 72, 1310–1315 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Saver, J. L. et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 372, 2285–2295 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Berkhemer, O. A., Majoie, C. B., Dippel, D. W. & MR CLEAN Investigators. Endovascular therapy for ischemic stroke. N. Engl. J. Med. 372, 2363 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Gonzalez, N. R., Connolly, M., Dusick, J. R., Bhakta, H. & Vespa, P. Phase I clinical trial for the feasibility and safety of remote ischemic conditioning for aneurysmal subarachnoid hemorrhage. Neurosurgery 75, 590–598 (2014).

    Article  PubMed  Google Scholar 

  123. Koch, S., Katsnelson, M., Dong, C. & Perez-Pinzon, M. Remote ischemic limb preconditioning after subarachnoid hemorrhage: a phase Ib study of safety and feasibility. Stroke 42, 1387–1391 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gonzalez, N. R. et al. Cerebral hemodynamic and metabolic effects of remote ischemic preconditioning in patients with subarachnoid hemorrhage. Acta Neurochir. Suppl. 115, 193–198 (2013).

    PubMed  Google Scholar 

  125. Wang, Y. et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese Intracranial Atherosclerosis (CICAS) Study. Stroke 45, 663–669 (2014).

    Article  PubMed  Google Scholar 

  126. Chimowitz, M. I. et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N. Engl. J. Med. 365, 993–1003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Holmstedt, C. A., Turan, T. N. & Chimowitz, M. I. Atherosclerotic intracranial arterial stenosis: risk factors, diagnosis, and treatment. Lancet Neurol. 12, 1106–1114 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Li, S. et al. Safety and feasibility of remote limb ischemic preconditioning in patients with unilateral middle cerebral artery stenosis and healthy volunteers. Cell Transplant. 24, 1901–1911 (2015).

    Article  PubMed  Google Scholar 

  129. Meng, R. et al. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics 12, 667–677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  131. Pérez-Pinzón, M. A., Alonso, O., Kraydieh, S. & Dietrich, W. D. Induction of tolerance against traumatic brain injury by ischemic preconditioning. Neuroreport 10, 2951–2954 (1999).

    Article  PubMed  Google Scholar 

  132. Vaibhav, K., Baban, B., Khan, M. B., Liu, J. Y. Huo, Y., Hess, D. C., Dhandapani, K. M. & Hoda, M. N. Remote ischemic preconditioning protects from traumatic brain injury (TBI) [abstract]. J. Neurotrauma 31, A87 (2014).

    Google Scholar 

  133. Vaibhav, K. et al. Remote ischemic conditioning (RIC) attenuates post-TBI ischemic injury and improves behavioral outcomes [abstract]. Stroke 46, ATP92 (2015).

    Google Scholar 

  134. Joseph, B. et al. Secondary brain injury in trauma patients: the effects of remote ischemic conditioning. J. Trauma Acute Care Surg. 78, 698–703 (2015).

    Article  PubMed  Google Scholar 

  135. Walsh, S. R. et al. Remote ischemic preconditioning for cerebral and cardiac protection during carotid endarterectomy: results from a pilot randomized clinical trial. Vasc. Endovascular Surg. 44, 434–439 (2010).

    Article  PubMed  Google Scholar 

  136. Iadecola, C. The pathobiology of vascular dementia. Neuron 80, 844–866 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Jellinger, K. A. Pathology and pathogenesis of vascular cognitive impairment—a critical update. Front. Aging Neurosci. 5, 17 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 2672–2713 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Iadecola, C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 120, 287–296 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Snyder, H. M. et al. Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimers Dement. 11, 710–717 (2015).

    Article  PubMed  Google Scholar 

  141. Poggesi, A. et al. 2001–2011: A decade of the LADIS (Leukoaraiosis And DISability) Study: what have we learned about white matter changes and small-vessel disease? Cerebrovasc. Dis. 32, 577–588 (2011).

    Article  PubMed  Google Scholar 

  142. Bernbaum, M. et al. Reduced blood flow in normal white matter predicts development of leukoaraiosis. J. Cereb. Blood Flow Metab. 35, 1610–1615 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. O'Sullivan, M. et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology 59, 321–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Verdelho, A. et al. Physical activity prevents progression for cognitive impairment and vascular dementia: results from the LADIS (Leukoaraiosis and Disability) study. Stroke 43, 3331–3335 (2012).

    Article  PubMed  Google Scholar 

  145. Bink, D. I., Ritz, K., Aronica, E., van der Weerd, L. & Daemen, M. J. Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition. J. Cereb. Blood Flow Metab. 33, 1666–1684 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Shibata, M., Ohtani, R., Ihara, M. & Tomimoto, H. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke 35, 2598–2603 (2004).

    Article  PubMed  Google Scholar 

  147. Shibata, M. et al. Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke 38, 2826–2832 (2007).

    Article  PubMed  Google Scholar 

  148. Schmidt, R. et al. White matter lesion progression in LADIS: frequency, clinical effects, and sample size calculations. Stroke 43, 2643–2647 (2012).

    Article  PubMed  Google Scholar 

  149. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  150. Johnsen, J., Pryds, K., Salman, R., Kristiansen, S. B., Botker, H. E. Optimizing the cardioprotective effects of remote ischemic preconditioning [Poster P2500]. Eur. Heart J. 35 (Suppl. 1), 444 (2014).

    Google Scholar 

  151. Przyklenk, K. Efficacy of cardioprotective 'conditioning' strategies in aging and diabetic cohorts: the co-morbidity conundrum. Drugs Aging 28, 331–343 (2011).

    Article  PubMed  Google Scholar 

  152. Sivaraman, V., Hausenloy, D. J., Wynne, A. M. & Yellon, D. M. Preconditioning the diabetic human myocardium. J. Cell. Mol. Med. 14, 1740–1746 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Loukogeorgakis, S. P. et al. Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a KATP-channel dependent mechanism. Circulation 116, 1386–1395 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Simard, J. M. et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 29, 317–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Kottenberg, E. et al. Interference of propofol with signal transducer and activator of transcription 5 activation and cardioprotection by remote ischemic preconditioning during coronary artery bypass grafting. J. Thorac Cardiovasc. Surg. 147, 376–382 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Kottenberg, E. et al. Protection by remote ischemic preconditioning during coronary artery bypass graft surgery with isoflurane but not propofol—a clinical trial. Acta Anaesthesiol. Scand. 56, 30–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Meybohm, P. et al. A multicenter trial of remote ischemic preconditioning for heart surgery. N. Engl. J. Med. 373, 1397–1407 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Hausenloy, D. J. et al. Remote ischemic preconditioning and outcomes of cardiac surgery. N. Engl. J. Med. 373, 1408–1417 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Gidday, J. M. et al. Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J. Cereb. Blood Flow Metab. 19, 331–340 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Orio, M. et al. Lipopolysaccharide induces early tolerance to excitotoxicity via nitric oxide and cGMP. Stroke 38, 2812–2817 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Gesuete, R., Kohama, S. G. & Stenzel-Poore, M. P. Toll-like receptors and ischemic brain injury. J. Neuropathol. Exp. Neurol. 73, 378–386 (2014).

    Article  CAS  Google Scholar 

  162. Sakata, H. et al. Interleukin 6-preconditioned neural stem cells reduce ischaemic injury in stroke mice. Brain 135, 3298–3310 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Digicaylioglu, M. & Lipton, S. A. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades. Nature 412, 641–647 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Pasha, Z. et al. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc. Res. 77, 134–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Kapinya, K. J. et al. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33, 1889–1898 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Zhao, P. & Zuo, Z. Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats. Anesthesiology 101, 695–703 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Ye, R. et al. Sevoflurane preconditioning improves mitochondrial function and long-term neurologic sequelae after transient cerebral ischemia: role of mitochondrial permeability transition. Crit. Care Med. 40, 2685–2693 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Peart, J. N., Gross, E. R. & Gross, G. J. Opioid-induced preconditioning: recent advances and future perspectives. Vascul. Pharmacol. 42, 211–218 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussion of the content, and reviewed and/or edited the manuscript before submission. D.C.H., R.A.B., G.A., K.D.H., Y.D. and X.J. wrote the article.

Corresponding author

Correspondence to David C. Hess.

Ethics declarations

Competing interests

X.J. has a patent on a remote conditioning device. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hess, D., Blauenfeldt, R., Andersen, G. et al. Remote ischaemic conditioning—a new paradigm of self-protection in the brain. Nat Rev Neurol 11, 698–710 (2015). https://doi.org/10.1038/nrneurol.2015.223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing