Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The clinical maze of mitochondrial neurology

Abstract

Mitochondrial diseases involve the respiratory chain, which is under the dual control of nuclear and mitochondrial DNA (mtDNA). The complexity of mitochondrial genetics provides one explanation for the clinical heterogeneity of mitochondrial diseases, but our understanding of disease pathogenesis remains limited. Classification of Mendelian mitochondrial encephalomyopathies has been laborious, but whole-exome sequencing studies have revealed unexpected molecular aetiologies for both typical and atypical mitochondrial disease phenotypes. Mendelian mitochondrial defects can affect five components of mitochondrial biology: subunits of respiratory chain complexes (direct hits); mitochondrial assembly proteins; mtDNA translation; phospholipid composition of the inner mitochondrial membrane; or mitochondrial dynamics. A sixth category—defects of mtDNA maintenance—combines features of Mendelian and mitochondrial genetics. Genetic defects in mitochondrial dynamics are especially important in neurology as they cause optic atrophy, hereditary spastic paraplegia, and Charcot–Marie–Tooth disease. Therapy is inadequate and mostly palliative, but promising new avenues are being identified. Here, we review current knowledge on the genetics and pathogenesis of the six categories of mitochondrial disorders outlined above, focusing on their salient clinical manifestations and highlighting novel clinical entities. An outline of diagnostic clues for the various forms of mitochondrial disease, as well as potential therapeutic strategies, is also discussed.

Key Points

  • Few neurological disorders are as phenotypically heterogeneous and diagnostically challenging as mitochondrial encephalomyopathies

  • The clinical heterogeneity of mitochondrial disorders can be explained by both the unique rules of mitochondrial genetics and the dependence of most mitochondrial functions on a wide variety of nuclear genes

  • Despite advances in understanding the molecular aetiology of mitochondrial diseases, their pathogenesis is still largely unknown

  • Through whole-exome or mito-exome sequencing, novel mutant genes and novel disease mechanisms of mitochondrial disease are being revealed

  • Promising areas of investigation for neurological mitochondria-associated disorders include defects in lipid composition of the mitochondrial membrane and defects of the mitochondria-associated membrane

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mitochondrial respiratory chain.
Figure 2: The mitochondrial morbidity map.
Figure 3: Structure and function of the MAM.
Figure 4: Muscle biopsy in patients with mitochondrial disease.

Similar content being viewed by others

References

  1. Luft, R., Ikkos, D., Palmieri, G., Ernster, L. & Afzelius, B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J. Clin. Invest. 41, 1776–1804 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Shapira, Y., Harel, S. & Russell, A. Mitochondrial encephalomyopathies: a group of neuromuscular disorders with defects in oxidative metabolism. Isr. J. Med. Sci. 13, 161–164 (1977).

    CAS  PubMed  Google Scholar 

  3. Holt, I. J., Harding, A. E. & Morgan-Hughes, J. A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717–719 (1988).

    CAS  PubMed  Google Scholar 

  4. Wallace, D. C. et al. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242, 1427–1430 (1988).

    CAS  PubMed  Google Scholar 

  5. Schon, E. A., DiMauro, S. & Hirano, M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 13, 878–890 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gilkerson, R. W., Schon, E. A., Hernandez, E. & Davidson, M. M. Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation. J. Cell Biol. 181, 1117–1128 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sykora, P., Wilson, D. M. 3rd & Bohr, W. A. Repair of persistent strand breaks in the mitochondrial genome. Mech. Ageing Dev. 133, 169–175 (2012).

    CAS  PubMed  Google Scholar 

  8. Schon, E. A. et al. A direct repeat is a hotspot for large-scale deletions of human mitochondrial DNA. Science 244, 346–349 (1989).

    CAS  PubMed  Google Scholar 

  9. Krishnan, K. J. et al. What causes mitochondrial DNA deletions in human cells? Nat. Genet. 40, 275–279 (2008).

    CAS  PubMed  Google Scholar 

  10. Schaefer, A. M. et al. Prevalence of mitochondrial DNA disease in adults. Ann. Neurol. 63, 35–39 (2008).

    CAS  PubMed  Google Scholar 

  11. Elliott, H. R., Samuels, D. C., Eden, J. A., Relton, C. L. & Chinnery, P. F. Pathogenic mitochondrial DNA mutations are common in the general population. Am. J. Hum. Genet. 83, 254–260 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Payne, B. A. et al. Universal heteroplasmy of human mitochondrial DNA. Hum. Mol. Genet. 22, 384–390 (2013).

    CAS  PubMed  Google Scholar 

  13. Rowland, L. P. in Mitochondrial Disorders in Neurology (eds Schapira, A. H. & DiMauro, S.) 116–129 (Butterworth-Heinemann, 1994).

    Google Scholar 

  14. Greaves, L. C., Reeve, A. K., Taylor, R. W. & Turnbull, D. M. Mitochondrial DNA and disease. J. Pathol. 226, 274–286 (2012).

    CAS  PubMed  Google Scholar 

  15. Tatuch, Y. et al. Heteroplasmic mtDNA mutation (T>G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am. J. Hum. Genet. 50, 852–858 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schon, E. A., Bonilla, E. & DiMauro, S. Mitochondrial DNA mutations and pathogenesis. J. Bioenerg. Biomembr. 29, 131–149 (1997).

    CAS  PubMed  Google Scholar 

  17. Betts, J. et al. Molecular neuropathology of MELAS: level of heteroplasmy in individual neurones and evidence of extensive vascular involvement. Neuropath. Appl. Neurobiol. 32, 359–373 (2006).

    CAS  Google Scholar 

  18. Tanji, K. & Bonilla, E. Optical imaging techniques (histochemical, immunohistochemical, and in situ hybridization staining methods) to visualize mitochondria. Methods Cell Biol. 65, 311–332 (2001).

    CAS  PubMed  Google Scholar 

  19. DiMauro, S. & Schon, E. A. Mitochondrial disorders in the nervous system. Annu. Rev. Neurosci. 31, 91–123 (2008).

    CAS  PubMed  Google Scholar 

  20. Carelli, V., Ross-Cisneros, F. N. & Sadun, A. A. Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye Res. 23, 53–89 (2004).

    CAS  PubMed  Google Scholar 

  21. King, M. P. & Attardi, G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500–503 (1989).

    CAS  PubMed  Google Scholar 

  22. Pallotti, F. et al. Biochemical analysis of respiratory function in cybrid cell lines harbouring mitochondrial DNA mutations. Biochem. J. 384, 287–293 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chomyn, A. et al. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc. Natl Acad. Sci. USA 89, 4221–4225 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chinnery, P. F. et al. Very low levels of the mtDNA A3243G mutation associated with mitochondrial dysfunction in vivo. Ann. Neurol. 47, 3381–384 (2000).

    Google Scholar 

  25. Jeppesen, T. D. et al. Muscle phenotype and mutation load in 51 persons with the 3243A>G mtDNA mutation. Arch. Neurol. 63, 1701–1706 (2006).

    PubMed  Google Scholar 

  26. Kaufmann, P. et al. Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology 62, 1297–1302 (2004).

    CAS  PubMed  Google Scholar 

  27. DiMauro, S. et al. Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency. Ann. Neurol. 14, 226–234 (1983).

    CAS  PubMed  Google Scholar 

  28. Horvath, R. et al. Molecular basis of infantile reversible cytochrome c oxidase deficiency. Brain 132, 3165–3174 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Mimaki, M. et al. Reversible infantile respiratory chain deficiency: a clinical and molecular study. Ann. Neurol. 68, 845–854 (2010).

    CAS  PubMed  Google Scholar 

  30. Maresca, A., La Morgia, C., Caporali, L., Valentino, M. L. & Carelli, V. The optic nerve: a “mito-window” on mitochondrial neurodegeneration. Mol. Cell Neurosci. 55, 62–67 (2012).

    PubMed  Google Scholar 

  31. Giordano, C. et al. Oestrogens ameliorate mitochondrial dysfunction in Leber's hereditary optic neuropathy. Brain 134, 220–234 (2011).

