Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Type I interferon dysregulation and neurological disease

Key Points

  • Type I interferon is an essential component of the innate immune system, which protects the brain against viral infection

  • Underactivity of the type I interferon pathway causes predisposition to herpes simplex encephalitis

  • Overactivity of the type I interferon pathway results in a spectrum of Mendelian neuroinflammatory diseases known as 'interferonopathies'

  • Dysregulation of the type I interferon response has an important role in the pathogenesis of more common diseases that can affect the brain, including lupus and cerebrovascular disease

  • Aberrant activation of the type I interferon pathway offers potential as a useful biomarker and a target for therapy

Abstract

Type I interferon is an essential component of the brain's innate immune defence, conferring protection against viral infection. Recently, dysregulation of the type I interferon pathway has been implicated in the pathogenesis of a spectrum of neuroinfectious and neuroinflammatory disorders. Underactivity of the type I interferon response is associated with a predisposition to herpes simplex encephalitis. Conversely, a group of 'interferonopathic' disorders, characterized by severe neuroinflammation and overactivity of type I interferon, has been described. Elucidation of the genetic basis of these Mendelian neuroinflammatory diseases has uncovered important links between nucleic acid sensors, innate immune activation and neuroinflammatory disease. These mechanisms have an important role in the pathogenesis of more common polygenic diseases that can affect the brain, such as lupus and cerebral small vessel disease. In this article, we review the spectrum of neurological disease associated with type I interferon dysregulation, as well as advances in our understanding of the molecular and cellular pathogenesis of these conditions. We highlight the potential utility of type I interferon as both a biomarker and a therapeutic target in neuroinflammatory disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The type I interferon response and neurological disease.
Figure 2: Activation of the type I interferon response by nucleic acid sensors.
Figure 3: Therapeutic strategies targeting overactivity of the type I interferon pathway.

Similar content being viewed by others

References

  1. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 258–267 (1957).

    Article  CAS  PubMed  Google Scholar 

  2. Isaacs, A., Lindenmann, J. & Valentine, R. C. Virus interference. II. Some properties of interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 268–273 (1957).

    Article  CAS  PubMed  Google Scholar 

  3. Nagano, Y., Kojima, Y. & Sawai, Y. Immunity and interference in vaccinia; inhibition of skin infection by inactivated virus [French]. C. R. Seances Soc. Biol. Fil. 148, 750–752 (1954).

    CAS  PubMed  Google Scholar 

  4. Wheelock, E. F. Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science 149, 310–311 (1965).

    Article  CAS  PubMed  Google Scholar 

  5. Field, A. K., Tytell, A. A., Lampson, G. P. & Hilleman, M. R. Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc. Natl Acad. Sci. USA 58, 1004–1010 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crow, Y. J. Type I interferonopathies: a novel set of inborn errors of immunity. Ann. N. Y. Acad. Sci. 1238, 91–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Olopade, O. I. et al. Mapping of the shortest region of overlap of deletions of the short arm of chromosome 9 associated with human neoplasia. Genomics 14, 437–443 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Altmann, S. M., Mellon, M. T., Distel, D. L. & Kim, C. H. Molecular and functional analysis of an interferon gene from the zebrafish, Danio rerio. J. Virol. 77, 1992–2002 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robertsen, B., Bergan, V., Rokenes, T., Larsen, R. & Albuquerque, A. Atlantic salmon interferon genes: cloning, sequence analysis, expression, and biological activity. J. Interferon Cytokine Res. 23, 601–612 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Xu, L., Yang, L. & Liu, W. Distinct evolution process among type I interferon in mammals. Protein Cell 4, 383–392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kerkmann, M. et al. Activation with CpG-A and CpG-B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells. J. Immunol. 170, 4465–4474 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Takauji, R. et al. CpG-DNA-induced IFN-α production involves p38 MAPK-dependent STAT1 phosphorylation in human plasmacytoid dendritic cell precursors. J. Leukoc. Biol. 72, 1011–1019 (2002).

    CAS  PubMed  Google Scholar 

  13. Izaguirre, A. et al. Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J. Leukoc. Biol. 74, 1125–1138 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Desmet, C. J. & Ishii, K. J. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat. Rev. Immunol. 12, 479–491 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Oldenburg, M. et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337, 1111–1115 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Rigby, R. E. et al. RNA:DNA hybrids are a novel molecular pattern sensed by TLR9. EMBO J. 33, 542–558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 45 5, 674–678 (2008).

