Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain connectivity in neurodegenerative diseases—from phenotype to proteinopathy

Key Points

  • Abnormal functional and structural connectivity are candidate biomarkers for Alzheimer disease (AD) and other neurodegenerative diseases

  • The topography of abnormal functional and structural connectivity maps onto the clinical phenotype, and its severity correlates with clinical disease severity in AD and frontotemporal dementia

  • Structural—but, as yet, not functional—connectivity signatures of neurodegenerative diseases with a primary motor phenotype (for example, amyotrophic lateral sclerosis, Parkinson disease and Huntington disease) have been consistently identified

  • Functional connectivity signatures are related to specific molecular pathology in preclinical AD, and could serve as early disease markers

Abstract

Functional and structural connectivity measures, as assessed by means of functional and diffusion MRI, are emerging as potential intermediate biomarkers for Alzheimer disease (AD) and other disorders. This Review aims to summarize current evidence that connectivity biomarkers are associated with upstream and downstream disease processes (molecular pathology and clinical symptoms, respectively) in the major neurodegenerative diseases. The vast majority of studies have addressed functional and structural connectivity correlates of clinical phenotypes, confirming the predictable correlation with topography and disease severity in AD and frontotemporal dementia. In neurodegenerative diseases with motor symptoms, structural—but, to date, not functional—connectivity has been consistently found to be associated with clinical phenotype and disease severity. In the latest studies, the focus has moved towards the investigation of connectivity correlates of molecular pathology. Studies in cognitively healthy individuals with brain amyloidosis or genetic risk factors for AD have shown functional connectivity abnormalities in preclinical disease stages that are reminiscent of abnormalities observed in symptomatic AD. This shift in approach is promising, and may aid identification of early disease markers, establish a paradigm for other neurodegenerative disorders, shed light on the molecular neurobiology of connectivity disruption and, ultimately, clarify the pathophysiology of neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Upstream determinants (genes and molecular pathology) and downstream effects (clinical phenotypes) for the main neurodegenerative disorders.
Figure 2: Spatial patterns of task-free networks commonly investigated in neurodegenerative disorders.
Figure 3: Brain connectivity signatures for major neurodegenerative disorders.
Figure 4: Correspondence between structural and functional connectivity findings in four neurodegenerative diseases.

Similar content being viewed by others

References

  1. Taylor, J. P., Hardy, J. & Fischbeck, K. H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Villemagne, V. L. et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol. 12, 357–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Frisoni, G. B., Fox, N. C., Jack, C. R. Jr, Scheltens, P. & Thompson, P. M. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6, 67–77 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Whitwell, J. L. & Josephs, K. A. Neuroimaging in frontotemporal lobar degeneration—predicting molecular pathology. Nat. Rev. Neurol. 8, 131–142 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moeller, J. R., Strother, S. C., Sidtism, J. J. & Rottenberg, D. A. Scaled subprofile model: a statistical approach to the analysis of functional patterns in positron emission tomographic data. J. Cereb. Blood Flow Metab. 7, 649–658 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Horwitz, B. Simulating functional interactions in the brain: a model for examining correlations between regonal cerebral metabolic rates. Int. J. Biomed. Comput. 26, 149–170 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Friston, K. J. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78 (1994).

    Article  Google Scholar 

  10. Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Greicius, M. D. et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62, 429–437 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Greicius, M. D., Srivastava, G., Reiss, A. L. & Menon, V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA 101, 4637–4642 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sorg, C. et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc. Natl Acad. Sci. USA 104, 18760–18765 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA. 103, 13848–13853 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, S. et al. Group independent component analysis reveals consistent resting-state networks across multiple sessions. Brain Res. 1239, 141–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goldman, R. I., Stern, J. M., Engel, J. Jr & Cohen, M. S. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13, 2487–2492 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biswal, B. B. et al. Toward discovery science of human brain function. Proc. Natl Acad. Sci. USA 107, 4734–4739 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukunaga, M. et al. Metabolic origin of BOLD signal fluctuations in the absence of stimuli. J. Cereb. Blood Flow Metab. 28, 1377–1387 (2008).

    Article  PubMed  Google Scholar 

  20. Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, H. et al. Rat brains also have a default mode network. Proc. Natl Acad. Sci. USA 109, 3979–3984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leech, R. & Sharp, D. J. The role of the posterior cingulate cortex in cognition and disease. Brain 137, 12–32 (2014).

    Article  PubMed  Google Scholar 

  23. Utevsky, A. V., Smith, D. V. & Huettel, S. A. Precuneus is a functional core of the default-mode network. J. Neurosci. 34, 932–940 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith, S. M. et al. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, D. et al. Intrinsic functional relations between human cerebral cortex and thalamus. J. Neurophysiol. 100, 1740–1748 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. Diffusion tensor imaging of the brain. Neurotherapeutics 4, 316–329 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Catani, M. & Thiebaut de Schotten, M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44, 1105–1132 (2008).

    Article  PubMed  Google Scholar 

  29. Petrella, J. R., Sheldon, F. C., Prince, S. E., Calhoun, V. D. & Doraiswamy, P. M. Default mode network connectivity in stable vs progressive mild cognitive impairment. Neurology 76, 511–517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agosta, F. et al. Resting state fMRI in Alzheimer's disease: beyond the default mode network. Neurobiol. Aging 33, 1564–1578 (2012).

    Article  PubMed  Google Scholar 

  31. Binnewijzend, M. A. et al. Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment. Neurobiol. Aging 33, 2018–2028 (2012).

    Article  PubMed  Google Scholar 

  32. Brier, M. R. et al. Loss of intranetwork and internetwork resting state functional connections with Alzheimer's disease progression. J. Neurosci. 32, 8890–8899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, H. Y. et al. Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology 256, 598–606 (2010).

    Article  PubMed  Google Scholar 

  34. Zamboni, G. et al. Resting functional connectivity reveals residual functional activity in Alzheimer's disease. Biol. Psychiatry 74, 375–383 (2013).

    Article  PubMed  Google Scholar 

  35. Zhou, J. et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain 133, 1352–1367 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Damoiseaux, J. S., Prater, K. E., Miller, B. L. & Greicius, M. D. Functional connectivity tracks clinical deterioration in Alzheimer's disease. Neurobiol. Aging 33, 828.e19–828.e30 (2012).

    Article  Google Scholar 

  37. Pievani, M. et al. Assessment of white matter tract damage in mild cognitive impairment and Alzheimer's disease. Hum. Brain Mapp. 31, 1862–1875 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huang, H. et al. Distinctive disruption patterns of white matter tracts in Alzheimer's disease with full diffusion tensor characterization. Neurobiol. Aging 33, 2029–2045 (2012).

    Article  PubMed  Google Scholar 

  39. Acosta-Cabronero, J., Alley, S., Williams, G. B., Pengas, G. & Nestor, P. J. Diffusion tensor metrics as biomarkers in Alzheimer's disease. PLoS ONE 7, e49072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Douaud, G. et al. Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer's disease. J. Neurosci. 33, 2147–2155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, Y. et al. White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI. Brain 132, 2579–2592 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Filippi, M. et al. Functional network connectivity in the behavioral variant of frontotemporal dementia. Cortex 49, 2389–2401 (2013).

    Article  PubMed  Google Scholar 

  43. Song, J. et al. Aberrant functional organization within and between resting-state networks in AD. PLoS ONE 8, e63727 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Farb, N. A. et al. Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation. Cortex 49, 1856–1873 (2013).

    Article  PubMed  Google Scholar 

  45. Borroni, B. et al. Evidence of white matter changes on diffusion tensor imaging in frontotemporal dementia. Arch. Neurol. 64, 246–251 (2007).

    Article  PubMed  Google Scholar 

  46. Hornberger, M., Geng, J. & Hodges, J. R. Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain 134, 2502–2512 (2011).

    Article  PubMed  Google Scholar 

  47. Mahoney, C. J. et al. Profiles of white matter tract pathology in frontotemporal dementia. Hum. Brain Mapp. 35, 4163–4179 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tovar-Moll, F. et al. White matter tract damage in the behavioral variant of frontotemporal and corticobasal dementia syndromes. PLoS ONE 9, e102656 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Whitwell, J. L. et al. Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. Neurology 77, 866–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gardner, R. C. et al. Intrinsic connectivity network disruption in progressive supranuclear palsy. Ann. Neurol. 73, 603–616 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Whitwell, J. L. et al. Disrupted thalamocortical connectivity in PSP: a resting-state fMRI, DTI, and VBM study. Parkinsonism Relat. Disord. 17, 599–605 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Boxer, A. L. et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch. Neurol. 63, 81–86 (2006).

    Article  PubMed  Google Scholar 

  53. Canu, E. et al. Diffusion tensor magnetic resonance imaging tractography in progressive supranuclear palsy. Mov. Disord. 26, 1752–1755 (2011).

    Article  PubMed  Google Scholar 

  54. Whitwell, J. L. et al. Clinical correlates of white matter tract degeneration in progressive supranuclear palsy. Arch. Neurol. 68, 753–760 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sajjadi, S. A. et al. Diffusion tensor magnetic resonance imaging for single subject diagnosis in neurodegenerative diseases. Brain 136, 2253–2261 (2013).

    Article  PubMed  Google Scholar 

  56. Mohammadi, B. et al. Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp. Neurol. 217, 147–153 (2009).

    Article  PubMed  Google Scholar 

  57. Tedeschi, G. et al. Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis. Neurobiol. Aging 33, 886–898 (2012).

    Article  PubMed  Google Scholar 

  58. Zhou, F. et al. Altered motor network functional connectivity in amyotrophic lateral sclerosis: a resting-state functional magnetic resonance imaging study. Neuroreport 24, 657–662 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Zhou, F. et al. Alterations in regional functional coherence within the sensory-motor network in amyotrophic lateral sclerosis. Neurosci. Lett. 558, 192–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Verstraete, E. et al. Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. PLoS ONE 5, e13664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Douaud, G., Filippini, N., Knight, S., Talbot, K. & Turner, M. R. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain 134, 3470–3479 (2011).

    Article  PubMed  Google Scholar 

  62. Verstraete, E., Veldink, J. H., Mandl, R. C., van den Berg, L. H. & van den Heuvel, M. P. Impaired structural motor connectome in amyotrophic lateral sclerosis. PLoS ONE 6, e24239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Agosta, F. et al. Assessment of white matter tract damage in patients with amyotrophic lateral sclerosis: a diffusion tensor MR imaging tractography study. AJNR Am. J. Neuroradiol. 31, 1457–1461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rose, S. et al. Direct evidence of intra- and interhemispheric corticomotor network degeneration in amyotrophic lateral sclerosis: an automated MRI structural connectivity study. Neuroimage 59, 2661–2669 (2012).

    Article  PubMed  Google Scholar 

  65. Bede, P. et al. Multiparametric MRI study of ALS stratified for the C9orf72 genotype. Neurology 81, 361–369 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Trojsi, F. et al. Motor and extramotor neurodegeneration in amyotrophic lateral sclerosis: a 3 T high angular resolution diffusion imaging (HARDI) study. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 553–561 (2013).

    Article  PubMed  Google Scholar 

  67. Thivard, L. et al. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability. J. Neurol. Neurosurg. Psychiatry 78, 889–892 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang, J. et al. Regional alterations in cortical thickness and white matter integrity in amyotrophic lateral sclerosis. J. Neurol. 261, 412–421 (2014).

    Article  PubMed  Google Scholar 

  69. Stanton, B. R. et al. Diffusion tensor imaging in sporadic and familial (D90A SOD1) forms of amyotrophic lateral sclerosis. Arch. Neurol. 66, 109–115 (2009).

    Article  PubMed  Google Scholar 

  70. Blain, C. R. et al. Differential corticospinal tract degeneration in homozygous 'D90A' SOD-1 ALS and sporadic ALS. J. Neurol. Neurosurg. Psychiatry 82, 843–849 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Crespi, C. et al. Microstructural white matter correlates of emotion recognition impairment in amyotrophic lateral sclerosis. Cortex 53, 1–8 (2014).

    Article  PubMed  Google Scholar 

  72. Sage, C. A., Peeters, R. R., Görner, A., Robberecht, W. & Sunaert, S. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 34, 486–499 (2007).

    Article  PubMed  Google Scholar 

  73. Keil, C. et al. Longitudinal diffusion tensor imaging in amyotrophic lateral sclerosis. BMC Neurosci. 13, 141 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Senda, J. et al. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study. Amyotroph. Lateral Scler. 12, 59–69 (2011).

    Article  PubMed  Google Scholar 

  75. Verstraete, E., Veldink, J. H., van den Berg, L. H. & van den Heuvel, M. P. Structural brain network imaging shows expanding disconnection of the motor system in amyotrophic lateral sclerosis. Hum. Brain Mapp. 35, 1351–1361 (2014).

    Article  PubMed  Google Scholar 

  76. Agosta, F. et al. Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis. Cereb. Cortex 21, 2291–2298 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Schmidt, R. et al. Correlation between structural and functional connectivity impairment in amyotrophic lateral sclerosis. Hum. Brain Mapp. 35, 4386–4395 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Agosta, F. et al. Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiol. Aging 34, 419–427 (2013).

    Article  PubMed  Google Scholar 

  79. Esposito, F. et al. Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinson's disease by levodopa. Brain 136, 710–725 (2013).

    Article  PubMed  Google Scholar 

  80. Luo, C. et al. Reduced functional connectivity in early-stage drug-naive Parkinson's disease: a resting-state fMRI study. Neurobiol. Aging 35, 431–441 (2014).

    Article  PubMed  Google Scholar 

  81. Kwak, Y. et al. Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson's disease. Front. Syst. Neurosci. 4, 143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu, R., Liu, B., Wang, L., Chen, J. & Liu, X. Enhanced functional connectivity between putamen and supplementary motor area in Parkinson's disease patients. PLoS ONE 8, e59717 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, T. et al. Changes of functional connectivity of the motor network in the resting state in Parkinson's disease. Neurosci. Lett. 460, 6–10 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Helmich, R. C. et al. I. Spatial remapping of cortico-striatal connectivity in Parkinson's disease. Cereb. Cortex 20, 1175–1186 (2010).

    Article  PubMed  Google Scholar 

  85. Choe, I. H., Yeo, S., Chung, K. C., Kim, S. H. & Lim, S. Decreased and increased cerebral regional homogeneity in early Parkinson's disease. Brain Res. 1527, 230–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Hacker, C. D., Perlmutter, J. S., Criswell, S. R., Ances, B. M. & Snyder, A. Z. Resting state functional connectivity of the striatum in Parkinson's disease. Brain 135, 3699–3711 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Göttlich, M. et al. Altered resting state brain networks in Parkinson's disease. PLoS ONE 8, e77336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Agosta, F. et al. The topography of brain damage at different stages of Parkinson's disease. Hum. Brain Mapp. 34, 2798–2807 (2013).

    Article  PubMed  Google Scholar 

  89. Melzer, T. R. et al. White matter microstructure deteriorates across cognitive stages in Parkinson disease. Neurology 80, 1841–1849 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Tessitore, A. et al. Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 79, 2226–2232 (2012).

    Article  PubMed  Google Scholar 

  91. Dumas, E. M. et al. Reduced functional brain connectivity prior to and after disease onset in Huntington's disease. Neuroimage Clin. 2, 377–384 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Poudel, G. R. et al. Abnormal synchrony of resting state networks in premanifest and symptomatic Huntington disease: the IMAGE-HD study. J. Psychiatry Neurosci. 39, 87–96 (2014).

    PubMed  PubMed Central  Google Scholar 

  93. Werner, C. J. et al. Altered resting-state connectivity in Huntington's disease. Hum. Brain Mapp. 35, 2582–2593 (2014).

    Article  PubMed  Google Scholar 

  94. Quarantelli, M. et al. Default-mode network changes in Huntington's disease: an integrated MRI study of functional connectivity and morphometry. PLoS ONE 8, e72159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Grahn, J. A., Parkinson, J. A. & Owen, A. M. The role of the basal ganglia in learning and memory: neuropsychological studies. Behav. Brain Res. 199, 53–60 (2009).

    Article  PubMed  Google Scholar 

  96. Novak, M. J. et al. White matter integrity in premanifest and early Huntington's disease is related to caudate loss and disease progression. Cortex 52, 98–112 (2014).

    Article  PubMed  Google Scholar 

  97. Della Nave, R. et al. Regional distribution and clinical correlates of white matter structural damage in Huntington disease: a tract-based spatial statistics study. AJNR Am. J. Neuroradiol. 31, 1675–1681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bohanna, I., Georgiou-Karistianis, N. & Egan, G. F. Connectivity-based segmentation of the striatum in Huntington's disease: vulnerability of motor pathways. Neurobiol. Dis. 42, 475–481 (2011).

    Article  PubMed  Google Scholar 

  99. Rosas, H. D. et al. Altered white matter microstructure in the corpus callosum in Huntington's disease: implications for cortical “disconnection”. Neuroimage 49, 2995–3004 (2010).

    Article  PubMed  Google Scholar 

  100. Bohanna, I. et al. Diffusion tensor imaging in Huntington's disease reveals distinct patterns of white matter degeneration associated with motor and cognitive deficits. Brain Imaging Behav. 5, 171–180 (2011).

    Article  PubMed  Google Scholar 

  101. Lehmann, M. et al. Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer's disease. Proc. Natl Acad. Sci. USA 110, 11606–11611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gour, N. et al. Functional connectivity changes differ in early and late-onset Alzheimer's disease. Hum. Brain Mapp. 35, 2978–2994 (2014).

    Article  PubMed  Google Scholar 

  103. Canu, E. et al. White matter microstructural damage in Alzheimer's disease at different ages of onset. Neurobiol. Aging 34, 2331–2340 (2013).

    Article  PubMed  Google Scholar 

  104. Migliaccio, R. et al. Brain networks in posterior cortical atrophy: a single case tractography study and literature review. Cortex 48, 1298–1309 (2012).

    Article  PubMed  Google Scholar 

  105. Duning, T. et al. Pattern and progression of white-matter changes in a case of posterior cortical atrophy using diffusion tensor imaging. J. Neurol. Neurosurg. Psychiatry 80, 432–436 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Agosta, F. et al. White matter damage in frontotemporal lobar degeneration spectrum. Cereb. Cortex 22, 2705–2714 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, Y. et al. MRI signatures of brain macrostructural atrophy and microstructural degradation in frontotemporal lobar degeneration subtypes. J. Alzheimers Dis. 33, 431–444 (2013).

    Article  PubMed  Google Scholar 

  108. Whitwell, J. L. et al. Gray and white matter water diffusion in the syndromic variants of frontotemporal dementia. Neurology 74, 1279–1287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lillo, P. et al. Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS ONE 7, e43993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rajagopalan, V., Yue, G. H. & Pioro, E. P. Brain white matter diffusion tensor metrics from clinical 1.5 T MRI distinguish between ALS phenotypes. J. Neurol. 260, 2532–2540 (2013).

    Article  PubMed  Google Scholar 

  111. Agosta, F. et al. Diffusion tensor MRI contributes to differentiate Richardson's syndrome from PSP-parkinsonism. Neurobiol. Aging 33, 2817–2826 (2012).

    Article  PubMed  Google Scholar 

  112. Vos, S. J. et al. Preclinical Alzheimer's disease and its outcome: a longitudinal cohort study. Lancet Neurol. 12, 957–965 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hedden, T. et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J. Neurosci. 29, 12686–12694 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sheline, Y. I. et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol. Psychiatry 67, 584–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Drzezga, A. et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain 134, 1635–1646 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wang, L. et al. Cerebrospinal fluid Aβ42, phosphorylated Tau181, and resting-state functional connectivity. JAMA Neurol. 70, 1242–1248 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Brier, M. R. et al. Functional connectivity and graph theory in preclinical Alzheimer's disease. Neurobiol. Aging 35, 757–768 (2014).

    Article  PubMed  Google Scholar 

  118. Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Machulda, M. M. et al. Effect of APOE ε4 status on intrinsic network connectivity in cognitively normal elderly subjects. Arch. Neurol. 68, 1131–1136 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Patel, K. T. et al. Default mode network activity and white matter integrity in healthy middle-aged ApoE4 carriers. Brain Imaging Behav. 7, 60–67 (2013).

    Article  PubMed  Google Scholar 

  121. Brown, J. A. et al. Brain network local interconnectivity loss in aging APOE-4 allele carriers. Proc. Natl Acad. Sci. USA 108, 20760–20765 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Honea, R. A., Vidoni, E., Harsha, A. & Burns, J. M. Impact of APOE on the healthy aging brain: a voxel-based MRI and DTI study. J. Alzheimers Dis. 18, 553–564 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chiang, G. C., Zhan, W., Schuff, N. & Weiner, M. W. White matter alterations in cognitively normal apoE ε2 carriers: insight into Alzheimer resistance? AJNR Am. J. Neuroradiol. 33, 1392–1397 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sheline, Y. I. et al. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. J. Neurosci. 30, 17035–17040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Filippini, N. et al. Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proc. Natl Acad. Sci. USA 106, 7209–7214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dennis, N. A. et al. Temporal lobe functional activity and connectivity in young adult APOE e4 carriers. Alzheimers Dement. 6, 303–311 (2010).

    Article  PubMed  Google Scholar 

  127. Dowell, N. G. et al. MRI of carriers of the apolipoprotein E e4 allele-evidence for structural differences in normal-appearing brain tissue in e4+ relative to e4− young adults. NMR Biomed. 26, 674–682 (2013).

    PubMed  Google Scholar 

  128. O'Dwyer, L. et al. White matter differences between healthy young ApoE4 carriers and non-carriers identified with tractography and support vector machines. PLoS ONE 7, e36024 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dean, D. C. et al. Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. JAMA Neurol. 71, 11–22 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. McMillan, C. T. et al. White matter imaging helps dissociate tau from TDP-43 in frontotemporal lobar degeneration. J. Neurol. Neurosurg. Psychiatry 84, 949–955 (2013).

    Article  PubMed  Google Scholar 

  131. McMillan, C. T. et al. Genetic and neuroanatomic associations in sporadic frontotemporal lobar degeneration. Neurobiol. Aging 35, 1473–1482 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Premi, E. et al. Effect of TMEM106B polymorphism on functional network connectivity in asymptomatic GRN mutation carriers. JAMA Neurol. 71, 216–221 (2014).

    Article  PubMed  Google Scholar 

  133. Sala-Llonch, R. et al. Evolving brain functional abnormalities in PSEN1 mutation carriers: a resting and visual encoding fMRI study. J. Alzheimers Dis. 36, 165–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Chhatwal, J. P. et al. Impaired default network functional connectivity in autosomal dominant Alzheimer disease. Neurology 81, 736–744 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Borroni, B. et al. Granulin mutation drives brain damage and reorganization from preclinical to symptomatic FTLD. Neurobiol. Aging 33, 2506–2520 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Dopper, E. G. et al. Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia. Neurology 80, 814–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pievani, M. et al. Pattern of structural and functional brain abnormalities in asymptomatic granulin mutation carriers. Alzheimers Dement. http://dx.doi.org/10.1016/j.jalz.2013.09.009.

  138. Wu, T. et al. Preclinical and clinical neural network changes in SCA2 parkinsonism. Parkinsonism Relat. Disord. 19, 158–164 (2013).

    Article  PubMed  Google Scholar 

  139. Unschuld, P. G. et al. Impaired cortico-striatal functional connectivity in prodromal Huntington's disease. Neurosci. Lett. 514, 204–209 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ringman, J. M. et al. Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer's disease mutations. Brain 130, 1767–1776 (2007).

    Article  PubMed  Google Scholar 

  141. Ryan, N. S. et al. Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer's disease. Brain 136, 1399–1414 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Fortea, J. et al. Increased cortical thickness and caudate volume precede atrophy in PSEN1 mutation carriers. J. Alzheimers Dis. 22, 909–922 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Borroni, B. et al. Brain magnetic resonance imaging structural changes in a pedigree of asymptomatic progranulin mutation carriers. Rejuvenation Res. 11, 585–595 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Ng, M. C. et al. Abnormal diffusion tensor in nonsymptomatic familial amyotrophic lateral sclerosis with a causative superoxide dismutase 1 mutation. J. Magn. Reson. Imaging 27, 8–13 (2008).

    Article  PubMed  Google Scholar 

  145. Dumas, E. M. et al. Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington's disease. Hum. Brain Mapp. 33, 203–212 (2012).

    Article  PubMed  Google Scholar 

  146. Rosas, H. D. et al. Diffusion tensor imaging in presymptomatic and early Huntington's disease: Selective white matter pathology and its relationship to clinical measures. Mov. Disord. 21, 1317–1325 (2006).

    Article  PubMed  Google Scholar 

  147. Warren, J. D., Rohrer, J. D. & Hardy, J. Disintegrating brain networks: from syndromes to molecular nexopathies. Neuron 73, 1060–1062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dian Observational Study. Dominantly Inherited Alzheimer Network [online], (2013).

  149. GENFI: the Genetic Frontotemporal Dementia Initiative. UCL [online], (2014).

  150. Damoiseaux, J. S. & Greicius, M. D. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct. Funct. 213, 525–533 (2009).

    Article  PubMed  Google Scholar 

  151. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hagmann, P. et al. MR connectomics: principles and challenges. J. Neurosci. Methods 194, 34–45 (2010).

    Article  PubMed  Google Scholar 

  153. van den Heuvel, M. P. & Sporns, O. An anatomical substrate for integration among functional networks in human cortex. J. Neurosci. 33, 14489–14500 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. van den Heuvel, M. P., Kahn, R. S., Goñi, J. & Sporns, O. High-cost, high-capacity backbone for global brain communication. Proc. Natl Acad. Sci. USA 109, 11372–11377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Collin, G., Sporns, O., Mandl, R. C. & van den Heuvel, M. P. Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb. Cortex 24, 2258–2267 (2014).

    Article  PubMed  Google Scholar 

  159. Morrison, J. H. & Hof, P. R. Life and death of neurons in the aging brain. Science 278, 412–419 (1997).

    Article  CAS  PubMed  Google Scholar 

  160. van den Heuvel, M. P. et al. Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 70, 783–792 (2013).

    Article  PubMed  Google Scholar 

  161. Hu, W. T. et al. Distinct cerebral perfusion patterns in FTLD and AD. Neurology 75, 881–888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Arterial spin labelling Initiative in Dementia (AID). COST: European Cooperation in Science and Technology [online], (2014).

  163. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    Article  PubMed  Google Scholar 

  164. Uludag˘, K. et al. Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage 23, 148–155 (2004).

    Article  PubMed  Google Scholar 

  165. Danielian, L. E., Iwata, N. K., Thomasson, D. M. & Floeter, M. K. Reliability of fiber tracking measurements in diffusion tensor imaging for longitudinal study. Neuroimage 49, 1572–1580 (2010).

    Article  PubMed  Google Scholar 

  166. Zuo, X. N. et al. Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 49, 2163–2177 (2010).

    Article  PubMed  Google Scholar 

  167. McMillan, C. T. et al. White matter imaging contributes to the multimodal diagnosis of frontotemporal lobar degeneration. Neurology 78, 1761–1768 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.F. is funded by the HDH Wills 1965 Charitable Trust. M.P.v.d.H. is supported by a Fellowship from the Brain Center Rudolf Magnus and a VENI grant from the Dutch Council for Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

M.P. and G.B.F. developed the architecture of the manuscript. M.P. wrote the initial draft, which was completed, edited and reviewed for important intellectual content by N.F., M.P.v.d.H., S.F.C. and G.B.F. M.P. and G.B.F. prepared Figure 1, Figure 3 and Figure 4, and N.F. prepared Figure 2. All the authors have seen and approved the final version.

Corresponding author

Correspondence to Giovanni B. Frisoni.

Ethics declarations

Competing interests

G.B.F. has served on the advisory boards for Lilly, BMS, Bayer, Lundbeck, Elan, AstraZeneca, Pfizer, Baxter, Taurx and Wyeth, and has received research support from Wyeth, Lilly and Lundbeck Italia. The other authors declare no competing interests.

Supplementary information

Supplementary Table 1

Technical variability (magnetic field strength and post-processing method) across studies on resting-state functional connectivity MRI (PDF 157 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pievani, M., Filippini, N., van den Heuvel, M. et al. Brain connectivity in neurodegenerative diseases—from phenotype to proteinopathy. Nat Rev Neurol 10, 620–633 (2014). https://doi.org/10.1038/nrneurol.2014.178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing