Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain

Key Points

  • Chemotherapy-induced peripheral neuropathic pain (CIPNP) affects up to 80% of patients during chemotherapy; it is a severe adverse effect that can limit dose and choice of chemotherapy

  • Many substances already approved for treating neuropathic pain failed to ameliorate CIPNP in clinical trials, underlining the importance of assessing drug efficacy in CIPNP independently of other neuropathic pain states

  • CIPNP has distinctive mechanisms that depend on the causative cytostatic drug; this heterogeneity could explain why results from trials addressing classic neuropathic pain states do not translate to CIPNP

  • Clinical trial designers in academia and industry are encouraged to implement sensory profiling in patient stratification to tailor the analgesic treatment according to the individual underlying mechanisms of CIPNP

  • Mechanisms involved in CIPNP include disruption of axonal transport, altered ion channel and receptor activity, neuronal injury and inflammation, oxidative stress, and mitochondrial damage

  • Suggestions for mechanism-based therapy of CIPNP include duloxetine for oxaliplatin-induced CIPNP, and combination of neuroprotective and anti-inflammatory substances for CIPNP caused by paclitaxel or vincristine

Abstract

Chemotherapy-induced peripheral neuropathic pain (CIPNP)—a severe adverse effect observed in up to 80% of patients during treatment with antineoplastic drugs—limits the tolerable dose of cytostatics, and can lead to discontinuation of chemotherapy. Many drugs that are approved for the treatment of other neuropathic pain states have shown little or no analgesic effect on CIPNP in large randomized, placebo-controlled clinical trials. Here, we review the known mechanisms of CIPNP induced by the three most commonly used cytostatics: paclitaxel, oxaliplatin and vincristine. These substances have distinct neurotoxic and neuroinflammatory properties, but they also have overlapping contributions to pathogenesis of CIPNP that could potentially be targeted for prevention or treatment of CIPNP. We discuss the failure of previously tested antioxidants, neuroprotective agents, anticonvulsants and antidepressants as therapeutic or preventative strategies, and suggest individualized, mechanism-based therapeutic options for CIPNP associated with each of the three main drug groups. We point out the necessity to assess drug efficacy in CIPNP independently of other neuropathic pain states, and emphasize the need for delineation of subpopulations of patients with CIPNP for more-efficient treatment. Finally, we discuss novel therapeutic strategies and recent progress in treatment of CIPNP, and evaluate the potential benefits of these recent proceedings for future therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of chemotherapy-induced peripheral neuropathic pain.
Figure 2: Distinct and overlapping mechanisms in CIPNP.

Similar content being viewed by others

References

  1. Pachman, D. R., Barton, D. L., Watson, J. C. & Loprinzi, C. L. Chemotherapy-induced peripheral neuropathy: prevention and treatment. Clin. Pharmacol. Ther. 90, 377–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Loprinzi, C. L. et al. The paclitaxel acute pain syndrome: sensitization of nociceptors as the putative mechanism. Cancer J. 13, 399–403 (2007).

    Article  PubMed  Google Scholar 

  3. Grisold, W., Cavaletti, G. & Windebank, A. J. Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro Oncol. 14 (Suppl. 4), iv45–iv54 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Manji, H. Toxic neuropathy. Curr. Opin. Neurol. 24, 484–490 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Argyriou, A. A., Bruna, J., Marmiroli, P. & Cavaletti, G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit. Rev. Oncol. Hematol. 82, 51–77 (2012).

    Article  PubMed  Google Scholar 

  6. Park, S. B. et al. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J. Clin. 63, 419–437 (2013).

    Article  PubMed  Google Scholar 

  7. Park, S. B. et al. Mechanisms underlying chemotherapy-induced neurotoxicity and the potential for neuroprotective strategies. Curr. Med. Chem. 15, 3081–3094 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Materazzi, S. et al. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch. 463, 561–569 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Nassini, R. et al. Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 152, 1621–1631 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Nieto, F. R. et al. Tetrodotoxin inhibits the development and expression of neuropathic pain induced by paclitaxel in mice. Pain 137, 520–531 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Xiao, W., Boroujerdi, A., Bennett, G. J. & Luo, Z. D. Chemotherapy-evoked painful peripheral neuropathy: analgesic effects of gabapentin and effects on expression of the alpha-2-delta type-1 calcium channel subunit. Neuroscience 144, 714–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Musatov, A. & Robinson, N. C. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic. Res. 46, 1313–1326 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Peters, C. M., Jimenez-Andrade, J. M., Kuskowski, M. A., Ghilardi, J. R. & Mantyh, P. W. An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res. 1168, 46–59 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ji, X. T. et al. Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model. PLoS ONE 8, e60733 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ji, R. R., Berta, T. & Nedergaard, M. Glia and pain: is chronic pain a gliopathy? Pain 154 (Suppl. 1), S10–S28 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hershman, D. L. et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 32, 1941–1967 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Rao, R. D. et al. Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled, crossover trial (N00C3). Cancer 110, 2110–2118 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kautio, A. L. et al. Amitriptyline in the prevention of chemotherapy-induced neuropathic symptoms. Anticancer Res. 29, 2601–2606 (2009).

    CAS  PubMed  Google Scholar 

  19. Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. & McPhail, A. T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. Shoudai, K., Peters, J. H., McDougall, S. J., Fawley, J. A. & Andresen, M. C. Thermally active TRPV1 tonically drives central spontaneous glutamate release. J. Neurosci. 30, 14470–14475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loprinzi, C. L. et al. Natural history of paclitaxel-associated acute pain syndrome: prospective cohort study NCCTG N08C1. J. Clin. Oncol. 29, 1472–1478 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer 10, 194–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Amos, L. A. & Lowe, J. How Taxol® stabilises microtubule structure. Chem. Biol. 6, R65–R69 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Shemesh, O. A. & Spira, M. E. Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy. Acta Neuropathol. 119, 235–248 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. LaPointe, N. E. et al. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: implications for chemotherapy-induced peripheral neuropathy. Neurotoxicology 37, 231–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siau, C., Xiao, W. & Bennett, G. J. Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp. Neurol. 201, 507–514 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, C. C. et al. Prevention of paclitaxel-induced allodynia by minocycline: effect on loss of peripheral nerve fibers and infiltration of macrophages in rats. Mol. Pain 6, 76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin, H. W., Flatters, S. J., Xiao, W. H., Mulhern, H. L. & Bennett, G. J. Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-L-carnitine: effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells. Exp. Neurol. 210, 229–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Flatters, S. J. & Bennett, G. J. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122, 245–257 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng, H., Xiao, W. H. & Bennett, G. J. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp. Neurol. 232, 154–161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pascual, D., Goicoechea, C., Burgos, E. & Martin, M. I. Antinociceptive effect of three common analgesic drugs on peripheral neuropathy induced by paclitaxel in rats. Pharmacol. Biochem. Behav. 95, 331–337 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Flatters, S. J. & Bennett, G. J. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 109, 150–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Hara, T. et al. Effect of paclitaxel on transient receptor potential vanilloid 1 in rat dorsal root ganglion. Pain 154, 882–889 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Alessandri-Haber, N. et al. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J. Neurosci. 24, 4444–4452 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiao, W. H. & Bennett, G. J. Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 153, 704–709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doyle, T. et al. Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J. Neurosci. 32, 6149–6160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Costa, R. et al. Anti-nociceptive effect of kinin B1 and B2 receptor antagonists on peripheral neuropathy induced by paclitaxel in mice. Br. J. Pharmacol. 164, 681–693 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Janes, K. et al. The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. J. Biol. Chem. 289, 21082–21097 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, H., Yoon, S. Y., Zhang, H. & Dougherty, P. M. Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of paclitaxel-induced painful neuropathy. J. Pain 13, 293–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peters, C. M. et al. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp. Neurol. 203, 42–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Nishida, K. et al. Up-regulation of matrix metalloproteinase-3 in the dorsal root ganglion of rats with paclitaxel-induced neuropathy. Cancer Sci. 99, 1618–1625 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Leveque, D. & Jehl, F. Molecular pharmacokinetics of catharanthus (vinca) alkaloids. J. Clin. Pharmacol. 47, 579–588 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Broyl, A. et al. Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol. 11, 1057–1065 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Thibault, K. et al. Structural and molecular alterations of primary afferent fibres in the spinal dorsal horn in vincristine-induced neuropathy in rat. J. Mol. Neurosci. 51, 880–892 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Thibault, K. et al. Serotonin 5-HT2A receptor involvement and Fos expression at the spinal level in vincristine-induced neuropathy in the rat. Pain 140, 305–322 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Hansen, N. et al. Serotonin transporter deficiency protects mice from mechanical allodynia and heat hyperalgesia in vincristine neuropathy. Neurosci. Lett. 495, 93–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Kamei, J., Tamura, N. & Saitoh, A. Possible involvement of the spinal nitric oxide/cGMP pathway in vincristine-induced painful neuropathy in mice. Pain 117, 112–120 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Bujalska, M. & Gumulka, S. W. Effect of cyclooxygenase and nitric oxide synthase inhibitors on vincristine induced hyperalgesia in rats. Pharmacol. Rep. 60, 735–741 (2008).

    CAS  PubMed  Google Scholar 

  49. Old, E. A. et al. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J. Clin. Invest. 124, 2023–2036 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Raymond, E., Faivre, S., Woynarowski, J. M. & Chaney, S. G. Oxaliplatin: mechanism of action and antineoplastic activity. Semin. Oncol. 25, 4–12 (1998).

    CAS  PubMed  Google Scholar 

  51. Gamelin, L. et al. Predictive factors of oxaliplatin neurotoxicity: the involvement of the oxalate outcome pathway. Clin. Cancer Res 13, 6359–6368 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Sakurai, M. et al. Oxaliplatin-induced neuropathy in the rat: involvement of oxalate in cold hyperalgesia but not mechanical allodynia. Pain 147, 165–174 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Trevisan, G. et al. Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res. 73, 3120–3131 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Descoeur, J. et al. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol. Med. 3, 266–278 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anand, U., Otto, W. R. & Anand, P. Sensitization of capsaicin and icilin responses in oxaliplatin treated adult rat DRG neurons. Mol. Pain 6, 82 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sittl, R. et al. Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype NaV1.6-resurgent and persistent current. Proc. Natl Acad. Sci. USA 109, 6704–6709 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Deuis, J. R. et al. An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for NaV1.6 in peripheral pain pathways. Pain 154, 1749–1757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Scuteri, A. et al. NGF protects dorsal root ganglion neurons from oxaliplatin by modulating JNK/Sapk and ERK1/2. Neurosci. Lett. 486, 141–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, D. & Lippard, S. J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Di Cesare Mannelli, L. et al. Morphologic features and glial activation in rat oxaliplatin-dependent neuropathic pain. J. Pain 14, 1585–1600 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Joseph, E. K., Chen, X., Bogen, O. & Levine, J. D. Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J. Pain 9, 463–472 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Jong, N. N., Nakanishi, T., Liu, J. J., Tamai, I. & McKeage, M. J. Oxaliplatin transport mediated by organic cation/carnitine transporters OCTN1 and OCTN2 in overexpressing human embryonic kidney 293 cells and rat dorsal root ganglion neurons. J. Pharmacol. Exp. Ther. 338, 537–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Sprowl, J. A. et al. Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2. Proc. Natl Acad. Sci. USA 110, 11199–11204 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Massicot, F. et al. P2X7 cell death receptor activation and mitochondrial impairment in oxaliplatin-induced apoptosis and neuronal injury: cellular mechanisms and approach. PLoS ONE 8, e66830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mihara, Y. et al. Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats. Mol. Pain 7, 8 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Warwick, R. A. & Hanani, M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur. J. Pain 17, 571–580 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Yoon, S. Y., Robinson, C. R., Zhang, H. & Dougherty, P. M. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. J. Pain 14, 205–214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Robinson, C. R., Zhang, H. & Dougherty, P. M. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience 274, 308–317 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Bast, A. & Haenen, G. R. Ten misconceptions about antioxidants. Trends Pharmacol. Sci. 34, 430–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, H. K., Zhang, Y. P., Gwak, Y. S. & Abdi, S. Phenyl N-tert-butylnitrone, a free radical scavenger, reduces mechanical allodynia in chemotherapy-induced neuropathic pain in rats. Anesthesiology 112, 432–439 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Argyriou, A. A. et al. Preventing paclitaxel-induced peripheral neuropathy: a phase II trial of vitamin E supplementation. J. Pain Symptom Manage. 32, 237–244 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Argyriou, A. A. et al. Vitamin E for prophylaxis against chemotherapy-induced neuropathy: a randomized controlled trial. Neurology 64, 26–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Pace, A. et al. Vitamin E neuroprotection for cisplatin neuropathy: a randomized, placebo-controlled trial. Neurology 74, 762–766 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Kottschade, L. A. et al. The use of vitamin E for the prevention of chemotherapy-induced peripheral neuropathy: results of a randomized phase III clinical trial. Support. Care Cancer 19, 1769–1777 (2011).

    Article  PubMed  Google Scholar 

  75. Halpner, A. D., Handelman, G. J., Harris, J. M., Belmont, C. A. & Blumberg, J. B. Protection by vitamin C of loss of vitamin E in cultured rat hepatocytes. Arch. Biochem. Biophys. 359, 305–309 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Lu, R., Kallenborn-Gerhardt, W., Geisslinger, G. & Schmidtko, A. Additive antinociceptive effects of a combination of vitamin C and vitamin E after peripheral nerve injury. PLoS ONE 6, e29240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Milla, P. et al. Administration of reduced glutathione in FOLFOX4 adjuvant treatment for colorectal cancer: effect on oxaliplatin pharmacokinetics, Pt-DNA adduct formation, and neurotoxicity. Anticancer Drugs 20, 396–402 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Planting, A. S. et al. Randomized study of a short course of weekly cisplatin with or without amifostine in advanced head and neck cancer. EORTC Head and Neck Cooperative Group. Ann. Oncol. 10, 693–700 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Albers, J. W., Chaudhry, V., Cavaletti, G. & Donehower, R. C. Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD005228. http://dx.doi.org/10.1002/14651858.CD005228.pub3.

  80. Leal, A. D. et al. North Central Cancer Treatment Group/Alliance trial N08CA-the use of glutathione for prevention of paclitaxel/carboplatin-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled study. Cancer 120, 1890–1897 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Hershman, D. L. et al. Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer therapy. J. Clin. Oncol. 31, 2627–2633 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guo, Y. et al. Oral alpha-lipoic acid to prevent chemotherapy-induced peripheral neuropathy: a randomized, double-blind, placebo-controlled trial. Support. Care Cancer 22, 1223–1231 (2014).

    Article  PubMed  Google Scholar 

  83. Goraca, A. et al. Lipoic acid—biological activity and therapeutic potential. Pharmacol. Rep. 63, 849–858 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Arrieta, O. et al. Retinoic acid reduces chemotherapy-induced neuropathy in an animal model and patients with lung cancer. Neurology 77, 987–995 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yin, S. et al. Retinoids activate the irritant receptor TRPV1 and produce sensory hypersensitivity. J. Clin. Invest. 123, 3941–3951 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Coriat, R. et al. Treatment of oxaliplatin-induced peripheral neuropathy by intravenous mangafodipir. J. Clin. Invest. 124, 262–272 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Schmitz, G. & Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 47, 147–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Ji, R. R., Xu, Z. Z., Strichartz, G. & Serhan, C. N. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 34, 599–609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Serhan, C. N., Chiang, N. & Van Dyke, T. E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8, 349–361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ghoreishi, Z. et al. Omega-3 fatty acids are protective against paclitaxel-induced peripheral neuropathy: a randomized double-blind placebo controlled trial. BMC Cancer 12, 355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Amara, S. Oral glutamine for the prevention of chemotherapy-induced peripheral neuropathy. Ann. Pharmacother. 42, 1481–1485 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Grolleau, F. et al. A possible explanation for a neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltage-gated sodium channels. J. Neurophysiol. 85, 2293–2297 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Gamelin, L. et al. Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-fluorouracil and leucovorin for advanced colorectal cancer. Clin. Cancer Res. 10, 4055–4061 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Ishibashi, K., Okada, N., Miyazaki, T., Sano, M. & Ishida, H. Effect of calcium and magnesium on neurotoxicity and blood platinum concentrations in patients receiving mFOLFOX6 therapy: a prospective randomized study. Int. J. Clin. Onc. 15, 82–87 (2010).

    Article  CAS  Google Scholar 

  95. Loprinzi, C. L. et al. Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J. Clin. Oncol. 32, 997–1005 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Plane, J. M., Shen, Y., Pleasure, D. E. & Deng, W. Prospects for minocycline neuroprotection. Arch. Neurol. 67, 1442–1448 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sayin, V. I. et al. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med. 6, 221ra15 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Watson, C. P., Moulin, D., Watt-Watson, J., Gordon, A. & Eisenhoffer, J. Controlled-release oxycodone relieves neuropathic pain: a randomized controlled trial in painful diabetic neuropathy. Pain 105, 71–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Sindrup, S. H. et al. Tramadol relieves pain and allodynia in polyneuropathy: a randomised, double-blind, controlled trial. Pain 83, 85–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. McNicol, E. D., Midbari, A. & Eisenberg, E. Opioids for neuropathic pain. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD006146. http://dx.doi.org/10.1002/14651858.CD006146.pub2.

  101. Smith, E. M. et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA 309, 1359–1367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Weiner, M., Sarantopoulos, C. & Gordon, E. Transdermal buprenorphine controls central neuropathic pain. J. Opioid Manag. 8, 414–415 (2012).

    Article  PubMed  Google Scholar 

  103. Camu, F., Shi, L. & Vanlersberghe, C. The role of COX-2 inhibitors in pain modulation. Drugs 63 (Suppl. 1), 1–7 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Hammack, J. E. et al. Phase III evaluation of nortriptyline for alleviation of symptoms of cis-platinum-induced peripheral neuropathy. Pain 98, 195–203 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Marchand, F. et al. Evidence for an antihyperalgesic effect of venlafaxine in vincristine-induced neuropathy in rat. Brain Res. 980, 117–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Durand, J. P. et al. Efficacy of venlafaxine for the prevention and relief of oxaliplatin-induced acute neurotoxicity: results of EFFOX, a randomized, double-blind, placebo-controlled phase III trial. Ann. Oncol. 23, 200–205 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Rao, R. D. et al. Efficacy of lamotrigine in the management of chemotherapy-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled trial, N01C3. Cancer 112, 2802–2808 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Wilson, R. H. et al. Acute oxaliplatin-induced peripheral nerve hyperexcitability. J. Clin. Oncol. 20, 1767–1774 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Saif, M. W., Syrigos, K., Kaley, K. & Isufi, I. Role of pregabalin in treatment of oxaliplatin-induced sensory neuropathy. Anticancer Res. 30, 2927–2933 (2010).

    CAS  PubMed  Google Scholar 

  110. Argyriou, A. A. et al. Efficacy of oxcarbazepine for prophylaxis against cumulative oxaliplatin-induced neuropathy. Neurology 67, 2253–2255 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Attal, N. et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur. J. Neurol. 17, 1113–e88 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Mou, J. et al. Efficacy of Qutenza® (capsaicin) 8% patch for neuropathic pain: a meta-analysis of the Qutenza Clinical Trials Database. Pain 154, 1632–1639 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Maihofner, C. G. & Heskamp, M. L. Treatment of peripheral neuropathic pain by topical capsaicin: Impact of pre-existing pain in the QUEPP-study. Eur. J. Pain 18, 671–679 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Barton, D. L. et al. A double-blind, placebo-controlled trial of a topical treatment for chemotherapy-induced peripheral neuropathy: NCCTG trial N06CA. Support. Care Cancer 19, 833–841 (2011).

    Article  PubMed  Google Scholar 

  115. Gewandter, J. S. et al. A phase III randomized, placebo-controlled study of topical amitriptyline and ketamine for chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP study of 462 cancer survivors. Support. Care Cancer 22, 1807–1814 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kalliomaki, J. et al. A randomized, double-blind, placebo-controlled trial of a chemokine receptor 2 (CCR2) antagonist in posttraumatic neuralgia. Pain 154, 761–767 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Anand, P. et al. Clinical trial of the p38 MAP kinase inhibitor dilmapimod in neuropathic pain following nerve injury. Eur. J. Pain 15, 1040–1048 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Santos, E., Shaunak, S., Renowden, S. & Scolding, N. J. Treatment of refractory neurosarcoidosis with infliximab. J. Neurol. Neurosurg. Psychiatry 81, 241–246 (2010).

    Article  PubMed  Google Scholar 

  119. Dinarello, C. A., Simon, A. & van der Meer, J. W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11, 633–652 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Alten, R. & Maleitzke, T. Tocilizumab: a novel humanized anti-interleukin 6 (IL-6) receptor antibody for the treatment of patients with non-RA systemic, inflammatory rheumatic diseases. Ann. Med. 45, 357–363 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Rasmussen, L. & Arvin, A. Chemotherapy-induced immunosuppression. Environ. Health Perspect. 43, 21–25 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Delforge, M. et al. Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues. Lancet Oncol. 11, 1086–1095 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Chaudhry, V., Cornblath, D. R., Polydefkis, M., Ferguson, A. & Borrello, I. Characteristics of bortezomib- and thalidomide-induced peripheral neuropathy. J. Peripher. Nerv. Syst. 13, 275–282 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chaudhry, V. et al. Thalidomide-induced neuropathy. Neurology 59, 1872–1875 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Laaksonen, S., Remes, K., Koskela, K., Voipio-Pulkki, L. M. & Falck, B. Thalidomide therapy and polyneuropathy in myeloma patients. Electromyogr. Clin. Neurophysiol. 45, 75–86 (2005).

    CAS  PubMed  Google Scholar 

  126. Argyriou, A. A., Iconomou, G. & Kalofonos, H. P. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 112, 1593–1599 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Mo, M., Erdelyi, I., Szigeti-Buck, K., Benbow, J. H. & Ehrlich, B. E. Prevention of paclitaxel-induced peripheral neuropathy by lithium pretreatment. FASEB J. 26, 4696–4709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ledeboer, A., Hutchinson, M. R., Watkins, L. R. & Johnson, K. W. Ibudilast (AV-411). A new class therapeutic candidate for neuropathic pain and opioid withdrawal syndromes. Expert Opin. Investig. Drugs 16, 935–950 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Cata, J. P., Weng, H. R. & Dougherty, P. M. The effects of thalidomide and minocycline on taxol-induced hyperalgesia in rats. Brain Res. 1229, 100–110 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tesfaye, S. et al. Duloxetine and pregabalin: high-dose monotherapy or their combination? The “COMBO-DN study”—a multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain 154, 2616–2625 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Xu, Z. Z. et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med. 16, 592–597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tsujino, H. et al. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol. Cellular Neurosci. 15, 170–182 (2000).

    Article  CAS  Google Scholar 

  133. Serhan, C. N. et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 26, 1755–1765 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Okubo, K. et al. Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats. Neuroscience 188, 148–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Schmidtko, A., Lotsch, J., Freynhagen, R. & Geisslinger, G. Ziconotide for treatment of severe chronic pain. Lancet 375, 1569–1577 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Kolosov, A., Goodchild, C. S. & Cooke, I. CNSB004 (leconotide) causes antihyperalgesia without side effects when given intravenously: a comparison with ziconotide in a rat model of diabetic neuropathic pain. Pain Med. 11, 262–273 (2010).

    Article  PubMed  Google Scholar 

  137. Emery, E. C., Young, G. T., Berrocoso, E. M., Chen, L. & McNaughton, P. A. HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science 333, 1462–1466 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Hartrick, C. T. & Rodriguez Hernandez, J. R. Tapentadol for pain: a treatment evaluation. Expert Opin. Pharmacother. 13, 283–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Pascual, D., Goicoechea, C., Suardiaz, M. & Martin, M. I. A cannabinoid agonist, WIN 55,212-2, reduces neuropathic nociception induced by paclitaxel in rats. Pain 118, 23–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Deng, L. et al. The maintenance of cisplatin- and paclitaxel-induced mechanical and cold allodynia is suppressed by cannabinoid CB2 receptor activation and independent of CXCR4 signaling in models of chemotherapy-induced peripheral neuropathy. Mol. Pain 8, 71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Deng, L. et al. Chronic cannabinoid receptor 2 activation reverses paclitaxel neuropathy without tolerance or cannabinoid receptor 1-dependent withdrawal. Biol. Psychiatry http://dx.doi.org/10.1016/j.biopsych.2014.04.009.

  142. Guindon, J., Lai, Y., Takacs, S. M., Bradshaw, H. B. & Hohmann, A. G. Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy: effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment. Pharmacol. Res. 67, 94–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Lynch, M. E., Cesar-Rittenberg, P. & Hohmann, A. G. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J. Pain Symptom Manage. 47, 166–173 (2014).

    Article  PubMed  Google Scholar 

  144. Ward, S. J. et al. Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT1A receptors without diminishing nervous system function or chemotherapy efficacy. Br. J. Pharmacol. 171, 636–45 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Caprioli, A. et al. The novel reversible fatty acid amide hydrolase inhibitor ST4070 increases endocannabinoid brain levels and counteracts neuropathic pain in different animal models. J. Pharmacol. Exp. Ther. 342, 188–195 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Rehm, S. E. et al. A cross-sectional survey of 3035 patients with fibromyalgia: subgroups of patients with typical comorbidities and sensory symptom profiles. Rheumatology (Oxford) 49, 1146–1152 (2010).

    Article  Google Scholar 

  147. Baron, R., Tolle, T. R., Gockel, U., Brosz, M. & Freynhagen, R. A cross-sectional cohort survey in 2100 patients with painful diabetic neuropathy and postherpetic neuralgia: differences in demographic data and sensory symptoms. Pain 146, 34–40 (2009).

    Article  PubMed  Google Scholar 

  148. Baron, R., Forster, M. & Binder, A. Subgrouping of patients with neuropathic pain according to pain-related sensory abnormalities: a first step to a stratified treatment approach. Lancet Neurol. 11, 999–1005 (2012).

    Article  PubMed  Google Scholar 

  149. Ji, R. R., Xu, Z. Z. & Gao, Y. J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov. 13, 533–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tatsushima, Y. et al. Involvement of substance P in peripheral neuropathy induced by paclitaxel but not oxaliplatin. J. Pharmacol. Exp. Ther. 337, 226–235 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.S., K.S. and G.G. have received funding from the Deutsche Forschungsgemeinschaft (German Research Association; grants SCHO817 and SFB1039 TP A08, A09 and Z01). R.B. and G.G. are part of the Europain Collaboration, which has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115007, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007–2013) and the kind contribution of companies involved in the European Federation of Pharmaceutical Industries and Associations. G.G. has also received funding from the LOEWE-Programme of the State of Hessia (Anwedungsorientierte Arzneimittelforschung).

Author information

Authors and Affiliations

Authors

Contributions

M.S. searched the published work, discussed the content, wrote, edited and revised the article, designed all figures and assembled all tables, R.B. searched the literature, discussed the content, and wrote, edited and revised the article. K.S. and G.G. discussed the content, and wrote, edited and revised the article, figures and tables. All authors read and approved the final draft.

Corresponding author

Correspondence to Gerd Geisslinger.

Ethics declarations

Competing interests

R.B. and G.G. are members of the IMI (Innovative Medicine Initiative of the EU) EuroPain collaboration, in which the following industry members are represented: Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Esteve, Gruenenthal, Pfizer, UCB Pharma and Sanofi Aventis. G.G. has received honoraria as a speaker from Gruenenthal, Mundipharma and Pfizer. He is a consultant for Abbvie. He has received research funding in the form of a grant from Mundipharma. R.B. has received honoraria as a speaker from Astellas, Bayer-Schering, Boehringer Ingelheim, Desitin, Eisai, Eli Lilly, Genzyme, Gruenenthal, Medtronic, Mundipharma, MSD, Pfizer, Sanofi Pasteur and Teva Pharma. He is also a consultant for Abbvie, Allergan, Astellas, AstraZeneca, Biogen Idec, Boehringer Ingelheim, Bristol-Myers Squibb, Eisai, Eli Lilly, Genzyme, Gruenenthal, Medtronic, Merck, Mundipharma, Novartis, Pfizer and Sanofi Pasteur. He has received research funding in the form of grants from Genzyme, Gruenenthal and Pfizer. M.S. and K.S. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisignano, M., Baron, R., Scholich, K. et al. Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain. Nat Rev Neurol 10, 694–707 (2014). https://doi.org/10.1038/nrneurol.2014.211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing