Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spinal cord tumours: advances in genetics and their implications for treatment

Abstract

Tumours of the spinal cord, although rare, are associated with high morbidity. Surgical resection remains the primary treatment for patients with this disease, and offers the best chance for cure. Such surgical procedures, however, carry substantial risks such as worsening of neurological deficit, paralysis and death. New therapeutic avenues for spinal cord tumours are needed, but genetic studies of the molecular mechanisms governing tumourigenesis in the spinal cord are limited by the scarcity of high-quality human tumour samples. Many spinal cord tumours have intracranial counterparts that have been extensively studied, but emerging data show that the tumours are genetically and biologically distinct. The differences between brain and spine tumours make extrapolation of data from one to the other difficult. In this Review, we describe the demographics, genetics and current treatment approaches for the most commonly encountered spinal cord tumours—namely, ependymomas, astrocytomas, haemangioblastomas and meningiomas. We highlight advances in understanding of the biological basis of these lesions, and explain how the latest progress in genetics and beyond are being translated to improve patient care.

Key Points

  • Familial neurofibromatosis type 1 is associated with spinal astrocytoma and neurofibromas, whereas familial neurofibromatosis type 2 (NF2) is associated with spinal ependymoma and meningioma

  • von Hippel–Lindau (VHL) disease and mutations in the VHL gene are associated with spinal haemangioblastoma

  • Mutations in the gene encoding the histone 3 variant H3.3 (H3F3A) and in the fusion gene BRAF–KIAA1549 are evident in spinal astrocytomas

  • The genes associated with ependymoma (including mutations in NF2, HOXB5 and PLAG2) are heterogeneous, varying according to histological subtype, tumour location and patient age

  • Genes encoding protein 4.1 family members NF2 and DAL-1, members of the Hedgehog signalling pathway, matrix metalloproteinase-9, and tissue inhibitors of metalloproteinases, have been implicated in meningioma

  • Surgical resection and adjuvant radiotherapy remain the primary treatment modalities for spinal cord tumours, and targeted therapeutics are under investigation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surgery and imaging in spinal cord astrocytoma.
Figure 2: Surgery and imaging in spinal cord ependymoma.
Figure 3: Surgical and preoperative imaging of haemangioblastoma in the cervical spine.
Figure 4: Surgery and imaging of spinal cord meningioma.

Similar content being viewed by others

References

  1. Benesch, M. et al. Compassionate use of bevacizumab (Avastin) in children and young adults with refractory or recurrent solid tumors. Ann. Oncol. 19, 807–813 (2008).

    CAS  PubMed  Google Scholar 

  2. Chamberlain, M. C. Temozolomide for recurrent low-grade spinal cord gliomas in adults. Cancer 113, 1019–1024 (2008).

    CAS  PubMed  Google Scholar 

  3. Chamberlain, M. C. Salvage chemotherapy for recurrent spinal cord ependymona. Cancer 95, 997–1002 (2002).

    PubMed  Google Scholar 

  4. Chamberlain, M. C. Etoposide for recurrent spinal cord ependymoma. Neurology 58, 1310–1311 (2002).

    PubMed  Google Scholar 

  5. Chamberlain, M. C. & Tredway, T. L. Adult primary intradural spinal cord tumors: a review. Curr. Neurol. Neurosci. Rep. 11, 320–328 (2011).

    PubMed  Google Scholar 

  6. Schuch, G. et al. Case 2. Hemangioblastomas: diagnosis of von Hippel–Lindau disease and antiangiogenic treatment with SU5416. J. Clin. Oncol. 23, 3624–3626 (2005).

    PubMed  Google Scholar 

  7. Parsa, A. T., Chi, J. H., Acosta, F. L. Jr, Ames, C. P. & McCormick, P. C. Intramedullary spinal cord tumors: molecular insights and surgical innovation. Clin. Neurosurg. 52, 76–84 (2005).

    PubMed  Google Scholar 

  8. McCormick, P. C., Torres, R., Post, K. D. & Stein, B. M. Intramedullary ependymoma of the spinal cord. J. Neurosurg. 72, 523–532 (1990).

    CAS  PubMed  Google Scholar 

  9. Ruda, R., Gilbert, M. & Soffietti, R. Ependymomas of the adult: molecular biology and treatment. Curr. Opin. Neurol. 21, 754–761 (2008).

    PubMed  Google Scholar 

  10. Sonneland, P. R., Scheithauer, B. W. & Onofrio, B. M. Myxopapillary ependymoma. A clinicopathologic and immunocytochemical study of 77 cases. Cancer 56, 883–893 (1985).

    CAS  PubMed  Google Scholar 

  11. Dow, G. et al. Spinal tumors in neurofibromatosis type 2. Is emerging knowledge of genotype predictive of natural history? J. Neurosurg. Spine 2, 574–579 (2005).

    PubMed  Google Scholar 

  12. Hagel, C. et al. Clinical presentation, immunohistochemistry and electron microscopy indicate neurofibromatosis type 2-associated gliomas to be spinal ependymomas. Neuropathology 32, 611–616 (2012).

    PubMed  Google Scholar 

  13. Kluwe, L. et al. Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J. Neuropathol. Exp. Neurol. 60, 917–920 (2001).

    CAS  PubMed  Google Scholar 

  14. Kluwe, L., Tatagiba, M., Funsterer, C. & Mautner, V. F. NF1 mutations and clinical spectrum in patients with spinal neurofibromas. J. Med. Genet. 40, 368–371 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Patronas, N. J. et al. Intramedullary and spinal canal tumors in patients with neurofibromatosis 2: MR imaging findings and correlation with genotype. Radiology 218, 434–442 (2001).

    CAS  PubMed  Google Scholar 

  16. Ueki, K., Sasaki, T., Ishida, T. & Kirino, T. Spinal tanycytic ependymoma associated with neurofibromatosis type 2—case report. Neurol. Med. Chir. (Tokyo) 41, 513–516 (2001).

    CAS  Google Scholar 

  17. Ebert, C. et al. Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am. J. Pathol. 155, 627–632 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoa, M. & Slattery, W. H. 3rd. Neurofibromatosis 2. Otolaryngol. Clin. North Am. 45, 315–332 (2012).

    PubMed  Google Scholar 

  19. Uhlmann, E. J. & Plotkin, S. R. Neurofibromatoses. Adv. Exp. Med. Biol. 724, 266–277 (2012).

    CAS  PubMed  Google Scholar 

  20. Plotkin, S. R. et al. Spinal ependymomas in neurofibromatosis type 2: a retrospective analysis of 55 patients. J. Neurosurg. Spine 14, 543–547 (2011).

    PubMed  Google Scholar 

  21. Lamszus, K. et al. Molecular genetic alterations on chromosomes 11 and 22 in ependymomas. Int. J. Cancer 91, 803–808 (2001).

    CAS  PubMed  Google Scholar 

  22. Glasker, S. Central nervous system manifestations in VHL: genetics, pathology and clinical phenotypic features. Fam. Cancer 4, 37–42 (2005).

    PubMed  Google Scholar 

  23. Friedman, J. M. Epidemiology of neurofibromatosis type 1. Am. J. Med. Genet. 89, 1–6 (1999).

    CAS  PubMed  Google Scholar 

  24. Cohen-Gadol, A. A., Zikel, O. M., Koch, C. A., Scheithauer, B. W. & Krauss, W. E. Spinal meningiomas in patients younger than 50 years of age: a 21-year experience. J. Neurosurg. 98, 258–263 (2003).

    PubMed  Google Scholar 

  25. Epstein, F. J., Farmer, J. P. & Freed, D. Adult intramedullary astrocytomas of the spinal cord. J. Neurosurg. 77, 355–359 (1992).

    CAS  PubMed  Google Scholar 

  26. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).

    CAS  PubMed  Google Scholar 

  28. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, R. et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468, 829–833 (2010).

    CAS  PubMed  Google Scholar 

  30. Kleihues, P. et al. The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol. 61, 215–225 (2002).

    PubMed  Google Scholar 

  31. Yang, H., Ye, D., Guan, K. L. & Xiong, Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin. Cancer Res. 18, 5562–5571 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, Y. H. et al. Frequent BRAF gain in low-grade diffuse gliomas with 1p/19q loss. Brain Pathol. 22, 834–840 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin, A. et al. BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J. Neuropathol. Exp. Neurol. 71, 66–72 (2012).

    CAS  PubMed  Google Scholar 

  34. Horbinski, C., Hamilton, R. L., Nikiforov, Y. & Pollack, I. F. Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol. 119, 641–649 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jeuken, J. W. & Wesseling, P. MAPK pathway activation through BRAF gene fusion in pilocytic astrocytomas; a novel oncogenic fusion gene with diagnostic, prognostic, and therapeutic potential. J. Pathol. 222, 324–328 (2010).

    CAS  PubMed  Google Scholar 

  36. Lv, S. et al. Correlation between IDH1 gene mutation status and survival of patients treated for recurrent glioma. Anticancer Res. 31, 4457–4463 (2011).

    CAS  PubMed  Google Scholar 

  37. Pollack, I. F. et al. IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children's Oncology Group. Childs Nerv. Syst. 27, 87–94 (2011).

    PubMed  Google Scholar 

  38. Ida, C. M. et al. BRAF alterations are frequent in cerebellar low-grade astrocytomas with diffuse growth pattern. J. Neuropathol. Exp. Neurol. 71, 631–639 (2012).

    CAS  PubMed  Google Scholar 

  39. Hawkins, C. et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin. Cancer Res. 17, 4790–4798 (2011).

    CAS  PubMed  Google Scholar 

  40. Walker, C., Baborie, A., Crooks, D., Wilkins, S. & Jenkinson, M. D. Biology, genetics and imaging of glial cell tumours. Br. J. Radiol. 84 (Spec. No. 2), S90–S106 (2011).

    PubMed  Google Scholar 

  41. Chi, J. H., Cachola, K. & Parsa, A. T. Genetics and molecular biology of intramedullary spinal cord tumors. Neurosurg. Clin. N. Am. 17, 1–5 (2006).

    PubMed  Google Scholar 

  42. Lee, M., Rezai, A. R., Freed, D. & Epstein, F. J. Intramedullary spinal cord tumors in neurofibromatosis. Neurosurgery 38, 32–37 (1996).

    CAS  PubMed  Google Scholar 

  43. Yagi, T., Ohata, K., Haque, M. & Hakuba, A. Intramedullary spinal cord tumour associated with neurofibromatosis type 1. Acta Neurochir. (Wien) 139, 1055–1060 (1997).

    CAS  Google Scholar 

  44. Sharma, S. et al. Distinct molecular signatures in pediatric infratentorial glioblastomas defined by aCGH. Exp. Mol. Pathol. 89, 169–174 (2010).

    CAS  PubMed  Google Scholar 

  45. Govindan, A. et al. Histopathologic and immunohistochemical profile of spinal glioblastoma: a study of six cases. Brain Tumor Pathol. 28, 297–303 (2011).

    PubMed  Google Scholar 

  46. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    CAS  PubMed  Google Scholar 

  47. Khuong-Quang, D. A. et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 124, 439–447 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiao, Y. et al. Frequent ATRX, CIC, and FUBP1 mutations refine the classification of malignant gliomas. Oncotarget 3, 709–722 (2012).

    PubMed  PubMed Central  Google Scholar 

  49. Kannan, K. et al. Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget 3, 1194–1203 (2012).

    PubMed  PubMed Central  Google Scholar 

  50. Harrop, J. S., Ganju, A., Groff, M. & Bilsky, M. Primary intramedullary tumors of the spinal cord. Spine (Phila. Pa 1976) 34, S69–S77 (2009).

    Google Scholar 

  51. Cohen, A. R., Wisoff, J. H., Allen, J. C. & Epstein, F. Malignant astrocytomas of the spinal cord. J. Neurosurg. 70, 50–54 (1989).

    CAS  PubMed  Google Scholar 

  52. Raco, A. et al. Long-term follow-up of intramedullary spinal cord tumors: a series of 202 cases. Neurosurgery 56, 972–981 (2005).

    PubMed  Google Scholar 

  53. Kaley, T. J., Mondesire-Crump, I. & Gavrilovic, I. T. Temozolomide or bevacizumab for spinal cord high-grade gliomas. J. Neurooncol. 109, 385–389 (2012).

    CAS  PubMed  Google Scholar 

  54. Patel, M., Vogelbaum, M. A., Barnett, G. H., Jalali, R. & Ahluwalia, M. S. Molecular targeted therapy in recurrent glioblastoma: current challenges and future directions. Expert Opin. Investig. Drugs 21, 1247–1266 (2012).

    CAS  PubMed  Google Scholar 

  55. Olar, A. & Aldape, K. D. Biomarkers classification and therapeutic decision-making for malignant gliomas. Curr. Treat. Options Oncol. 13, 417–436 (2012).

    PubMed  Google Scholar 

  56. Neyns, B. et al. Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J. Neurooncol. 103, 491–501 (2011).

    CAS  PubMed  Google Scholar 

  57. Batchelor, T. T. et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol. 28, 2817–2823 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Iwamoto, F. M. et al. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06–02). Neuro Oncol. 12, 855–861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Reardon, D. A. et al. Phase I study of sunitinib and irinotecan for patients with recurrent malignant glioma. J. Neurooncol. 105, 621–627 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Milano, M. T. et al. Primary spinal cord glioma: a Surveillance, Epidemiology, and End Results database study. J. Neurooncol. 98, 83–92 (2010).

    PubMed  Google Scholar 

  61. Poppleton, H. & Gilbertson, R. J. Stem cells of ependymoma. Br. J. Cancer 96, 6–10 (2007).

    CAS  PubMed  Google Scholar 

  62. Taylor, M. D. et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8, 323–335 (2005).

    CAS  PubMed  Google Scholar 

  63. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Ann. Rev. Neurosci. 32, 149–184 (2009).

    CAS  PubMed  Google Scholar 

  64. Johnson, R. A. et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466, 632–636 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Palm, T. et al. Expression profiling of ependymomas unravels localization and tumor grade-specific tumorigenesis. Cancer 115, 3955–3968 (2009).

    CAS  PubMed  Google Scholar 

  66. Hamilton, R. L. & Pollack, I. F. The molecular biology of ependymomas. Brain Pathol. 7, 807–822 (1997).

    CAS  PubMed  Google Scholar 

  67. Nakamura, M. et al. Long-term surgical outcomes for myxopapillary ependymomas of the cauda equina. Spine (Phila. Pa 1976) 34, E756–E760 (2009).

    Google Scholar 

  68. Singh, P. K., Gutmann, D. H., Fuller, C. E., Newsham, I. F. & Perry, A. Differential involvement of protein 4.1 family members DAL-1 and NF2 in intracranial and intraspinal ependymomas. Mod. Pathol. 15, 526–531 (2002).

    PubMed  Google Scholar 

  69. Korshunov, A. et al. Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am. J. Pathol. 163, 1721–1727 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Witt, H. et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20, 143–157 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Korshunov, A. et al. Molecular staging of intracranial ependymoma in children and adults. J. Clin. Oncol. 28, 3182–3190 (2010).

    PubMed  Google Scholar 

  72. Scheil, S. et al. Low frequency of chromosomal imbalances in anaplastic ependymomas as detected by comparative genomic hybridization. Brain Pathol. 11, 133–143 (2001).

    CAS  PubMed  Google Scholar 

  73. Stamenkovic, I. & Yu, Q. Merlin, a “magic” linker between extracellular cues and intracellular signaling pathways that regulate cell motility, proliferation, and survival. Curr. Protein Pept. Sci. 11, 471–484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, W., Cooper, J., Karajannis, M. A. & Giancotti, F. G. Merlin: a tumour suppressor with functions at the cell cortex and in the nucleus. EMBO Rep. 13, 204–215 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fakhrai, N. et al. Recurrent spinal ependymoma showing partial remission under Imatimib. Acta Neurochir. (Wien) 146, 1255–1258 (2004).

    CAS  Google Scholar 

  76. Glasker, S. et al. The impact of molecular genetic analysis of the VHL gene in patients with haemangioblastomas of the central nervous system. J. Neurol. Neurosurg. Psychiatry. 67, 758–762 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Shuin, T. et al. Von Hippel–Lindau disease: molecular pathological basis, clinical criteria, genetic testing, clinical features of tumors and treatment. Jpn. J. Clin. Oncol. 36, 337–343 (2006).

    PubMed  Google Scholar 

  78. Bader, H. L. & Hsu, T. Systemic VHL gene functions and the VHL disease. FEBS Lett. 586, 1562–1569 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Glasker, S. et al. Reconsideration of biallelic inactivation of the VHL tumour suppressor gene in hemangioblastomas of the central nervous system. J. Neurol. Neurosurg. Psychiatry. 70, 644–648 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Beckner, M. E. et al. Loss of heterozygosity reveals non-VHL allelic loss in hemangioblastomas at 22q13. Hum. Pathol. 35, 1105–1111 (2004).

    CAS  PubMed  Google Scholar 

  81. Rickert, C. H., Hasselblatt, M., Jeibmann, A. & Paulus, W. Cellular and reticular variants of hemangioblastoma differ in their cytogenetic profiles. Hum. Pathol. 37, 1452–1457 (2006).

    CAS  PubMed  Google Scholar 

  82. Na, J. H. et al. Spinal cord hemangioblastoma: diagnosis and clinical outcome after surgical treatment. J. Korean Neurosurg. Soc. 42, 436–440 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mandigo, C. E., Ogden, A. T., Angevine, P. D. & McCormick, P. C. Operative management of spinal hemangioblastoma. Neurosurgery 65, 1166–1177 (2009).

    PubMed  Google Scholar 

  84. Selch, M. T. et al. Image-guided linear accelerator-based spinal radiosurgery for hemangioblastoma. Surg. Neurol. Int. 3, 73 (2012).

    PubMed  PubMed Central  Google Scholar 

  85. Sardi, I. et al. Monotherapy with thalidomide for treatment of spinal cord hemangioblastomas in a patient with von Hippel–Lindau disease. Pediatr. Blood Cancer 53, 464–467 (2009).

    PubMed  Google Scholar 

  86. Madhusudan, S. et al. Antiangiogenic therapy for von Hippel–Lindau disease. JAMA 291, 943–944 (2004).

    CAS  PubMed  Google Scholar 

  87. Hrisomalos, F. N., Maturi, R. K. & Pata, V. Long-term use of intravitreal bevacizumab (avastin) for the treatment of von hippel-lindau associated retinal hemangioblastomas. Open Ophthalmol. J. 4, 66–69 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sandalcioglu, I. E. et al. Spinal meningiomas: critical review of 131 surgically treated patients. Eur. Spine J. 17, 1035–1041 (2008).

    PubMed  PubMed Central  Google Scholar 

  89. Setzer, M., Vatter, H., Marquardt, G., Seifert, V. & Vrionis, F. D. Management of spinal meningiomas: surgical results and a review of the literature. Neurosurg. Focus 23, E14 (2007).

    PubMed  Google Scholar 

  90. Vranic, A., Peyre, M. & Kalamarides, M. New insights into meningioma: from genetics to trials. Curr. Opin. Oncol. 24, 660–665 (2012).

    CAS  PubMed  Google Scholar 

  91. Barresi, V., Alafaci, C., Caffo, M., Barresi, G. & Tuccari, G. Clinicopathological characteristics, hormone receptor status and matrix metallo-proteinase-9 (MMP-9) immunohistochemical expression in spinal meningiomas. Pathol. Res. Pract. 208, 350–355 (2012).

    CAS  PubMed  Google Scholar 

  92. Maiuri, F., De Caro, M. L., de Divitiis, O., Vergara, P. & Mariniello, G. Spinal meningiomas: age-related features. Clin. Neurol. Neurosurg. 113, 34–38 (2011).

    CAS  PubMed  Google Scholar 

  93. Mirimanoff, R. O., Dosoretz, D. E., Linggood, R. M., Ojemann, R. G. & Martuza, R. L. Meningioma: analysis of recurrence and progression following neurosurgical resection. J. Neurosurg. 62, 18–24 (1985).

    CAS  PubMed  Google Scholar 

  94. Solero, C. L. et al. Spinal meningiomas: review of 174 operated cases. Neurosurgery 25, 153–160 (1989).

    CAS  PubMed  Google Scholar 

  95. Pham, M. H. et al. Molecular genetics of meningiomas: a systematic review of the current literature and potential basis for future treatment paradigms. Neurosurg. Focus 30, E7 (2011).

    PubMed  Google Scholar 

  96. Nunes, F. et al. Inactivation patterns of NF2 and DAL-1/4.1B (EPB41L3) in sporadic meningioma. Cancer Genet. Cytogenet. 162, 135–139 (2005).

    CAS  PubMed  Google Scholar 

  97. Weber, R. G. et al. Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc. Natl Acad. Sci. USA 94, 14719–14724 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Carlson, K. M., Bruder, C., Nordenskjold, M. & Dumanski, J. P. 1p and 3p deletions in meningiomas without detectable aberrations of chromosome 22 identified by comparative genomic hybridization. Genes Chromosomes Cancer 20, 419–424 (1997).

    CAS  PubMed  Google Scholar 

  99. Goutagny, S. & Kalamarides, M. Meningiomas and neurofibromatosis. J. Neurooncol. 99, 341–347 (2010).

    PubMed  Google Scholar 

  100. Sayagues, J. M. et al. Microarray-based analysis of spinal versus intracranial meningiomas: different clinical, biological, and genetic characteristics associated with distinct patterns of gene expression. J. Neuropathol. Exp. Neurol. 65, 445–454 (2006).

    CAS  PubMed  Google Scholar 

  101. Arslantas, A. et al. Detection of chromosomal imbalances in spinal meningiomas by comparative genomic hybridization. Neurol. Med. Chir. (Tokyo) 43, 12–18 (2003).

    Google Scholar 

  102. Gutmann, D. H. et al. Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Hum. Mol. Genet. 9, 1495–1500 (2000).

    CAS  PubMed  Google Scholar 

  103. Halaka, A. N., Bunning, R. A., Bird, C. C., Gibson, M. & Reynolds, J. J. Production of collagenase and inhibitor (TIMP) by intracranial tumors and dura in vitro. J. Neurosurg. 59, 461–466 (1983).

    CAS  PubMed  Google Scholar 

  104. Mizoue, T., Kawamoto, H., Arita, K., Tominaga, A. & Kurisu, K. Secretion of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by meningiomas detected by cell immunoblot analysis. Acta Neurochir. (Wien) 141, 481–486 (1999).

    CAS  Google Scholar 

  105. Paek, S. H. et al. The role of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinase in microcystic meningiomas. Oncol. Rep. 16, 49–56 (2006).

    CAS  PubMed  Google Scholar 

  106. Goutagny, S. et al. Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin. Cancer Res. 16, 4155–4164 (2010).

    CAS  PubMed  Google Scholar 

  107. Horowitz, P. et al. Novel oncogene discovery in meningiomas. Presented at the Congress of Neurological Surgeons, Annual Meeting 2012.

  108. Laurendeau, I. et al. Gene expression profiling of the hedgehog signaling pathway in human meningiomas. Mol. Med. 16, 262–270 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Varjosalo, M. & Taipale, J. Hedgehog: functions and mechanisms. Genes Dev. 22, 2454–2472 (2008).

    CAS  PubMed  Google Scholar 

  110. Kotecha, R. S. et al. Meningiomas in children and adolescents: a meta-analysis of individual patient data. Lancet Oncol. 12, 1229–1239 (2011).

    PubMed  Google Scholar 

  111. Preusser, M. et al. Trabectedin has promising antineoplastic activity in high-grade meningioma. Cancer 118, 5038–5049 (2012).

    CAS  PubMed  Google Scholar 

  112. Blakeley, J. Development of drug treatments for neurofibromatosis type 2-associated vestibular schwannoma. Curr. Opin. Otolaryngol. Head Neck Surg. 20, 372–379 (2012).

    PubMed  PubMed Central  Google Scholar 

  113. Reifenberger, G. & Collins, V. P. Pathology and molecular genetics of astrocytic gliomas. J. Mol. Med. (Berl.) 82, 656–670 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the Burroughs Wellcome Career Award for Medical Scientists and the Johns Hopkins Clinician Scientist Award. Z. L. Gokaslan receives instructorship and research support from AO North America, AO Spine, American Association of Neurological Surgeons Neurosurgery Research and Education Foundation, and the Orthopaedic Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P. L. Zadnik and C. Bettegowda researched data for the article. All authors provided substantial contributions to discussions of the content, writing the article, and to reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Chetan Bettegowda.

Ethics declarations

Competing interests

Z. L. Gokaslan is a stock shareholder in US Spine and Spinal Kinetics. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zadnik, P., Gokaslan, Z., Burger, P. et al. Spinal cord tumours: advances in genetics and their implications for treatment. Nat Rev Neurol 9, 257–266 (2013). https://doi.org/10.1038/nrneurol.2013.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.48

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer