Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Progress in gene therapy for neurological disorders

A Correction to this article was published on 14 May 2013

This article has been updated

Abstract

Diseases of the nervous system have devastating effects and are widely distributed among the population, being especially prevalent in the elderly. These diseases are often caused by inherited genetic mutations that result in abnormal nervous system development, neurodegeneration, or impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic changes induced by environmental insults, injury, disease-related events or inflammatory processes. Standard medical and surgical practice has not proved effective in curing or treating these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease progression. Gene therapy is emerging as a powerful approach with potential to treat and even cure some of the most common diseases of the nervous system. Gene therapy for neurological diseases has been made possible through progress in understanding the underlying disease mechanisms, particularly those involving sensory neurons, and also by improvement of gene vector design, therapeutic gene selection, and methods of delivery. Progress in the field has renewed our optimism for gene therapy as a treatment modality that can be used by neurologists, ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy strategies that have the potential to treat patients with neurological diseases and discuss prospects for future development of gene therapy.

Key Points

  • Standard pharmacological and surgical interventions are either inadequate or unavailable for most diseases of the PNS and CNS

  • Gene therapy is a viable approach to the prevention of neurological disease progression, and might offer a cure or slow down the disease process

  • The efficacy of gene therapy depends on the development of gene delivery vehicles (mostly viral vectors) to target disease-modifying products to where they are needed

  • Gene therapy strategies to treat some diseases that affect vision and hearing or that cause debilitating pain are at an advanced stage of development

  • Gene therapy for degenerative diseases requires a more in-depth understanding of the underlying pathophysiology and, for some diseases, global brain delivery of the transgene

  • With ongoing development of gene therapy applications for nervous system disease, such treatments are expected to be available to patients within 10 years

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrams of the genomes of various viral vectors used in gene therapy approaches.
Figure 2: Gene therapy for pain using an HSV vector.
Figure 3: Vector-delivery strategies for gene therapy of neurogenetic diseases.
Figure 4: Gene therapy targets in Parkinson disease.

Similar content being viewed by others

Change history

  • 14 May 2013

    In the version of this article initially published, HSV-1–thymidine kinase was incorrectly referred to as tyrosine kinase in Table 4, and as HSV1–tyrosine kinase on page 288. The error has been corrected for the HTML and PDF versions of the article.

References

  1. Elsabahy, M., Nazarali, A. & Foldvari, M. Non-viral nucleic acid delivery: key challenges and future directions. Curr. Drug Deliv. 8, 235–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Goncalves, M. A. Adeno-associated virus: from defective virus to effective vector. Virol. J. 2, 43 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matrai, J., Chuah, M. K. & VandenDriessche, T. Recent advances in lentiviral vector development and applications. Mol. Ther. 18, 477–490 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nayak, S. & Herzog, R. W. Progress and prospects: immune responses to viral vectors. Gene Ther. 17, 295–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Duque, S. et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol. Ther. 7, 1187–1196 (2009).

    Article  CAS  Google Scholar 

  7. Gray, S. J. et al. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol. Ther. 19, 1058–1069 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pulicherla, N. et al. Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol. Ther. 6, 1070–1078 (2011).

    Article  CAS  Google Scholar 

  9. Bennett . et al. Further reduction in adenovirus vector-mediated liver transduction without largely affecting transgene expression in target organ by exploiting microrna-mediated regulation and the Cre-loxP recombination system. Mol. Pharm. 9, 3452–3463.

  10. Chen, Y. H., Chang, M. & Davidson, B. L. Molecular signatures of disease brain endothelia provide new sites for CNS-directed enzyme therapy. Nat. Med. 15, 1215–1218 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maheshri, N., Koerber, J. T., Kaspar, B. K. & Schaffer, D. V. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24, 198–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Gray, S. J. et al. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood–brain barrier (BBB). Mol. Ther. 18, 570–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Hermening, S., Kugler, S., Bahr, M. & Isenmann, S. Improved high-capacity adenoviral vectors for high-level neuron-restricted gene transfer to the CNS. J. Virol. Methods 136, 30–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Gray, S. J. et al. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum. Gene Ther. 9, 1143–1153 (2011).

    Article  CAS  Google Scholar 

  15. Qin, J. Y. et al. Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS ONE 5, e10611 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Husain, T., Passini, M. A., Parente, M. K., Fraser, N. W. & Wolfe, J. H. Long-term AAV vector gene and protein expression in mouse brain from a small pan-cellular promoter is similar to neural cell promoters. Gene Ther. 16, 927–932 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kugler, S. et al. Neuron-specific expression of therapeutic proteins: evaluation of different cellular promoters in recombinant adenoviral vectors. Mol. Cell Neurosci. 17, 78–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Peel, A. L., Zolotukhin, S., Schrimsher, G. W., Muzyczka, N. & Reier, P. J. Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Ther. 4, 16–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Kügler, S., Lingor, P., Schöll, U., Zolotukhin, S. & Bähr, M. Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units. Virology 311, 89–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, Y., Messing, A., Su, M. & Brenner, M. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56, 481–493 (2008).

    Article  PubMed  Google Scholar 

  21. den Hollander, A. I., Black, A., Bennett, J. & Cremers, F. P. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J. Clin. Invest. 120, 3042–3053 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farrar, G. J., Millington-Ward, S., Chadderton, N., Humphries, P. & Kenna, P. F. Gene-based therapies for dominantly inherited retinopathies. Gene Ther. 19, 137–144 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Millington-Ward, S. et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol. Ther. 19, 642–649 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang, L. et al. Long-term RNA interference gene therapy in a dominant retinitis pigmentosa mouse model. Proc. Natl Acad. Sci. USA 108, 18476–18481 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lai, Y. K. et al. Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Ther. 9, 804–813 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Jomary, C. & Jones, S. E. Induction of functional photoreceptor phenotype by exogenous Crx expression in mouse retinal stem cells. Invest. Ophthalmol. Vis. Sci. 49, 429–437 (2008).

    Article  PubMed  Google Scholar 

  27. Gubbels, S. P., Woessner, D. W., Mitchell, J. C., Ricci, A. J. & Brigande, J. V. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455, 537–541 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Izumikawa, M. et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat. Med. 11, 271–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Busskamp, V., Picaud, S., Sahel, J. A. & Roska, B. Optogenetic therapy for retinitis pigmentosa. Gene Ther. 19, 169–175 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Ashtari, M. et al. The human visual cortex responds to gene therapy-mediated recovery of retinal function. J. Clin. Invest. 121, 2160–2168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hauswirth, W. W. et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Human Gene Ther. 19, 979–990 (2008).

    Article  CAS  Google Scholar 

  32. Bainbridge, J. W. et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N. Engl. J. Med. 358, 2231–2239 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Maguire, A. M. et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N. Engl. J. Med. 358, 2240–2248 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cremers, F. P., van de Pol., D. J., van Kerkhoff, L. P., Wieringa, B. & Ropers, H. H. Cloning of a gene that is rearranged in patients with choroideraemia. Nature 347, 674–677 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Dryja, T. P. et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343, 364–366 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Farrar, G. J. et al. Autosomal dominant retinitis pigmentosa: linkage to rhodopsin and evidence for genetic heterogeneity. Genomics 8, 35–40 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Akil, O. et al. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 75, 283–293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lentz, J. J. et al. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat. Med. http://dx/doi.org/10.1038/nm.3106.

  39. McIntyre, J. C. et al. Gene therapy rescues cilia defects and restores olfactory function in a mammalian ciliopathy model. Nat. Med. 18, 1423–1428 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Glorioso, J. C. & Fink, D. J. Herpes vector-mediated gene transfer in treatment of diseases of the nervous system. Annu. Rev. Microbiol. 58, 253–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Mata, M., Glorioso, J. C. & Fink, D. J. Gene therapy: novel treatments for polyneuropathy and chronic pain. Curr. Neurol. Neurosci. Rep. 4, 1–2 (2004).

    Article  PubMed  Google Scholar 

  42. Goss, J. R. et al. HSV delivery of a ligand-regulated endogenous ion channel gene to sensory neurons results in pain control following channel activation. Mol. Ther. 19, 500–506 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Goss, J. R. et al. Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion. Gene Ther. 8, 551–556 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Goss, J. R. et al. Herpes vector-mediated expression of proenkephalin reduces bone cancer pain. Ann. Neurol. 52, 662–665 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Hao, S., Mata, M., Goins, W., Glorioso, J. C. & Fink, D. J. Transgene-mediated enkephalin release enhances the effect of morphine and evades tolerance to produce a sustained antiallodynic effect in neuropathic pain. Pain 102, 135–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Hao, S. et al. Gene transfer of glutamic acid decarboxylase reduces neuropathic pain. Ann. Neurol. 57, 914–918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chattopadhyay, M., Mata, M. & Fink, D. J. Vector-mediated release of GABA attenuates pain-related behaviors and reduces NaV1.7 in DRG neurons. Eur. J. Pain 15, 913–920 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hao, S., Mata, M., Glorioso, J. C. & Fink, D. J. HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain. Mol. Pain 2, 6 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, Z., Peng, X., Hao, S., Fink, D. J. & Mata, M. HSV-mediated transfer of interleukin-10 reduces inflammatory pain through modulation of membrane tumor necrosis factor α in spinal cord microglia. Gene Ther. 15, 183–190 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Lau, D. et al. Herpes simplex virus vector-mediated expression of interleukin-10 reduces below-level central neuropathic pain after spinal cord injury. Neurorehabil. Neural Repair 26, 889–897 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Goss, J. R. et al. Herpes simplex-mediated gene transfer of nerve growth factor protects against peripheral neuropathy in streptozotocin-induced diabetes in the mouse. Diabetes 51, 2227–2232 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Chattopadhyay, M. et al. Protective effect of HSV-mediated gene transfer of nerve growth factor in pyridoxine neuropathy demonstrates functional activity of trkA receptors in large sensory neurons of adult animals. Eur. J. Neurosci. 17, 732–740 (2003).

    Article  PubMed  Google Scholar 

  53. Chattopadhyay, M. et al. Protective effect of herpes simplex virus-mediated neurotrophin gene transfer in cisplatin neuropathy. Brain 127, 929–939 (2004).

    Article  PubMed  Google Scholar 

  54. Chattopadhyay, M., Walter, C., Mata, M. & Fink, D. J. Neuroprotective effect of herpes simplex virus-mediated gene transfer of erythropoietin in hyperglycemic dorsal root ganglion neurons. Brain 132, 879–888 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chattopadhyay, M. et al. Prolonged preservation of nerve function in diabetic neuropathy in mice by herpes simplex virus-mediated gene transfer. Diabetologia 50, 1550–1558 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Wu, Z., Mata, M. & Fink, D. J. Prolonged regulatable expression of EPO from an HSV vector using the LAP2 promoter element. Gene Ther. 19, 1107–1113 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Fink, D. J. et al. Gene therapy for pain: results of a phase I clinical trial. Ann. Neurol. 70, 207–212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wolfe, D., Mata, M. & Fink, D. J. A human trial of HSV-mediated gene transfer for the treatment of chronic pain. Gene Therapy 14, 455–460 (2009).

    Article  CAS  Google Scholar 

  59. Harper, S. Q. et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc. Natl Acad. Sci. USA 16, 5820–5825 (2005).

    Article  CAS  Google Scholar 

  60. Wolfe, J. H. Gene therapy in large animal models of human genetic diseases. ILAR J. 50, 107–111 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Vite, C. H. et al. Effective gene therapy for an inherited CNS disease in a large animal model. Ann. Neurol. 57, 355–364 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Berges, B. K. et al. Widespread correction of lysosomal storage in the mucopolysaccharidosis type VII mouse brain with a herpes simplex virus type 1 vector expressing β-glucuronidase. Mol. Ther. 13, 859–869 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Cearley, C. N. & Wolfe, J. H. A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J. Neurosci. 27, 9928–9940 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baek, R. C. et al. AAV-mediated gene delivery in adult GM1-gangliosidosis mice corrects lysosomal storage in CNS and improves survival. PloS ONE 5, e13468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lui, G., Martins, I. H., Wemmie, J. A., Chiorini, J. A. & Davidson, B. L. Functional correction of CNS phenotypes in a lysosomal storage disease model using adeno-associated virus type 4 vectors. J. Neurosci. 25, 9321–9327 (2005).

    Article  CAS  Google Scholar 

  66. Donsante, A. et al. ATP7A gene addition to the choroid plexus results in long-term rescue of the lethal copper transport defect in a Menkes disease mouse model. Mol. Ther. 19, 2114–2123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Watson, D. J. & Wolfe, J. H. Lentiviral vectors for gene transfer to the central nervous system. Applications in lysosomal storage disease animal models. Meth. Mol. Med. 76, 383–403 (2003).

    CAS  Google Scholar 

  68. Cearley, C. N. & Wolfe, J. H in Encyclopedia of Neuroscience (ed. Squire, L. R.) 179–188 (Academic Press, Oxford, 2009).

    Book  Google Scholar 

  69. Ellinwood, N. M. et al. Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes. Mol. Ther. 19, 251–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Leone, P. et al. Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann. Neurol. 48, 27–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Worgall, S. et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Human Gene Ther. 19, 463–474 (2008).

    Article  CAS  Google Scholar 

  72. Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Brookmeyer R. & Gray, S. Method for projecting the incidence and prevalence of chronic diseases in aging populations; application to Alzheimer's disease. Stat. Med. 19, 1481–1493 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Holtzman, D. M. et al. Alzheimer's disease: the challenge of the second century. Sci. Transl. Med. 3, 77sr71 (2011).

    Google Scholar 

  75. Wirdefeldt, K., Adami H.-O., Cole, P., Trichopoulos, D. & Mandel, J. Epidemiology and etiology of Parkinson's disease; a review of the evidence. Eur. J. Epidemiol. 26, S1–S58 (2011).

    Article  PubMed  Google Scholar 

  76. Siddique, T. & Ajroud-Driss, S. Familial amyotrophic lateral sclerosis, a historical perspective. Acta Myol. 2, 117–120 (2011).

    Google Scholar 

  77. [No authors listed] A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72, 971–983 (1993).

  78. Lang, A. E. & Lozano, A. M. Parkinson's disease. Second of two parts. N. Engl. J. Med. 339, 1130–1143 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Azzouz, M. et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease. J. Neurosci. 22, 10302–10312 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jarraya, B. et al. Dopamine gene therapy for Parkinson's disease in a nonhuman primate without associated dyskinesia. Sci. Transl. Med. 1, 2ra4 (2009).

    Article  PubMed  Google Scholar 

  81. Leff, S. E., Spratt, S. K., Snyder, R. O. & Mandel, R. J. Long-term restoration of striatal L-aromatic amino acid decarboxylase activity using recombinant adeno-associated viral vector gene transfer in a rodent model of Parkinson's disease. Neuroscience 92, 185–196 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Bankiewicz, K. S. et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol. Ther. 14, 564–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Christine, C. W. et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73, 1662–1669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Muramatsu, S. et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson's disease. Mol. Ther. 18, 1731–1735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Levy, R. et al. Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain 124, 2105–2118 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Luo, J. et al. Subthalamic GAD gene therapy in a Parkinson's disease rat model. Science 298, 425–429 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Emborg, M. E. et al. Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J. Cereb. Blood Flow Metab. 27, 501–509 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. LeWitt, P. A. et al. AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 10, 309–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Oiwa, Y., Yoshimura, R., Nakai, K. & Itakura, T. Dopaminergic neuroprotection and regeneration by neurturin assessed by using behavioral, biochemical and histochemical measurements in a model of progressive Parkinson's disease. Brain Res. 947, 271–283 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Kordower, J. H. et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann. Neurol. 60, 706–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Marks, W. J., Jr. et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson's disease: an open-label, phase I trial. Lancet Neurol. 7, 400–408 (2008).

    Article  PubMed  Google Scholar 

  92. Marks, W. J. Jr. et al. Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurol. 9, 1164–1172 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Fisher, R. S. et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46, 470–472 (2005).

    Article  PubMed  Google Scholar 

  94. Berg, A. T. et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE commission on classification and terminology, 2005–2009. Epilepsia 51, 676–685 (2010).

    Article  PubMed  Google Scholar 

  95. Galanopoulou, A. S. et al. Identification of new epilepsy treatments: issues in preclinical methodology. Epilepsia 53, 571–582 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Simonato, M., Tongiorgi, E. & Kokaia, M. Angels and demons: neurotrophic factors and epilepsy. Trends Pharmacol. Sci. 27, 631–638 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Paradiso, B. et al. Localized delivery of fibroblast growth factor-2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model. Proc. Natl Acad. Sci. USA 106, 7191–7196 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bovolenta, R. et al. Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. J. Neuroinflammation 7, 81 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Paradiso, B. et al. Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus. Epilepsia 52, 572–578 (2011).

    Article  PubMed  Google Scholar 

  100. Haberman, R. et al. Therapeutic liabilities of in vivo viral vector tropism: adeno-associated virus vectors, NMDAR1 antisense, and focal seizure sensitivity. Mol. Ther. 6, 495–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Raol, Y. H. et al. Enhancing GABAA receptor α1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J. Neurosci. 26, 11342–11346 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wykes, R. C. et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci. Transl. Med. 161, 161ra152 (2012).

    Article  CAS  Google Scholar 

  103. Haberman, R. P., Samulski, R. J. & McCown, T. J. Attenuation of seizures and neuronal death by adeno-associated virus vector galanin expression and secretion. Nat. Med. 9, 1076–1080 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Lin, E. J. et al. Recombinant AAV-mediated expression of galanin in rat hippocampus suppresses seizure development. Eur. J. Neurosci. 18, 2087–2092 (2003).

    Article  PubMed  Google Scholar 

  105. Richichi, C. et al. Anticonvulsant and antiepileptogenic effects mediated by adeno-associated virus vector neuropeptide Y expression in the rat hippocampus. J. Neurosci. 24, 3051–3059 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McCown, T. J. Adeno-associated virus-mediated expression and constitutive secretion of galanin suppresses limbic seizure activity in vivo. Mol. Ther. 14, 63–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Foti, S., Haberman, R. P., Samulski, R. J. & McCown, T. J. Adeno-associated virus-mediated expression and constitutive secretion of NPY or NPY13–36 suppresses seizure activity in vivo. Gene Ther. 14, 1534–1536 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Noe, F. et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 131, 1506–1515 (2008).

    Article  PubMed  Google Scholar 

  109. Sorensen, A. T. et al. Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP. Exp. Neurol. 215, 328–333 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Noe, F. et al. Anticonvulsant effects and behavioural outcomes of rAAV serotype 1 vector-mediated neuropeptide Y overexpression in rat hippocampus. Gene Ther. 17, 643–652 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Woldbye, D. P. et al. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures. Brain 133, 2778–2788 (2010).

    Article  PubMed  Google Scholar 

  112. Grossman, S. A. et al. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin. Cancer Res. 8, 2443–2449 (2010).

    Article  Google Scholar 

  113. Castro, M. et al. Gene therapy and targeted toxins for glioma. Curr. Gene Ther. 11, 155–180 (2012).

    Article  Google Scholar 

  114. Ram, Z. et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat. Med. 3, 1354–1361 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Izquierdo, M. et al. Human malignant brain tumor response to herpes simplex thymidine kinase (HSVtk)/ganciclovir gene therapy. Gene Ther. 3, 491–495 (1996).

    CAS  PubMed  Google Scholar 

  116. Shand, N. et al. A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum. Gene Ther. 10, 2325–2335 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Klatzmann, D. et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for recurrent glioblastoma. Study Group on Gene Therapy for Glioblastoma. Hum. Gene Ther. 9, 2595–2604 (1998).

    CAS  PubMed  Google Scholar 

  118. Prados, M. D. et al. Treatment of progressive or recurrent glioblastoma multiforme in adults with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir administration: a phase I/II multi-institutional trial. J. Neurooncol 65, 269–278 (2003).

    Article  PubMed  Google Scholar 

  119. Rainov, N. G. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther. 11, 2389–2401 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Trask, T. W. et al. Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Mol. Ther. 1, 195–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Germano, I. M., Fable, J., Gultekin, S. H. & Silvers, A. Adenovirus/herpes simplex-thymidine kinase/ganciclovir complex: preliminary results of a phase I trial in patients with recurrent malignant gliomas. J. Neurooncol 65, 279–289 (2003).

    Article  PubMed  Google Scholar 

  122. Immonen, A. et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol. Ther. 10, 967–972 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Sandmair, A. M. et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum. Gene Ther. 11, 2197–2205 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Good Clinical Practice Inspectors Working Group. Reflection paper on GCP compliance in relation to trial master files (paper and/or electronic) of management, audit and inspection of clinical trials. European Medicines Agency [online], (2013).

  125. Chiocca, E. A. et al. A phase I trial of Ad.hIFN-β gene therapy for glioma. Mol. Ther. 16, 618–626 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Lang, F. F. et al. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J. Clin. Oncol. 21, 2508–2518 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Papanastassiou, V. et al. The potential for efficacy of the modified (ICP 34.5 herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther. 9, 398–406 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Chiocca, E. A. et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol. Ther. 10, 958–966 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Forsyth, P. et al. A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol. Ther. 16, 627–632 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Markert, J. M. et al. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol. Ther. 17, 199–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Yun, J. et al. A novel adenoviral vector labeled with superparamagnetic iron oxide nanoparticles for real-time tracking of viral delivery. J. Clin. Neurosci. 19, 875–880 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Vande Velde, G. et al. Evaluation of the specificity and sensitivity of ferritin as an MRI reporter gene in the mouse brain using lentiviral and adeno-associated viral vectors. Gene Ther. 18, 594–605 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Thevenot, E. et al. Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum. Gene Ther. 23, 1144–1155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Markert, J. M. et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 7, 867–874 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Rampling, R. et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther. 7, 859–866 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Freeman, A. I. et al. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol. Ther. 13, 221–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Ali, S. et al. Combined immunostimulation and conditional cytotoxic gene therapy provide long-term survival in a large glioma model. Cancer Res. 65, 7194–7204 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chiocca, E. A. et al. Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J. Clin. Oncol. 29, 3611–3619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Palu, G. et al. Gene therapy of glioblastoma multiforme via combined expression of suicide and cytokine genes: a pilot study in humans. Gene Ther. 6, 330–337 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Curtin, J. F. et al. HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med. 6, e10 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. US National Institutes of Health. ClinicalTrials.gov[online], (2013).

  142. Kells, A. P. et al. Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J. Neurosci. 28, 9567–9577 (2010).

    Article  CAS  Google Scholar 

  143. Bartus, R. T. et al. The safety and feasibility of combined substantia nigral putaminal stereotactic targetingof AAV2-neurturin (CERE120) in Parkinson's disease. Neurology (in press).

  144. McBride, J. L. et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington's disease. Mol. Ther. 12, 2152–2162 (2011).

    Article  CAS  Google Scholar 

  145. Ramaswamy, S. et al. Intrastriatal CERE120 (AAV-neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington's disease. Neurobiol. Dis. 34, 40–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Arvanitakis, Z. et al. Interim data from a phase 1 clinical trial of AAV-NGF (CERE-110) gene delivery in Alzheimer's disease [abstract P05.071]. Neurology 68 (Suppl. 1), A233–A234 (2007).

    Google Scholar 

  147. Nagahara, A. H. et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent andprimate models of Alzheimer's disease. Nat. Med. 3, 331–337 (2009).

    Article  CAS  Google Scholar 

  148. Suzuki, M. et al. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS ONE 2, e689 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Franz, C. et al. Intraspinal cord delivery of IGF-I mediated by adeno-associated virus 2 is neuroprotective in a rat model of familial ALS. Neurobiol. Dis. 3, 473–481 (2009).

    Article  CAS  Google Scholar 

  150. Kaspar, B. K., Llado, J., Sherkat, N., Rothstein, J. D. & Gage, F. H. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 5634, 839–842 (2003).

    Article  CAS  Google Scholar 

  151. Smith, R. A. et al. Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest. 8, 2290–2296 (2006).

    Article  CAS  Google Scholar 

  152. Kanter-Schlifke, I., Georgievska, B., Kirik, D. & Kokaia, M. Seizure suppression by GDNF gene therapy in animal models of epilepsy. Mol. Ther. 15, 1106–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Theofilas, P. et al. Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 52, 589–601 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Laing, J. M. et al. Intranasal administration of the growth-compromised HSV-2 vector ΔRR prevents kainate-induced seizures and neuronal loss in rats and mice. Mol. Ther. 13, 870–881 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Smitt, P. S., Driesse, M., Wolbers, J., Kros, M. & Avezaat, C. Treatment of relapsed malignant glioma with an adenoviral vector containing the herpes simplex thymidine kinase gene followed by ganciclovir. Mol. Ther. 7, 851–858 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by grants from the European Community (PIAPP-GA-2011-285827 [EPIXCHANGE Project] to M. Simonato) and from the NIH (CA119298, NS40923 and DK044935 to J. C. Glorioso; EY023177 and EY019861 to J. Bennett; NS038850 and NS069378 to D. J. Fink; NS038690, DK063973, NS056243, NS029390, DK047757, OD010939 and TR000003 to J. H. Wolfe; NS052465, NS052465-04S1, NS057711 and NS074387 to M. G. Castro and 1NS054193, NS061107 and TR000433 to P. R. Lowenstein). The authors thank A. Pizzirani and J. Coulter for preparation of the figures before submission.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, and provided substantial contributions to discussions of the content and writing of the article. M. Simonato and G. C. Glorioso reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Michele Simonato.

Ethics declarations

Competing interests

L. H. Vandenberghe has been an ad hoc paid consultant for Novartis Institutes of Biomedical Research. L. H. Vandenberghe and J. Bennett are co-founders of GenSight Biologics, an ocular gene therapy company. N. M. Boulis was a consultant for the company Ceregene up to 2012. L. H. Vandenberghe is an inventor on the following patent applications: WO/2005/033321 (adeno-associated virus [AAV] clades, sequences, vectors containing same, and uses thereof); WO/2006/110689 (method of increasing the function of an AAV vector); WO/2007/127264 (scalable production method for AAV); and WO/2009/136977 (adeno-associated viral vectors for targeted transduction of retinal pigment epithelial cells). P. R. Lowenstein and M. G. Castro are inventors on the following European patent applications: 1181376B1 (gene construct for prodrug activation encoding a heterologous, glycosylphosphatidylinositol-modified carboxypeptidase G2 and a cell surface targeting signal peptide); and 1786474B1 (combined gene therapy for the treatment of macroscopic gliomas); and on granted US patent 7,858,590B2 (treatment of Parkinson disease and related disorders). J. H. Wolfe is an inventor on granted US patents 7,402,308 (method of delivering genes to the central nervous system of a mammal), 5,958,767, 6,528,306, 6,541,255, and 6,680,198 (engraftable human neural stem cells). J. C. Glorioso is an inventor on granted US patents 5,658,724, 5,879,934, 5,804,413, 6,261,552 and 7,078,029; European patent application 904395, and Australian patent applications 733945 (herpes simplex virus strains for gene transfer); granted US patents 5,849,571 and 5,849,572 (vectors comprising lap2 promoter and promoter active fragments); US patent 7,531,167 and Australian patent application 2005302408 (peripherally delivered glutamic acid decarboxylase gene therapy for injured spinal cord injury pain); granted US patent 8,309,349 (cell line) and patent application WO/07/922,839 (novel herpes simplex virus strains deficient for the essential immediate early genes ICP4 and ICP27 and methods for their production, growth and use). The other authors declare no competing interests.

Supplementary information

Supplementary Table 1

Clinical trials in gene therapy for neurosensory disorders (DOC 64 kb)

Supplementary Table 2

Gene replacement therapy for CNS in animal models of neurogenetic diseases (DOC 265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonato, M., Bennett, J., Boulis, N. et al. Progress in gene therapy for neurological disorders. Nat Rev Neurol 9, 277–291 (2013). https://doi.org/10.1038/nrneurol.2013.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.56

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research