    Article  CAS  Google Scholar 

  19. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Weerd, N. A., Samarajiwa, S. A. & Hertzog, P. J. Type I interferon receptors: biochemistry and biological functions. J. Biol. Chem. 282, 20053–20057 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. van Boxel-Dezaire, A. H., Rani, M. R. & Stark, G. R. Complex modulation of cell type-specific signaling in response to type I interferons. Immunity 25, 361–372 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Schoggins, J. W. & Rice, C. M. Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 1, 519–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma, F. et al. Positive feedback regulation of type I interferon by the interferon-stimulated gene STING. EMBO Rep. 16, 202–212 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, M.-J., Hwang, S.-Y., Imaizumi, T. & Yoo, J.-Y. Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J. Virol. 82, 1474–1483 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Staeheli, P., Pitossi, F. & Pavlovic, J. Mx proteins: GTPases with antiviral activity. Trends Cell Biol. 3, 268–272 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Zurcher, T., Pavlovic, J. & Staeheli, P. Mechanism of human MxA protein action: variants with changed antiviral properties. EMBO J. 11, 1657–1661 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haller, O. & Kochs, G. Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J. Interferon Cytokine Res. 31, 79–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Kochs, G., Janzen, C., Hohenberg, H. & Haller, O. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc. Natl Acad. Sci. USA 99, 3153–3158 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kochs, G., Haener, M., Aebi, U. & Haller, O. Self-assembly of human MxA GTPase into highly ordered dynamin-like oligomers. J. Biol. Chem. 277, 14172–14176 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Reichelt, M., Stertz, S., Krijnse-Locker, J., Haller, O. & Kochs, G. Missorting of LaCrosse virus nucleocapsid protein by the interferon-induced MxA GTPase involves smooth ER membranes. Traffic 5, 772–784 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Samarajiwa, S. A., Forster, S., Auchettl, K. & Hertzog, P. J. INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res. 37, D852–D857 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Lafaille, F. G. et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491, 769–773 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Muller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Detje, C. N. et al. Local type I IFN receptor signaling protects against virus spread within the central nervous system. J. Immunol. 18 2, 2297–2304 (2009).

    Article  CAS  Google Scholar 

  36. Detje, C. N. et al. Upon intranasal vesicular stomatitis virus infection, astrocytes in the olfactory bulb are important interferon Beta producers that protect from lethal encephalitis. J. Virol. 89, 2731–2738 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Campbell, I. L. et al. Structural and functional neuropathology in transgenic mice with CNS expression of IFN-α. Brain Res. 835, 46–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Akwa, Y. et al. Transgenic expression of IFN-α in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J. Immunol. 161, 5016–5026 (1998).

    CAS  PubMed  Google Scholar 

  39. Granerod, J. et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect. Dis. 10, 835–844 (2010).

    Article  PubMed  Google Scholar 

  40. Smith, M. G., Lennette, E. H. & Reames, H. R. Isolation of the virus of herpes simplex and the demonstration of intranuclear inclusions in a case of acute encephalitis. Am. J. Pathol. 17, 55–681 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Whitley, R. J. Herpes simplex virus in children. Curr. Treat. Options Neurol. 4, 231–237 (2002).

    Article  PubMed  Google Scholar 

  42. Najioullah, F. et al. Diagnosis and surveillance of herpes simplex virus infection of the central nervous system. J. Med. Virol. 61, 468–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Nahmias, A. J., Lee, F. K. & Beckman-Nahmias, S. Sero-epidemiological and -sociological patterns of herpes simplex virus infection in the world. Scand. J. Infect. Dis. Suppl. 69, 19–36 (1990).

    CAS  PubMed  Google Scholar 

  44. Lerner, A. M., Levine, D. P. & Reyes, M. P. Two cases of herpes simplex virus encephalitis in the same family. N. Engl. J. Med. 308, 1481 (1983).

    CAS  PubMed  Google Scholar 

  45. Jackson, A. C., Melanson, M. & Rossiter, J. P. Familial herpes simplex encephalitis. Ann. Neurol. 51, 406–407 (2002).

    Article  PubMed  Google Scholar 

  46. Koskiniemi, M. et al. Familial herpes encephalitis. Lancet 346, 1553 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Abel, L. et al. Age-dependent Mendelian predisposition to herpes simplex virus type 1 encephalitis in childhood. J. Pediatr. 157, 623–629, 629.e1 (2010).

    Article  PubMed  Google Scholar 

  48. Dupuis, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33, 388–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Kong, X. F. et al. A novel form of human STAT1 deficiency impairing early but not late responses to interferons. Blood 116, 5895–5906 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Casrouge, A. et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Kim, Y. M., Brinkmann, M. M., Paquet, M. E. & Ploegh, H. L. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452, 234–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 31 7, 1522–1527 (2007).

    Article  CAS  Google Scholar 

  53. Guo, Y. et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J. Exp. Med. 208, 2083–2098 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aksentijevich, I. et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 360, 2426–2437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aicardi, J. & Goutières, F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann. Neurol. 15, 49–54 (1984).

    Article  CAS  PubMed  Google Scholar 

  56. Lebon, P. et al. Intrathecal synthesis of interferon-alpha in infants with progressive familial encephalopathy. J. Neurol. Sci. 84, 201–208 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Rice, G. I. et al. Assessment of interferon-related biomarkers in Aicardi–Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case–control study. Lancet Neurol. 12, 1159–1169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Crow, Y. J. et al. Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 cause Aicardi–Goutières syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Crow, Y. J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi–Goutières syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Rice, G. I. et al. Mutations involved in Aicardi–Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41, 829–832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Alarcon-Riquelme, M. E. Nucleic acid by-products and chronic inflammation. Nat. Genet. 38, 866–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Rigby, R. E., Leitch, A. & Jackson, A. P. Nucleic acid-mediated inflammatory diseases. Bioessays 30, 833–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Yang, Y. G., Lindahl, T. & Barnes, D. E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 13 1, 873–886 (2007).

    Article  CAS  Google Scholar 

  65. Rice, G. I. et al. Mutations in ADAR1 cause Aicardi–Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Livingston, J. H. et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J. Med. Genet. 51, 76–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Mannion, N. M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 9, 1482–1494 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rice, G. I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46, 503–509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rice, G. et al. Clinical and molecular phenotype of Aicardi–Goutières syndrome. Am. J. Hum. Genet. 81, 713–725 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ramesh, V. et al. Intracerebral large artery disease in Aicardi–Goutières syndrome implicates SAMHD1 in vascular homeostasis. Dev. Med. Child Neurol. 5 2, 725–732 (2010).

    Article  Google Scholar 

  71. Crow, Y. J. et al. Cree encephalitis is allelic with Aicardi–Goutières syndrome: implications for the pathogenesis of disorders of interferon alpha metabolism. J. Med. Genet. 4 0, 183–187 (2003).

    Article  Google Scholar 

  72. Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Livingston, J. H., Stivaros, S., van der Knaap, M. S. & Crow, Y. J. Recognizable phenotypes associated with intracranial calcification. Dev. Med. Child Neurol. 55, 46–57 (2013).

    Article  PubMed  Google Scholar 

  74. Goldmann, T. et al. USP18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J. 34, 1612–1629 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rice, G. et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi–Goutières syndrome. Am. J. Hum. Genet. 80, 811–815 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Navarro, V. et al. Two further cases of spondyloenchondrodysplasia (SPENCD) with immune dysregulation. Am. J. Med. Genet. A 146A, 2810–2815 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Briggs, T. A. et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat. Genet. 43, 127–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 37 1, 507–518 (2014).

    Article  CAS  Google Scholar 

  79. Lisnevskaia, L., Murphy, G. & Isenberg, D. Systemic lupus erythematosus. Lancet 384, 1878–1888 (2014).

    Article  PubMed  Google Scholar 

  80. Botto, M. et al. Complement in human diseases: Lessons from complement deficiencies. Mol. Immunol. 46, 2774–2783 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Banchereau, J. & Pascual, V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN) et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

  85. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dale, R. C., Tang, S. P., Heckmatt, J. Z. & Tatnall, F. M. Familial systemic lupus erythematosus and congenital infection-like syndrome. Neuropediatrics 31, 155–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. De Laet, C. et al. Phenotypic overlap between infantile systemic lupus erythematosus and Aicardi–Goutières syndrome. Neuropediatrics 36, 399–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Lee-Kirsch, M. A. et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J. Mol. Med. (Berl.) 85, 531–537 (2007).

    Article  CAS  Google Scholar 

  89. Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Namjou, B. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 12, 270–279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. de Vries, B. et al. TREX1 gene variant in neuropsychiatric systemic lupus erythematosus. Ann. Rheum. Dis. 69, 1886–1887 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Günther, C. et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Invest. 125, 413–424 (2015).

    Article  PubMed  Google Scholar 

  93. Reijns, M. A. et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149, 1008–1022 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tan, F. K. et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford) 45, 694–702 (2006).

    Article  CAS  Google Scholar 

  95. Barth, P. G., Walter, A. & van Gelderen, I. Aicardi–Goutières syndrome: a genetic microangiopathy? Acta Neuropathol. 98, 212–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Rasmussen, M., Skullerud, K., Bakke, S. J., Lebon, P. & Jahnsen, F. L. Cerebral thrombotic microangiopathy and antiphospholipid antibodies in Aicardi–Goutières syndrome—report of two sisters. Neuropediatrics 36, 40–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Hanly, J. G., Walsh, N. M. & Sangalang, V. Brain pathology in systemic lupus erythematosus. J. Rheumatol. 19, 732–741 (1992).

    CAS  PubMed  Google Scholar 

  98. Richards, A. et al. C-terminal truncations in human 3′–5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat. Genet. 3 9, 1068–1070 (2007).

    Article  CAS  Google Scholar 

  99. Kolar, G. R. et al. Neuropathology and genetics of cerebroretinal vasculopathies. Brain Pathol. 24, 510–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mateen, F. J. et al. Evolution of a tumor-like lesion in cerebroretinal vasculopathy and TREX1 mutation. Neurology 75, 1211–1213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schuh, E. et al. Multiple sclerosis-like lesions and type I interferon signature in a patient with RVCL. Neurol. Neuroimmunol. Neuroinflamm. 2, e55 (2015).

    Article  PubMed  Google Scholar 

  102. Pelzer, N. et al. Heterozygous TREX1 mutations in early-onset cerebrovascular disease. J. Neurol. 260, 2188–2190 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Magee, C. C. Renal thrombotic microangiopathy induced by interferon-alpha. Nephrol. Dial. Transplant. 16, 2111–2112 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Larochelle, C. et al. Thrombotic thrombocytopenic purpura–hemolytic uremic syndrome in relapsing-remitting multiple sclerosis patients on high-dose interferon β. Mult. Scler. 2 0, 1783–1787 (2014).

    Article  CAS  Google Scholar 

  105. Hunt, D. et al. Thrombotic microangiopathy associated with interferon beta. N. Engl. J. Med. 370, 1270–1271 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Magro, C. M. et al. Degos disease: a C5b-9/interferon-α-mediated endotheliopathy syndrome. Am. J. Clin. Pathol. 135, 599–610 (2011).

    Article  PubMed  Google Scholar 

  107. Crow, Y. J. & Manel, N. Aicardi–Goutières syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Cuadrado, E. et al. Phenotypic variation in Aicardi–Goutières syndrome explained by cell-specific IFN-stimulated gene response and cytokine release. J. Immunol. 194, 3623–3633 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. van Heteren, J. T. et al. Astrocytes produce interferon-alpha and CXCL10, but not IL-6 or CXCL8, in Aicardi–Goutières syndrome. Glia 56, 568–578 (2008).

    Article  PubMed  Google Scholar 

  110. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Morita, M. et al. Gene-targeted mice lacking the Trex1 (DNase III) 3′→5′ DNA exonuclease develop inflammatory myocarditis. Mol. Cell. Biol. 24, 6719–6727 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Beck-Engeser, G. B., Eilat, D. & Wabl, M. An autoimmune disease prevented by anti-retroviral drugs. Retrovirology 8, 91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Volkman, H. E. & Stetson, D. B. The enemy within: endogenous retroelements and autoimmune disease. Nat. Immunol. 15, 415–422 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Petri, M. et al. Sifalimumab, a human anti-interferon-α monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 65, 1011–1021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Merrill, J. T. et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon α monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann. Rheum. Dis. 70, 1905–1913 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Crow, Y. J. et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A 167A, 296–312 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Polman, C. H. et al. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol. 9, 740–750 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Klippel, J. H., Carette, S., Preble, O. T., Friedman, R. M. & Grimley, P. M. Serum alpha interferon and lymphocyte inclusions in systemic lupus erythematosus. Ann. Rheum. Dis. 44, 104–108 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to David Hunt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGlasson, S., Jury, A., Jackson, A. et al. Type I interferon dysregulation and neurological disease. Nat Rev Neurol 11, 515–523 (2015). https://doi.org/10.1038/nrneurol.2015.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing