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CORRESPONDENCE

Heiko Braak and colleagues (Amyotrophic 
lateral sclerosis—a model of corticofugal 
axonal spread. Nat. Rev. Neurol. 9, 708–714; 
2013)1 present impressively detailed evi-
dence in support of corticofugal spread—
also known as the ‘dying-forward’ model 
of neurodegeneration, first proposed by 
Eisen and Weber2—in amyotrophic lateral 
sclerosis (ALS). Here, I propose a refinement 
that integrates both the ‘dying-forward’ 
and ‘dying-back’3 models: the corticofugal 
synaptopathy, or ‘dying-outward’ hypothesis.

In any model of ALS, a number of fun-
damental features have to be reconciled. 
First, degenerative changes occur primar-
ily in anterior horn cells and brainstem 
motor neurons that receive monosynaptic 
connections from the motor cortex,4 and 
in the corticospinal tract neurons within 
the primary motor cortex. Second, in some 
variants of ALS, the disease only affects the 
corticospinal tract neurons,5 whereas in 
other variants, it only affects anterior horn 
cells, or affects corticospinal tract neurons 
only very late in the disease.6 Third, ALS 
progresses contiguously between spinal, 
brainstem and cortical regions, in what has 
been termed a ‘prion-like’ pattern.7 Fourth, 
cortical areas involved late in the disease are 
linked via long-range synaptic connections.1 
Last, humans are the only species affected 
by sporadic ALS, and only nonhuman 
primate models of ALS have recapitulated 
features of the disease observed in humans.8

An important component of the cortico
fugal model1 is the axonal transport hypoth-
esis, which identifies the importance of 
long-range axonal connections in disease 
propagation, but overlooks the synapse—
the very reason for the existence of such 
connections. Not only does the developing 
synapse, or growth cone, function indepen-
dently,9 but there is also evidence that syn-
aptic autonomy continues into adulthood.10 
For example, synaptic prion-like proteins 
maintain activity-dependent changes in 
synaptic efficacy independently of nuclear 
transcription within neuronal somata. 
Furthermore, mitochondria, which are 
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essential for calcium buffering and energy 
production, are maintained autonomously 
within the presynaptic and postsynaptic 
compartments.11 Such autonomy permits 
efficient long-distance neuronal communi
cation, but there is a trade-off: the lysosomal 
housekeeping processes that are responsible 
for recycling biomolecules, organelles and 
cellular debris located within the distant 
soma function less efficiently. Consequently, 
abnormal conformational changes in prion-
like proteins can replicate and propagate 
without control, and dysfunctional mito-
chondria accumulate.10,11 The longer the 
axon and the larger the synapse, the more 
likely this autonomous process is to mal-
function, hence the susceptibility of the 
monosynaptic corticomotoneuronal synapse 
at the onset of ALS in humans.

The corticomotoneuronal synapse is a fea
ture that distinguishes primates from other 
mammalian species, and the number of 
corticomotoneuronal synapses and length 
of axons in the corticospinal tract distin-
guish humans from nonhuman primates.12 
Mutations in mitochondrial DNA have 
been implicated in motor neuron diseases13 
and ALS,14 and there is increasing evidence 
that the interaction between pathological 
synaptic mitochondria and synaptic prion 
proteins leads to neurodegeneration.11 The 
corticomotoneuronal synapse, therefore, 
is not only pivotal as the link between the 
corticospinal tract and anterior horn cells; 
because of its vulnerability, it is also an effi-
cient nidus for neurodegeneration. Conse
quently, biomarkers that can detect changes 
in the integrity of the corticomotoneuronal 
synapse15 should be able to identify the 
very earliest stages of ALS, enabling early 
disease-modifying therapeutic interventions 
at a stage when they can make a significant 
impact on survival in this dreadful disease.
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