    PubMed  Google Scholar 

  32. Bourgeron, T. et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat. Genet. 11, 144–149 (1995).

    CAS  PubMed  Google Scholar 

  33. Calvo, S. et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci. Transl. Med. 4, 118ra110 (2012).

    Google Scholar 

  34. Coppola, G. & Geschwind, D. H. Genomic medicine enters the neurology clinic. Neurology 79, 112–114 (2012).

    PubMed  Google Scholar 

  35. Massa, V. et al. Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. Am. J. Hum. Genet. 82, 1281–1289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Indrieri, A. et al. Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. Am. J. Hum. Genet. 91, 942–949 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu, Z. et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat. Genet. 20, 337–343 (1998).

    CAS  PubMed  Google Scholar 

  38. Tiranti, V. et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am. J. Hum. Genet. 63, 1609–1621 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Calvo, T. et al. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat. Genet. 42, 851–858 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fernández-Vizarra, E., Tiranti, V. & Zeviani, M. Assembly of the oxidative phosphorylation system: what we have learned by studying its defects. Biochim. Biophys. Acta 1793, 200–211 (2009).

    PubMed  Google Scholar 

  41. Tucker, E. J. et al. Next-generation sequencing in molecular diagnosis: NUBPL mutations highlight the challenges of variant detection and interpretation. Hum. Mut. 33, 411–418 (2012).

    CAS  PubMed  Google Scholar 

  42. DiMauro, S. & Emmanuele, V. in Mitochondrial Disorders Caused by Nuclear Genes (ed. Wong, L.-J.) 3–25 (Springer Science and Business Media, New York, 2013).

    Google Scholar 

  43. Visapää, I. et al. GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am. J. Hum. Genet. 71, 863–876 (2002).

    PubMed  PubMed Central  Google Scholar 

  44. Weraarpachai, W. et al. Mutations in C12orf62, a factor that couples COX I synthesis with cytochrome c oxidase assembly, cause fatal neonatal lactic acidosis. Am. J. Hum. Genet. 90, 142–151 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Huigsloot, M. et al. A mutation in C2orf64 causes impaired cytochrome c oxidase assembly and mitochondrial cardiomyopathy. Am. J. Hum. Genet. 88, 488–493 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Szklarczyk, R. et al. A mutation in the FAM36A gene, the human ortholog of COX20, impairs cytochrome c oxidase assembly and is associated with ataxia and muscle hypotonia. Hum. Mol. Genet. 22, 656–667 (2012).

    PubMed  Google Scholar 

  47. Weraarpachai, W. et al. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat. Genet. 41, 833–837 (2009).

    CAS  PubMed  Google Scholar 

  48. DiMauro, S., Tanji, K. & Schon, E. A. The many faces of cytochrome c oxidase deficiency. Adv. Exp. Med. Biol. 748, 341–357 (2012).

    CAS  PubMed  Google Scholar 

  49. Trevisson, E., DiMauro, S., Navas, P. & Salviati, L. Coenzyme Q deficiency in muscle. Curr. Opin. Neurol. 24, 440–456 (2011).

    Google Scholar 

  50. Ogasahara, S., Engel, A. G., Frens, D. & Mack, D. Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc. Natl Acad. Sci. USA 86, 2379–2382 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Quinzii, C. et al. A mutation in para-hydoxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am. J. Hum. Genet. 78, 345–349 (2006).

    CAS  PubMed  Google Scholar 

  52. Lopez, L. C. et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaproneyl diphosphate synthase subunit 2 (PDSS2) mutations. Am. J. Hum. Genet. 79, 1125–1129 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mollet, J. et al. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J. Clin. Invest. 117, 765–772 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Heeringa, S. F. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 121, 2013–2024 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mollet, J. et al. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am. J. Hum. Genet. 82, 623–630 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lagier-Tourenne, C. et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am. J. Hum. Genet. 82, 661–672 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Duncan, A. J. et al. A nonsense mutation on COQ9 causes autosomal -recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am. J. Hum. Genet. 84, 558–566 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Emmanuele, V. et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch. Neurol. 69, 978–983 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Tiranti, V. et al. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am. J. Hum. Genet. 74, 239–252 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tiranti, V. et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat. Med. 15, 200–205 (2009).

    CAS  PubMed  Google Scholar 

  61. Bolender, N., Sickmann, A., Wagner, R., Meisinger, C. & Pfanner, N. Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep. 9, 42–49 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Christian, B. E. & Spremulli, L. L. Mechanism of protein biosynthesis in mammalian mitochondria. Biochim. Biophys. Acta 1819, 1035–1054 (2012).

    CAS  PubMed  Google Scholar 

  63. Kemp, J. P. et al. Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency. Brain 134, 183–195 (2011).

    PubMed  Google Scholar 

  64. Smits, P. et al. Mutation in subdomain G1 is associated with combined OXPHOS deficiency in fibroblasts but not in muscle. Eur. J. Hum. Genet. 19, 275–279 (2011).

    CAS  PubMed  Google Scholar 

  65. Smits, P., Smeitink, J. & van den Heuvel, B. Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J. Biomed. Biotechnol. 2010, 737385 (2010).

    PubMed  PubMed Central  Google Scholar 

  66. Chrzanowska-Lightowlers, Z. M., Horvath, R. & Lightowlers, R. N. 175th ENMC International Workshop: mitochondrial protein synthesis in health and disease, 25–27th June, 2010, Naarden, The Netherlands. Neuromusc. Disord. 21, 142–147 (2011).

    CAS  PubMed  Google Scholar 

  67. Schara, U. et al. Acute liver failure with subsequent cirrhosis as the primary manifestation of TRMU mutations. J. Inherit. Metab. Dis. 34, 197–201 (2011).

    PubMed  Google Scholar 

  68. Uusimaa, J. et al. Reversible infantile respiratory chain deficiency is a unique, genetically heterogeneous mitochondrial disease. J. Med. Genet. 48, 660–668 (2011).

    CAS  PubMed  Google Scholar 

  69. Janer, A. et al. An RMND1 mutation causes encephalopathy associated with multiple oxidative phosphorylation complex deficiencies and a mitochondrial translation defect. Am. J. Hum. Genet. 91, 737–743 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Garcia-Diaz, B. et al. Infantile encephaloneuromyopathy and defective mitochondrial translation are due to a homozygous RMND1 mutation. Am. J. Hum. Genet. 91, 729–736 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schlame, M., Ren, M., Xu, Y., Greenberg, M. L. & Haller, I. Molecular symmetry in mitochondrial cardiolipins. Chem. Phys. Lipids 138, 38–49 (2005).

    CAS  PubMed  Google Scholar 

  72. Schlame, M. et al. The physical state of lipid substrates provides transacylation specificity for tafazzin. Nat. Chem. Biol. 8, 862–869 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Claypool, S. M. & Koehler, C. M. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 37, 32–41 (2012).

    CAS  PubMed  Google Scholar 

  74. Vreken, P. et al. Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem. Biophys. Res. Commun. 279, 378–382 (2000).

    CAS  PubMed  Google Scholar 

  75. Schlame, M. et al. Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Ann. Neurol. 51, 634–637 (2002).

    CAS  PubMed  Google Scholar 

  76. Mayr, J. A. et al. Lack of mitochondrial protein acylglycerol kinase causes Sengers syndrome. Am. J. Hum. Genet. 90, 314–320 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hayashi, T., Rizzuto, R., Hajnoczky, G. & Su, T.-P. MAM: more than just a housekeeper? Trends Cell Biol. 19, 81–88 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Vance, J. E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265, 7248–7256 (1990).

    CAS  PubMed  Google Scholar 

  79. Al-Saif, A., Bohlega, S. & Al-Mohanna, F. Loss of ERLIN2 function leads to juvenile primary lateral sclerosis. Ann. Neurol. 72, 510–516 (2012).

    CAS  PubMed  Google Scholar 

  80. Bellzil, V. V. & Rouleau, G. A. Endoplasmic reticulum lipid rafts and upper motor neuron degeneration. Ann. Neurol. 72, 479–480 (2012).

    Google Scholar 

  81. Gutierrez-Rios, P. et al. Congenital megaconial myopathy due to a novel defect in the choline kinase beta (CHKB) gene. Arch. Neurol. 69, 657–661 (2012).

    PubMed  Google Scholar 

  82. Area-Gomez, E. et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106–4123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nishino, I. et al. A new congenital muscular dystrophy with mitochondrial structural abnormalities. Muscle Nerve 21, 40–47 (1998).

    CAS  PubMed  Google Scholar 

  84. Sher, R. B. et al. A rostrocaudal muscular dystrophy caused by a defect in choline kinase beta, the first enzyme in phosphatidylcholine biosynthesis. J. Biol. Chem. 281, 4938–4948 (2006).

    CAS  PubMed  Google Scholar 

  85. Mitsuhashi, S. et al. A congenital muscular dystrophy with mitochondrial structural abnormalities caused by defective de novo phosphatidyl choline biosynthesis. Am. J. Hum. Genet. 88, 845–851 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Schon, E. A. & Area-Gomez, E. Mitochondria-associated ER membranes in Alzheimer disease. Mol. Cell. Neurosci. 55, 26–36 (2012).

    PubMed  Google Scholar 

  87. Wortmann, R. L. et al. Biochemical and genetic analysis of 3-methylglutaconic aciduria type IV: a diagnostic strategy. Brain 132, 136–146 (2009).

    PubMed  Google Scholar 

  88. Wortmann, R. L. et al. Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Am. J. Hum. Genet. 44, 797–802 (2012).

    CAS  Google Scholar 

  89. Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884 (2010).

    CAS  PubMed  Google Scholar 

  90. Otera, H. et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141–1158 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Züchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat. Genet. 36, 449–451 (2004).

    PubMed  Google Scholar 

  92. Baxter, R. V. et al. Ganglioside-induced differentiation-associated protein 1 is mutant in Charcot–Marie–Tooth disease type 4A/8q21. Nat. Genet. 30, 21–22 (2002).

    CAS  PubMed  Google Scholar 

  93. Cuesta, A. et al. The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot–Marie–Tooth type 4A disease. Nat. Genet. 30, 22–25 (2002).

    CAS  PubMed  Google Scholar 

  94. Rouzier, C. et al. The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy 'plus' phenotype. Brain 136, 23–34 (2012).

    Google Scholar 

  95. Vielhaber, S. et al. Mitofusin 2 mutations affect mitochondrial function by mitochondrial DNA depletion. Acta Neuropathol. 125, 245–256 (2013).

    CAS  PubMed  Google Scholar 

  96. Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. New Engl. J. Med. 356, 1736–1741 (2007).

    CAS  PubMed  Google Scholar 

  97. Shemseldin, H. E. et al. Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J. Med. Genet. 49, 234–241 (2012).

    Google Scholar 

  98. Milone, M. & Benarroch, E. E. Mitochondrial dynamics: general concepts and clinical implications. Neurology 78, 1612–1619 (2012).

    CAS  PubMed  Google Scholar 

  99. Schon, E. A. & Przedborski, S. Mitochondria in the next (neurode)generation. Neuron 70, 1033–1053 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, H. & Chan, D. C. Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum. Mol. Genet. 18, R169–R176 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hirano, M., Lagier-Tourenne, C., Valentino, M. L., Martí, R. & Nishigaki, Y. Thymidine phosphorylase mutations cause instability of mitochondrial DNA. Gene 354, 152–156 (2005).

    CAS  PubMed  Google Scholar 

  102. Copeland, W. C. Inherited mitochondrial diseases of DNA replication. Annu. Rev. Med. 59, 131–146 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ronchi, D. et al. Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. Am. J. Hum. Genet. 92, 293–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ylikallo, E. & Suomalainen, A. Mechanisms of mitochondrial diseases. Ann. Med. 44, 41–59 (2011).

    Google Scholar 

  105. Hakonen, A. H. Infantile-onset spinocerebellaer ataxia and mitochondrial recessive ataxia syndrome are associated with neuronal complex I defect and mtDNA depletion. Hum. Mol. Genet. 17, 3822–3835 (2008).

    CAS  PubMed  Google Scholar 

  106. Suomalainen, A. & Isohanni, P. Mitochondrial DNA depletion syndromes—many genes, common mechanisms. Neuromusc. Disord. 20, 429–437 (2010).

    PubMed  Google Scholar 

  107. Karadimas, C. L. et al. Navajo neurohepatopathy is caused by a mutation in the MPV17 gene. Am. J. Hum. Genet. 79, 544–548 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Akman, H. O. et al. Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance. Hum. Mol. Genet. 17, 2433–2440 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yu-Wai-Man, P. & Chinnery, P. F. Dysfunctional mitochondrial maintenance: what breaks the circle of life? Brain 135, 9–11 (2012).

    PubMed  Google Scholar 

  110. Ranieri, M. et al. Optic atrophy plus phenotype due to mutations in the OPA1 gene: two more Italian families. J. Neurol. Sci. 315, 146–149 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Amati-Bonneau, P. et al. OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes. Brain 131, 338–351 (2008).

    PubMed  Google Scholar 

  112. Hudson, G. et al. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 131, 329–337 (2008).

    PubMed  Google Scholar 

  113. Ferraris, S. et al. Progressive external ophthalmoplegia and vision and hearing loss in a patient with mutations in POLG2 and OPA1. Arch. Neurol. 65, 125–131 (2008).

    PubMed  PubMed Central  Google Scholar 

  114. Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211–215 (2000).

    CAS  PubMed  Google Scholar 

  115. Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207–210 (2000).

    CAS  PubMed  Google Scholar 

  116. Elachouri, G. et al. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res. 12, 12–20 (2011).

    Google Scholar 

  117. Agier, V. et al. Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations. Biochim. Biophys. Acta 1822, 1570–1580 (2012).

    CAS  PubMed  Google Scholar 

  118. Lodi, R. et al. Defective mitochondrial adenosine triphosphate production in skeletal muscle from patients with dominant optic atrophy due to OPA1 mutations. Arch. Neurol. 68, 67–73 (2011).

    PubMed  Google Scholar 

  119. Kornblum, C. et al. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat. Genet. 45, 214–219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Chinnery, P. F. et al. Risk of developing a mitochondrial DNA deletion disorder. Lancet 364, 592–595 (2004).

    CAS  PubMed  Google Scholar 

  121. Emmanuele, V. et al. A novel mutation in the mitochondrial DNA cytochrome b gene (MTCYB) in a patient with MELAS syndrome. J. Child Neurol. 28, 236–242 (2013).

    PubMed  Google Scholar 

  122. Moraes, C. T. et al. Atypical clinical presentations associated with the MELAS mutation at position 3243 of human mitochondrial DNA. Neuromuscul. Disord. 3, 43–50 (1993).

    CAS  PubMed  Google Scholar 

  123. Suomalainen, A. et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 10, 806–818 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Andreu, A. L. et al. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. New Engl. J. Med. 341, 1037–1044 (1999).

    CAS  PubMed  Google Scholar 

  125. Borthwick, G. M., Johnson, M. A., Ince, P. G., Shaw, P. J. & Turnbull, D. M. Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann. Neurol. 46, 787–790 (1999).

    CAS  PubMed  Google Scholar 

  126. Borthwick, G. M. et al. Motor neuron disease in a patient with a mitochondrial tRNAIle mutation. Ann. Neurol. 59, 570–574 (2006).

    CAS  PubMed  Google Scholar 

  127. Sue, C. M. et al. Differential features of patients with mutations in two COX assembly genes, SURF-1 and SCO2. Ann. Neurol. 47, 589–595 (2000).

    CAS  PubMed  Google Scholar 

  128. Ronchi, D. et al. Next-generation sequencing discloses DGUOK mutations in adult patients with mtDNA multiple deletions. Brain 135, 3404–3415 (2012).

    PubMed  PubMed Central  Google Scholar 

  129. Claypool, S. M., Boontheung, P., McCafferty, J. M., Loo, J. A. & Koehler, C. M. The cardiolipin transacylase, tafazzin, associates with two distinct respiratory components providing insight into Barth syndrome. Mol. Biol. Cell 19, 5143–5155 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L. & Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7, 1235–1246 (2012).

    CAS  PubMed  Google Scholar 

  131. Haller, R. G. et al. Deficiency of skeletal muscle succinate dehydrogenase and aconitase. J. Clin. Invest. 88, 1197–1206 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hirano, K.-I., Garone, C. & Quinzii, C. CoQ10 deficiency and MNGIE: two treatable mitochondrial disorders. Biochim. Biophys. Acta 1820, 625–631 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Glover, E. I. et al. A randomized trial of coenzyme Q10 in mitochondrial disorders. Muscle Nerve 42, 739–748 (2010).

    CAS  PubMed  Google Scholar 

  134. Carelli, V. et al. Idebenone treatment in Leber's hereditary optic neuropathy. Brain 134, e188 (2011).

    PubMed  Google Scholar 

  135. Klopstock, T. et al. A randomized placebo-controlled trial of idebenone in Leber's hereditary optic neuropathy. Brain 134, 2677–2686 (2011).

    PubMed  PubMed Central  Google Scholar 

  136. Sadun, A. A. et al. Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Arch. Neurol. 69, 331–338 (2012).

    PubMed  Google Scholar 

  137. Enns, G. M. et al. Initial experience in the treatment of inherited mitochondrial diseases with EPI-743. Mol. Genet. Metab. 105, 91–102 (2012).

    CAS  PubMed  Google Scholar 

  138. Martinelli, D. et al. EPI-743 reverses the progression of the pediatric mitochondrial disease—genetically defined Leigh symdrome. Mol. Genet. Metab. 107, 383–388 (2012).

    CAS  PubMed  Google Scholar 

  139. Kaufmann, P. et al. Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology 66, 324–330 (2006).

    CAS  PubMed  Google Scholar 

  140. Gilkerson, R. W. et al. Mitochondrial autophagy in cells with mtDNA mutations results from the synergistic loss of transmembrane potential and mRORC1 inhibition. Hum. Mol. Genet. 21, 978–990 (2012).

    CAS  PubMed  Google Scholar 

  141. Tanaka, M. et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci. 9, 534–541 (2002).

    CAS  PubMed  Google Scholar 

  142. Scott, A. B., Alexander, D. E. & Miller, J. M. Bupivacaine injection of eye muscles to treat strabismus. Br. J. Ophthalmol. 91, 146–148 (2007).

    PubMed  Google Scholar 

  143. Twig, G., Hyde, B. & Shirihai, O. S. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim. Biophys. Acta 1777, 1092–1097 (2008).

    CAS  PubMed  Google Scholar 

  144. Chen, B. et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141, 280–289 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Wenz, T., Diaz, F., Spiegelman, B. M. & Moraes, C. T. Activation of the PPAR/PGC-1α pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell. Metab. 8, 249–255 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Viscomi, C. et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis. Cell. Metab. 14, 80–90 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Flierl, A., Chen, Y. T., Coskun, P. E., Samulski, R. J. & Wallace, D. C. Adeno-associated virus-mediated gene transfer of the heart/muscle adenine nucleotide translocator (ANT) in mouse. Gene Ther. 12, 570–578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Di Meo, I. et al. Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalomyopathy. EMBO Mol. Med. 4, 1008–1014 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Tachibana, M. et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367–372 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Tachibana, M. et al. Towards germline gene therapy of inherited mitochondrial diseases. Nature 493, 627–631 (2013).

    CAS  PubMed  Google Scholar 

  151. Paull, D. et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493, 632–637 (2013).

    CAS  PubMed  Google Scholar 

  152. Craven, L. et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465, 82–85 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Craven, L. et al. Mitochondrial DNA disease: new options for prevention. Hum. Mol. Genet. 20, R168–R174 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Sagan Margulis, L. On the origin of mitosing cells. J. Theroet. Biol. 14, 255–274 (1967).

    Google Scholar 

  155. DiMauro, S. & Schon, E. A. in Mitochondrial Neurology (ed. Waxman, S.) 535–551 (Elsevier, 2007).

    Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the NIH (HD032062) and from the Marriott Mitochondrial Disorder Clinical Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

S. DiMauro and V. Carelli researched data for the article. S. DiMauro wrote the article. All authors provided substantial contribution to discussion of content and to the review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Salvatore DiMauro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiMauro, S., Schon, E., Carelli, V. et al. The clinical maze of mitochondrial neurology. Nat Rev Neurol 9, 429–444 (2013). https://doi.org/10.1038/nrneurol.2013.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing