Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Delayed neurological deterioration after subarachnoid haemorrhage

This article has been updated

Key Points

  • The two main effects of subarachnoid haemorrhage (SAH) are early brain injury and delayed cerebral ischaemia (DCI)

  • The pathogenesis of DCI is hypothesized to be multifactorial and includes angiographic vasospasm, cortical spreading ischaemia, microthrombosis and microcirculation constriction

  • Early brain injury, which refers to the acute effects of subarachnoid blood and the transient global ischaemia that may accompany aneurysm rupture, has also been suggested to contribute to DCI

  • Risk of DCI is increased by volume, density and persistence of the subarachnoid thrombus, early brain injury, factors that reduce brain oxygen and glucose supply and, probably, pre-existing hypertension

  • Treatments that reduce the risk of DCI include nimodipine, rescue therapy consisting of balloon or pharmacological angioplasty, and induced hypertension

  • Drugs under investigation for DCI include intrathecal dihydropyridines, magnesium, albumin, sodium nitrite, statins, dantrolene and cilostazol

Abstract

Subarachnoid haemorrhage (SAH) causes early brain injury (EBI) that is mediated by effects of transient cerebral ischaemia during bleeding plus effects of the subarachnoid blood. Secondary effects of SAH include increased intracranial pressure, destruction of brain tissue by intracerebral haemorrhage, brain shift, and herniation, all of which contribute to pathology. Many patients survive these phenomena, but deteriorate days later from delayed cerebral ischaemia (DCI), which causes poor outcome or death in up to 30% of patients with SAH. DCI is thought to be caused by the combined effects of angiographic vasospasm, arteriolar constriction and thrombosis, cortical spreading ischaemia, and processes triggered by EBI. Treatment for DCI includes prophylactic administration of nimodipine, and current neurointensive care. Prompt recognition of DCI and immediate treatment by means of induced hypertension and balloon or pharmacological angioplasty are considered important by many physicians, although the evidence to support such approaches is limited. This Review summarizes the pathophysiology of DCI after SAH and discusses established treatments for this condition. Novel strategies—including drugs such as statins, sodium nitrite, albumin, dantrolene, cilostazol, and intracranial delivery of nimodipine or magnesium—are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early pathophysiology of subarachnoid haemorrhage.
Figure 2: Pathophysiological processes in delayed cortical ischaemia.
Figure 3: Pathophysiological causes of ischaemia.
Figure 4: CT scan and cerebral angiography of SAH.
Figure 5: A management scheme—our approach to SAH and DCI.

Similar content being viewed by others

Change history

  • 17 December 2013

    In the version of this article initially published online, the figure legend for part e of Figure 4 was omitted. The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Feigin, V. L., Lawes, C. M., Bennett, D. A., Barker-Collo, S. L. & Parag, V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 8, 355–369 (2009).

    Article  PubMed  Google Scholar 

  2. Lovelock, C. E., Rinkel, G. J. & Rothwell, P. M. Time trends in outcome of subarachnoid hemorrhage: population-based study and systematic review. Neurology 74, 1494–1501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taylor, T. N. et al. Lifetime cost of stroke in the United States. Stroke 27, 1459–1466 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Al-Khindi, T., Macdonald, R. L. & Schweizer, T. A. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke 41, e519–e536 (2010).

    Article  PubMed  Google Scholar 

  5. Pickard, J. D. et al. Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ 298, 636–642 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Molyneux, A. et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 360, 1267–1274 (2002).

    Article  PubMed  Google Scholar 

  7. Etminan, N., Vergouwen, M. D., Ilodigwe, D. & Macdonald, R. L. Effect of pharmaceutical treatment on vasospasm, delayed cerebral ischemia, and clinical outcome in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J. Cereb. Blood Flow Metab. 31, 1443–1451 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hinson, H. E. & Sheth, K. N. Manifestations of the hyperadrenergic state after acute brain injury. Curr. Opin. Crit. Care 18, 139–145 (2012).

    Article  PubMed  Google Scholar 

  9. Tam, A. K. et al. Impact of systemic inflammatory response syndrome on vasospasm, cerebral infarction, and outcome after subarachnoid hemorrhage: exploratory analysis of CONSCIOUS-1 database. Neurocrit. Care 13, 182–189 (2010).

    Article  PubMed  Google Scholar 

  10. Gao, C. et al. Relationship between sympathetic nervous activity and inflammatory response after subarachnoid hemorrhage in a perforating canine model. Auton. Neurosci. 147, 70–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Rosengart, A. J., Schultheiss, K. E., Tolentino, J. & Macdonald, R. L. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke 38, 2315–2321 (2007).

    Article  PubMed  Google Scholar 

  12. Starke, R. M. & Connolly, E. S. Jr. Rebleeding after aneurysmal subarachnoid hemorrhage. Neurocrit. Care 15, 241–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Lo, B. W., Macdonald, R. L., Baker, A. & Levine, M. A. Clinical outcome prediction in aneurysmal subarachnoid hemorrhage using bayesian neural networks with fuzzy logic inferences. Comput. Math. Methods Med. 2013, 904860 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sehba, F. A., Hou, J., Pluta, R. M. & Zhang, J. H. The importance of early brain injury after subarachnoid hemorrhage. Prog. Neurobiol. 97, 14–37 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mahaney, K. B., Todd, M. M., Bayman, E. O. & Torner, J. C. Acute postoperative neurological deterioration associated with surgery for ruptured intracranial aneurysm: incidence, predictors, and outcomes. J. Neurosurg. 116, 1267–1278 (2012).

    Article  PubMed  Google Scholar 

  16. Broderick, J. P., Brott, T. G., Duldner, J. E., Tomsick, T. & Leach, A. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 25, 1342–1347 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Macdonald, R. L., Rosengart, A., Huo, D. & Karrison, T. Factors associated with the development of vasospasm after planned surgical treatment of aneurysmal subarachnoid hemorrhage. J. Neurosurg. 99, 644–652 (2003).

    Article  PubMed  Google Scholar 

  18. Dorhout Mees, S. M., Kerr, R. S., Rinkel, G. J., Algra, A. & Molyneux, A. J. Occurrence and impact of delayed cerebral ischemia after coiling and after clipping in the International Subarachnoid Aneurysm Trial (ISAT). J. Neurol. 259, 679–683 (2012).

    Article  PubMed  Google Scholar 

  19. Chou, C. H. et al. Costs of vasospasm in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery 67, 345–352 (2010).

    Article  PubMed  Google Scholar 

  20. Dorsch, N. A clinical review of cerebral vasospasm and delayed ischaemia following aneurysm rupture. Acta Neurochir. Suppl. 110, 5–6 (2011).

    PubMed  Google Scholar 

  21. Rosengart, A. J. et al. Outcome in patients with subarachnoid hemorrhage treated with antiepileptic drugs. J. Neurosurg. 107, 253–260 (2007).

    Article  PubMed  Google Scholar 

  22. Ducruet, A. F. et al. Genetic determinants of cerebral vasospasm, delayed cerebral ischemia, and outcome after aneurysmal subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 30, 676–688 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Khurana, V. G. et al. Endothelial nitric oxide synthase gene polymorphisms predict susceptibility to aneurysmal subarachnoid hemorrhage and cerebral vasospasm. J. Cereb. Blood Flow Metab. 24, 291–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Vergouwen, M. D. et al. Plasminogen activator inhibitor-1 4G allele in the 4G/5G promoter polymorphism increases the occurrence of cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke 35, 1280–1283 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Fisher, C. M., Kistler, J. P. & Davis, J. M. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6, 1–9 (1980).

    Article  CAS  PubMed  Google Scholar 

  26. Reilly, C., Amidei, C., Tolentino, J., Jahromi, B. S. & Macdonald, R. L. Clot volume and clearance rate as independent predictors of vasospasm after aneurysmal subarachnoid hemorrhage. J. Neurosurg. 101, 255–261 (2004).

    Article  PubMed  Google Scholar 

  27. Kramer, A. H. & Fletcher, J. J. Locally-administered intrathecal thrombolytics following aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Neurocrit. Care 14, 489–499 (2011).

    Article  PubMed  Google Scholar 

  28. Pluta, R. M. et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol. Res. 31, 151–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haley, E. C. Jr, Kassell, N. F. & Torner, J. C. A randomized trial of nicardipine in subarachnoid hemorrhage: angiographic and transcranial Doppler ultrasound results. A report of the Cooperative Aneurysm Study. J. Neurosurg. 78, 548–553 (1993).

    Article  PubMed  Google Scholar 

  30. Macdonald, R. L. et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke 39, 3015–3021 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Vorkapic, P., Bevan, J. A. & Bevan, R. D. Longitudinal in vivo and in vitro time-course study of chronic cerebrovasospasm in the rabbit basilar artery. Neurosurg. Rev. 14, 215–219 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Crowley, R. W. et al. Angiographic vasospasm is strongly correlated with cerebral infarction after subarachnoid hemorrhage. Stroke 42, 919–923 (2011).

    Article  PubMed  Google Scholar 

  33. Dorhout Mees, S. M. et al. Calcium antagonists for aneurysmal subarachnoid hemorrhage. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD000277. http://dx.doi.org/10.1002/14651858.CD000277.pub3.

  34. Vergouwen, M. D., Vermeulen, M., Coert, B. A., Stroes, E. S. & Roos, Y. B. Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J. Cereb. Blood Flow Metab. 28, 1761–1770 (2008).

    Article  PubMed  Google Scholar 

  35. Dreier, J. P. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat. Med. 17, 439–447 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Stein, S. C., Browne, K. D., Chen, X. H., Smith, D. H. & Graham, D. I. Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: an autopsy study. 59, 781–787 (2006).

  37. Schubert, G. A., Seiz, M., Hegewald, A. A., Manville, J. & Thome, C. Acute hypoperfusion immediately after subarachnoid hemorrhage: a xenon contrast-enhanced CT study. J. Neurotrauma 26, 2225–2231 (2009).

    Article  PubMed  Google Scholar 

  38. Sehba, F. A., Mostafa, G., Friedrich, V. Jr & Bederson, J. B. Acute microvascular platelet aggregation after subarachnoid hemorrhage. J. Neurosurg. 102, 1094–1100 (2005).

    Article  PubMed  Google Scholar 

  39. Friedrich, V., Flores, R., Muller, A. & Sehba, F. A. Luminal platelet aggregates in functional deficits in parenchymal vessels after subarachnoid hemorrhage. Brain Res. 1354, 179–187 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Sabri, M. et al. Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage. Neuroscience 224, 26–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Friedrich, V., Flores, R., Muller, A. & Sehba, F. A. Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience 165, 968–975 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Hossmann, K. A. Reperfusion of the brain after global ischemia: hemodynamic disturbances. Shock 8, 95–101 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Stoltenburg-Didinger, G. & Schwarz, K. in Stroke and Microcirculation (eds Cervos-Navarro, J. & Ferszt, R.) 471–480 (Raven Press, 1987).

    Google Scholar 

  44. Suzuki, S., Suzuki, M., Iwabuchi, T. & Kamata, Y. Role of multiple cerebral microthrombosis in symptomatic cerebral vasospasm: with a case report. Neurosurgery 13, 199–203 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Romano, J. G. et al. Microemboli in aneurysmal subarachnoid hemorrhage. J. Neuroimaging 18, 396–401 (2008).

    Article  PubMed  Google Scholar 

  46. Larsen, C. C., Hansen-Schwartz, J., Nielsen, J. D. & Astrup, J. Blood coagulation and fibrinolysis after experimental subarachnoid hemorrhage. Acta Neurochir. (Wien) 152, 1577–1581 (2010).

    Article  Google Scholar 

  47. Pisapia, J. M. et al. Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan. Exp. Neurol. 233, 357–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Doczi, T., Joo, F., Adam, G., Bozoky, B. & Szerdahelyi, P. Blood–brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model. Neurosurgery 18, 733–739 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Germano, A., d'Avella, D., Imperatore, C., Caruso, G. & Tomasello, F. Time-course of blood–brain barrier permeability changes after experimental subarachnoid haemorrhage. Acta Neurochir. (Wien) 142, 575–580 (2000).

    Article  CAS  Google Scholar 

  50. Friedrich, B., Muller, F., Feiler, S., Scholler, K. & Plesnila, N. Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study. J. Cereb. Blood Flow Metab. 32, 447–455 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Britz, G. W. et al. Time-dependent alterations in functional and pharmacological arteriolar reactivity after subarachnoid hemorrhage. Stroke 38, 1329–1335 (2007).

    Article  PubMed  Google Scholar 

  52. Park, K. W., Metais, C., Dai, H. B., Comunale, M. E. & Sellke, F. W. Microvascular endothelial dysfunction and its mechanism in a rat model of subarachnoid hemorrhage. Anesth. Analg. 92, 990–996 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Rothoerl, R. D. & Ringel, F. Molecular mechanisms of cerebral vasospasm following aneurysmal SAH. Neurol. Res. 29, 636–642 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Pradilla, G., Chaichana, K. L., Hoang, S., Huang, J. & Tamargo, R. J. Inflammation and cerebral vasospasm after subarachnoid hemorrhage. Neurosurg. Clin. N. Am. 21, 365–379 (2010).

    Article  PubMed  Google Scholar 

  55. Macdonald, R. L. & Weir, B. K. A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke 22, 971–982 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Chaichana, K. L., Levy, A. P., Miller-Lotan, R., Shakur, S. & Tamargo, R. J. Haptoglobin 2–2 genotype determines chronic vasospasm after experimental subarachnoid hemorrhage. Stroke 38, 3266–3271 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Borsody, M., Burke, A., Coplin, W., Miller-Lotan, R. & Levy, A. Haptoglobin and the development of cerebral artery vasospasm after subarachnoid hemorrhage. Neurology 66, 634–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Peterson, J. W., Candia, G., Spanos, A. J. & Zervas, N. T. The calmodulin antagonist trifluoperazine provides mild prophylactic protection against cerebral vasospasm after subarachnoid hemorrhage, but no therapeutic value. Neurosurgery 25, 917–922 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. German, J. W., Gross, C. E., Giclas, P., Watral, W. & Bednar, M. M. Systemic complement depletion inhibits experimental cerebral vasospasm. Neurosurgery 39, 141–145 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Kaura, V. & Bonner, S. Subarachnoid haemorrhage: early clinical indicators and biomarkers. Trends Anaesth. Crit. Care 2, 42–47 (2012).

    Article  Google Scholar 

  61. Lad, S. P., Hegen, H., Gupta, G., Deisenhammer, F. & Steinberg, G. K. Proteomic biomarker discovery in cerebrospinal fluid for cerebral vasospasm following subarachnoid hemorrhage. J. Stroke Cerebrovasc. Dis. 21, 30–41 (2012).

    Article  PubMed  Google Scholar 

  62. Bavbek, M. et al. Monoclonal antibodies against ICAM-1 and CD18 attenuate cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. Stroke 29, 1930–1935 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Thai, Q. A., Oshiro, E. M. & Tamargo, R. J. Inhibition of experimental vasospasm in rats with the periadventitial administration of ibuprofen using controlled-release polymers. Stroke 30, 140–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Tiebosch, I. A. et al. Effect of interferon-β on neuroinflammation, brain injury and neurological outcome after experimental subarachnoid hemorrhage. Neurocrit. Care 18, 96–105 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Feigin, V. et al. Corticosteroids for aneurysmal subarachnoid haemorrhage and primary intracerebral haemorrhage. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD004583. http://dx.doi.org/10.1002/14651858.CD004583.pub2.

  66. Gomis, P. et al. Randomized, double-blind, placebo-controlled, pilot trial of high-dose methylprednisolone in aneurysmal subarachnoid hemorrhage. J. Neurosurg. 112, 681–688 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Vergouwen, M. D., de Haan, R. J., Vermeulen, M. & Roos, Y. B. Effect of statin treatment on vasospasm, delayed cerebral ischemia, and functional outcome in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis update. Stroke 41, e47–e52 (2010).

    CAS  PubMed  Google Scholar 

  68. Tseng, M. Y. Summary of evidence on immediate statins therapy following aneurysmal subarachnoid hemorrhage. Neurocrit. Care 15, 298–301 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Lo, E. H., Dalkara, T. & Moskowitz, M. A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 4, 399–415 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Park, S. et al. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke 35, 2412–2417 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Sasaki, T., Kassell, N. F., Yamashita, M., Fujiwara, S. & Zuccarello, M. Barrier disruption in the major cerebral arteries following experimental subarachnoid hemorrhage. J. Neurosurg. 63, 433–440 (1985).

    Article  CAS  PubMed  Google Scholar 

  73. Yatsushige, H., Ostrowski, R. P., Tsubokawa, T., Colohan, A. & Zhang, J. H. Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J. Neurosci. Res. 85, 1436–1448 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Yan, J. et al. Blood–brain barrier disruption following subarachnoid hemorrhage may be facilitated through PUMA induction of endothelial cell apoptosis from the endoplasmic reticulum. Exp. Neurol. 230, 240–247 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Doczi, T. The pathogenetic and prognostic significance of blood–brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies. Acta Neurochir. 77, 110–132 (1985).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, Y. & Rosenberg, G. A. Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42, 3323–3328 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koide, M., Bonev, A. D., Nelson, M. T. & Wellman, G. C. Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels. Proc. Natl Acad. Sci. USA 109, E1387–E1395 (2012).

    Article  PubMed  Google Scholar 

  78. Leao, A. A. Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7, 359–390 (1944).

    Article  Google Scholar 

  79. de Rooij, N. K., Rinkel, G. J., Dankbaar, J. W. & Frijns, C. J. Delayed cerebral ischemia after subarachnoid hemorrhage: a systematic review of clinical, laboratory, and radiological predictors. Stroke 44, 43–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Petruk, K. C. et al. Nimodipine treatment in poor-grade aneurysm patients. Results of a multicenter double-blind placebo-controlled trial. J. Neurosurg. 68, 505–517 (1988).

    Article  CAS  PubMed  Google Scholar 

  81. Vergouwen, M. D. et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke 41, 2391–2395 (2010).

    Article  PubMed  Google Scholar 

  82. Diringer, M. N. et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society's Multidisciplinary Consensus Conference. Neurocrit. Care 15, 211–240 (2011).

    Article  PubMed  Google Scholar 

  83. Rabinstein, A. A., Weigand, S., Atkinson, J. L. & Wijdicks, E. F. Patterns of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke 36, 992–997 (2005).

    Article  PubMed  Google Scholar 

  84. Schmidt, J. M. et al. Frequency and clinical impact of asymptomatic cerebral infarction due to vasospasm after subarachnoid hemorrhage. J. Neurosurg. 109, 1052–1059 (2008).

    Article  PubMed  Google Scholar 

  85. Vergouwen, M. D., Ilodigwe, D. & Macdonald, R. L. Cerebral infarction after subarachnoid hemorrhage contributes to poor outcome by vasospasm-dependent and -independent effects. Stroke 42, 924–929 (2011).

    Article  PubMed  Google Scholar 

  86. Crobeddu, E. et al. Predicting the lack of development of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke 43, 697–701 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Chaudhary, S. R. et al. Prospective evaluation of multidetector-row CT angiography for the diagnosis of vasospasm following subarachnoid hemorrhage: a comparison with digital subtraction angiography. Cerebrovasc. Dis. 25, 144–150 (2008).

    Article  PubMed  Google Scholar 

  88. Wintermark, M. et al. Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. AJNR Am. J. Neuroradiol. 27, 26–34 (2006).

    CAS  PubMed  Google Scholar 

  89. Dankbaar, J. W. et al. Diagnosing delayed cerebral ischemia with different CT modalities in patients with subarachnoid hemorrhage with clinical deterioration. Stroke 40, 3493–3498 (2009).

    Article  PubMed  Google Scholar 

  90. Fontanella, M. et al. Vasospasm after SAH due to aneurysm rupture of the anterior circle of Willis: value of TCD monitoring. Neurol. Res. 30, 256–261 (2008).

    Article  PubMed  Google Scholar 

  91. Budohoski, K. P. et al. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke 43, 3230–3237 (2012).

    Article  PubMed  Google Scholar 

  92. Kistka, H., Dewan, M. C. & Mocco, J. Evidence-based cerebral vasospasm surveillance. Neurol. Res. Int. 2013, 256713 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Claassen, J., Mayer, S. A. & Hirsch, L. J. Continuous EEG monitoring in patients with subarachnoid hemorrhage. J. Clin. Neurophysiol. 22, 92–98 (2005).

    Article  PubMed  Google Scholar 

  94. Vespa, P. M. et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr. Clin. Neurophysiol. 103, 607–615 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Hanggi, D. Monitoring and detection of vasospasm II: EEG and invasive monitoring. Neurocrit. Care 15, 318–323 (2011).

    Article  PubMed  Google Scholar 

  96. Unterberg, A. W., Sakowitz, O. W., Sarrafzadeh, A. S., Benndorf, G. & Lanksch, W. R. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J. Neurosurg. 94, 740–749 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Vajkoczy, P., Horn, P., Thome, C., Munch, E. & Schmiedek, P. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J. Neurosurg. 98, 1227–1234 (2003).

    Article  PubMed  Google Scholar 

  98. Macdonald, R. L. et al. Subarachnoid Hemorrhage International Trialists data repository (SAHIT). World Neurosurg. 79, 418–422 (2013).

    Article  PubMed  Google Scholar 

  99. Macdonald, R. L. et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 10, 618–625 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Macdonald, R. L. et al. Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke 43, 1463–1469 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Vergouwen, M. D., Algra, A. & Rinkel, G. J. Endothelin receptor antagonists for aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis update. Stroke 43, 2671–2676 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Yamaguchi, S. et al. Involvement of Rho-kinase in tumor necrosis factor-α-induced interleukin-6 release from C6 glioma cells. Neurochem. Int. 55, 438–445 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Satoh, S. et al. Amelioration of endothelial damage/dysfunction is a possible mechanism for the neuroprotective effects of Rho-kinase inhibitors against ischemic brain damage. Brain Res. Bull. 81, 191–195 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, G. J. et al. Systematic assessment and meta-analysis of the efficacy and safety of fasudil in the treatment of cerebral vasospasm in patients with subarachnoid hemorrhage. Eur. J. Clin. Pharmacol. 68, 131–139 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Li, F. et al. The protective effect of dantrolene on ischemic neuronal cell death is associated with reduced expression of endoplasmic reticulum stress markers. Brain Res. 1048, 59–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Muehlschlegel, S., Rordorf, G. & Sims, J. Effects of a single dose of dantrolene in patients with cerebral vasospasm after subarachnoid hemorrhage: a prospective pilot study. Stroke 42, 1301–1306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pluta, R. M. New regulatory, signaling pathways, and sources of nitric oxide. Acta Neurochir. Suppl. 110, 7–12 (2011).

    PubMed  Google Scholar 

  108. Oldfield, E. H. et al. Safety and pharmacokinetics of sodium nitrite in patients with subarachnoid hemorrhage: a phase IIA study. J. Neurosurg. 119, 634–641 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Omeis, I., Jayson, N. A., Murali, R. & Abrahams, J. M. Treatment of cerebral vasospasm with biocompatible controlled-release systems for intracranial drug delivery. Neurosurgery 63, 1011–1019 (2008).

    Article  PubMed  Google Scholar 

  110. Barth, M. et al. Effect of nicardipine prolonged-release implants on cerebral vasospasm and clinical outcome after severe aneurysmal subarachnoid hemorrhage: a prospective, randomized, double-blind phase IIa study. Stroke 38, 330–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Krischek, B., Kasuya, H., Onda, H. & Hori, T. Nicardipine prolonged-release implants for preventing cerebral vasospasm after subarachnoid hemorrhage: effect and outcome in the first 100 patients. Neurol. Med. Chir. (Tokyo) 47, 389–394 (2007).

    Article  Google Scholar 

  112. Dorhout Mees, S. M., van den Bergh, W. M., Algra, A. & Rinkel, G. J. Antiplatelet therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD006184. http://dx.doi.org/10.1002/14651858.CD006184.pub2.

  113. Cronqvist, M. et al. Diffusion and perfusion MRI in patients with ruptured and unruptured intracranial aneurysms treated by endovascular coiling: complications, procedural results, MR findings and clinical outcome. Neuroradiology 47, 855–873 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. van den Bergh, W. M., Kerr, R. S., Algra, A., Rinkel, G. J. & Molyneux, A. J. Effect of antiplatelet therapy for endovascular coiling in aneurysmal subarachnoid hemorrhage. Stroke 40, 1969–1972 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Suarez, J. I. et al. Effect of human albumin administration on clinical outcome and hospital cost in patients with subarachnoid hemorrhage. J. Neurosurg. 100, 585–590 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Suarez, J. I. et al. The Albumin in Subarachnoid Hemorrhage (ALISAH) multicenter pilot clinical trial: safety and neurologic outcomes. Stroke 43, 683–690 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Springborg, J. B. et al. A single subcutaneous bolus of erythropoietin normalizes cerebral blood flow autoregulation after subarachnoid haemorrhage in rats. Br. J. Pharmacol. 135, 823–829 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Grasso, G. et al. Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc. Natl Acad. Sci. USA 99, 5627–5631 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Tsai, P. T. et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J. Neurosci. 26, 1269–1274 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tseng, M. Y. et al. Acute systemic erythropoietin therapy to reduce delayed ischemic deficits following aneurysmal subarachnoid hemorrhage: a phase II randomized, double-blind, placebo-controlled trial. Clinical article. J. Neurosurg. 111, 171–180 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Springborg, J. B. et al. Erythropoietin in patients with aneurysmal subarachnoid haemorrhage: a double blind randomised clinical trial. Acta Neurochir. (Wien) 149, 1089–1101 (2007).

    Article  CAS  Google Scholar 

  122. Liao, J. K. & Laufs, U. Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 45, 89–118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  124. Wong, G. K. et al. High-dose simvastatin for aneurysmal subarachnoid hemorrhage: a multicenter, randomized, controlled, double-blind clinical trial protocol. Neurosurgery 72, 840–844 (2013).

    Article  PubMed  Google Scholar 

  125. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  126. Euser, A. G. & Cipolla, M. J. Magnesium sulfate for the treatment of eclampsia: a brief review. Stroke 40, 1169–1175 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mees, S. M. et al. Magnesium for aneurysmal subarachnoid haemorrhage (MASH-2): a randomised placebo-controlled trial. Lancet 380, 44–49 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  128. Muroi, C., Terzic, A., Fortunati, M., Yonekawa, Y. & Keller, E. Magnesium sulfate in the management of patients with aneurysmal subarachnoid hemorrhage: a randomized, placebo-controlled, dose-adapted trial. Surg. Neurol. 69, 33–39 (2008).

    Article  PubMed  Google Scholar 

  129. Wong, G. K. Magnesium for aneurysmal subarachnoid haemorrhage. Lancet 380, 1381 (2012).

    Article  PubMed  Google Scholar 

  130. McKee, J. A. et al. Magnesium neuroprotection is limited in humans with acute brain injury. Neurocrit. Care 2, 342–351 (2005).

    Article  PubMed  Google Scholar 

  131. Mori, K. et al. Initial clinical experience of vasodilatory effect of intra-cisternal infusion of magnesium sulfate for the treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurol. Med. Chir. (Tokyo) 49, 139–144 (2009).

    Article  Google Scholar 

  132. Manno, E. M., Gress, D. R., Ogilvy, C. S., Stone, C. M. & Zervas, N. T. The safety and efficacy of cyclosporine A in the prevention of vasospasm in patients with Fisher grade 3 subarachnoid hemorrhages: a pilot study. Neurosurgery 40, 289–293 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Yanamoto, H. et al. Therapeutic trial of cerebral vasospasm with the serine protease inhibitor, FUT-175, administered in the acute stage after subarachnoid hemorrhage. Neurosurgery 30, 358–363 (1992).

    Article  CAS  PubMed  Google Scholar 

  134. Young, A. M., Karri, S. K. & Ogilvy, C. S. Non-steroidal anti-inflammatory drugs used as a treatment modality in subarachnoid hemorrhage. Curr. Drug Saf. 7, 197–201 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Klimo, P. Jr, Kestle, J. R., MacDonald, J. D. & Schmidt, R. H. Marked reduction of cerebral vasospasm with lumbar drainage of cerebrospinal fluid after subarachnoid hemorrhage. J. Neurosurg. 100, 215–224 (2004).

    Article  PubMed  Google Scholar 

  136. Al-Tamimi, Y. Z. et al. Lumbar drainage of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage: a prospective, randomized, controlled trial (LUMAS). Stroke 43, 677–682 (2012).

    Article  PubMed  Google Scholar 

  137. Senbokuya, N. et al. Effects of cilostazol on cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a multicenter prospective, randomized, open-label blinded end point trial. J. Neurosurg. 118, 121–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Connolly, E. S. Jr et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43, 1711–1737 (2012).

    Article  PubMed  Google Scholar 

  139. Le Roux, P. D. Anemia and transfusion after subarachnoid hemorrhage. Neurocrit. Care 15, 342–353 (2011).

    Article  PubMed  Google Scholar 

  140. Treggiari, M. M. Hemodynamic management of subarachnoid hemorrhage. Neurocrit. Care 15, 329–335 (2011).

    Article  PubMed  Google Scholar 

  141. Dhar, R. et al. Comparison of induced hypertension, fluid bolus, and blood transfusion to augment cerebral oxygen delivery after subarachnoid hemorrhage. J. Neurosurg. 116, 648–656 (2012).

    Article  PubMed  Google Scholar 

  142. Lennihan, L. et al. Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage: a randomized controlled trial. Stroke 31, 383–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Dankbaar, J. W., Slooter, A. J., Rinkel, G. J. & van der Schaaf, I. C. Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review. Crit. Care 14, R23 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Muench, E. et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit. Care Med. 35, 1844–1851 (2007).

    Article  PubMed  Google Scholar 

  145. Raabe, A. et al. Relative importance of hypertension compared with hypervolemia for increasing cerebral oxygenation in patients with cerebral vasospasm after subarachnoid hemorrhage. J. Neurosurg. 103, 974–981 (2005).

    Article  PubMed  Google Scholar 

  146. Hasan, D., Vermeulen, M., Wijdicks, E. F., Hijdra, A. & van Gijn, J. Effect of fluid intake and antihypertensive treatment on cerebral ischemia after subarachnoid hemorrhage. Stroke 20, 1511–1515 (1989).

    Article  CAS  PubMed  Google Scholar 

  147. Zubkov, Y. N., Nikiforov, B. M. & Shustin, V. A. Balloon catheter technique for dilatation of constricted cerebral arteries after aneurysmal SAH. Acta Neurochir. (Wien) 70, 65–79 (1984).

    Article  CAS  Google Scholar 

  148. Zwienenberg-Lee, M. et al. Effect of prophylactic transluminal balloon angioplasty on cerebral vasospasm and outcome in patients with Fisher grade III subarachnoid hemorrhage: results of a phase II multicenter, randomized, clinical trial. Stroke 39, 1759–1765 (2008).

    Article  PubMed  Google Scholar 

  149. Kimball, M. M., Velat, G. J. & Hoh, B. L. Critical care guidelines on the endovascular management of cerebral vasospasm. Neurocrit. Care 15, 336–341 (2011).

    Article  PubMed  Google Scholar 

  150. DeWitt, C. R. & Waksman, J. C. Pharmacology, pathophysiology and management of calcium channel blocker and beta-blocker toxicity. Toxicol. Rev. 23, 223–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Albanese, E. et al. Ultrahigh-dose intraarterial infusion of verapamil through an indwelling microcatheter for medically refractory severe vasospasm: initial experience. J. Neurosurg. 113, 913–922 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Volk, J. M., Culicchia, F. & Dawson, R. Use of intra-arterial infusion of calcium-channel blockers through an indwelling microcatheter: one institution's experience. Stroke 43, A47 (2012).

    Google Scholar 

  153. Bulters, D. O. et al. A randomized controlled trial of prophylactic intra-aortic balloon counterpulsation in high-risk aneurysmal subarachnoid hemorrhage. Stroke 44, 224–226 (2013).

    Article  PubMed  Google Scholar 

  154. Wong, G. K., Chan, M. T., Gin, T. & Poon, W. S. Intravenous magnesium sulfate after aneurysmal subarachnoid hemorrhage: current status. Acta Neurochir. Suppl. 110, 169–173 (2011).

    PubMed  Google Scholar 

  155. Ryba, M., Pastuszko, M., Iwanska, K., Bidzinski, J. & Dziewiecki, C. Cyclosporine A prevents neurological deterioration of patients with SAH--a preliminary report. Acta Neurochir. 112, 25–27 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author receives grant support from the Physicians Services Incorporated Foundation, the Brain Aneurysm Foundation, the Canadian Stroke Network, and the Heart and Stroke Foundation of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Loch Macdonald.

Ethics declarations

Competing interests

R. L. Macdonald is Chief Scientific Officer of Edge Therapeutics, Inc.

Supplementary information

Supplementary Table 1

Randomized, blinded clinical trials for treatment of subarachnoid haemorrhage (not directed at aneurysm repair or preventing rebleeding) (DOC 43 kb)

Supplementary Table 2

Meta-analyses of subarachnoid haemorrhage trials (DOC 18 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macdonald, R. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10, 44–58 (2014). https://doi.org/10.1038/nrneurol.2013.246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing