Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The autonomic effects of deep brain stimulation—a therapeutic opportunity

Abstract

Deep brain stimulation (DBS) is an expanding field in neurosurgery and has already provided important insights into the fundamental mechanisms underlying brain function. One of the most exciting emerging applications of DBS is modulation of blood pressure, respiration and micturition through its effects on the autonomic nervous system. DBS stimulation at various sites in the central autonomic network produces rapid changes in the functioning of specific organs and physiological systems that are distinct from its therapeutic effects on central nervous motor and sensory systems. For example, DBS modulates several parameters of cardiovascular function, including heart rate, blood pressure, heart rate variability, baroreceptor sensitivity and blood pressure variability. The beneficial effects of DBS also extend to improvements in lung function. This article includes an overview of the anatomy of the central autonomic network, which consists of autonomic nervous system components in the cortex, diencephalon and brainstem that project to the spinal cord or cranial nerves. The effects of DBS on physiological functioning (particularly of the cardiovascular and respiratory systems) are discussed, and the potential for these findings to be translated into therapies for patients with autonomic diseases is examined.

Key Points

  • Discrete structures within all levels of the CNS, from the cortex to the medulla, comprise the central autonomic network

  • The central autonomic network coordinates information from the CNS and PNS, which enables it to mediate autonomic responses rapidly

  • Deep brain stimulation (DBS) produces autonomic sequelae in some patients during the electrode implantation procedure, and at subsequent testing

  • DBS of the posterior hypothalamus, subthalamic nucleus (STN) and periaqueductal grey (PAG) can cause changes in cardiovascular indices at rest and during postural challenge

  • In patients with chronic pain or movement disorders, lung function improvements seemingly unrelated to amelioration of the underlying syndrome can occur with DBS of the STN or PAG

  • DBS could in the future provide a therapeutic option for patients with dysautonomias that affect a variety of body systems

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereotactic mapping of the brain of a patient undergoing deep brain stimulation.
Figure 2: Targets for DBS.
Figure 3: The effect of PAG DBS on cardiovascular parameters.

Similar content being viewed by others

References

  1. Gildenberg, P. L. Stereotactic functional neurosurgery. Evolution of neuromodulation. Neuromodulation 83, 71–79 (2005).

    Google Scholar 

  2. Benabid, A. L. et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337, 403–406 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Benabid, A. L. et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J. Neurosurg. 84, 203–214 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Bittar, R. G. et al. Deep brain stimulation for movement disorders and pain. J. Clin. Neurosci. 12, 457–463 (2005).

    Article  PubMed  Google Scholar 

  5. Koller, W. C., Lyons, K. E., Wilkinson, S. B. & Pahwa, R. Efficacy of unilateral deep brain stimulation of the VIM nucleus of the thalamus for essential head tremor. Mov. Disord. 14, 847–850 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Krack, P. et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N. Engl. J. Med. 349, 1925–1934 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Marchand, S., Kupers, R. C., Bushnell, M. C. & Duncan, G. H. Analgesic and placebo effects of thalamic stimulation. Pain 105, 481–488 (2003).

    Article  PubMed  Google Scholar 

  8. Owen, S. L., Green, A. L., Stein, J. F. & Aziz, T. Z. Deep brain stimulation for the alleviation of post-stroke neuropathic pain. Pain 120, 202–206 (2006).

    Article  PubMed  Google Scholar 

  9. Lozano, A. M. et al. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol. Psychiatry 64, 461–467 (2008).

    Article  PubMed  Google Scholar 

  10. Pereira, E. A., Green, A. L., Nandi, D. & Aziz, T. Z. Deep brain stimulation: indications and evidence. Expert Rev. Med. Devices 5, 591–603 (2007).

    Article  Google Scholar 

  11. Goldstein, D., Eisenhofer, G., Robertson, D., Straus, R. & Esler, M. Dysautonomias: clinical disorders of the autonomic nervous system. Ann. Intern. Med. 137, 753–763 (2002).

    Article  PubMed  Google Scholar 

  12. Goldstein, D. S. Dysautonomia in Parkinson's disease: neurocardiological abnormalities. Lancet Neurol. 2, 669–676 (2003).

    Article  PubMed  Google Scholar 

  13. Barnes, P. J. Is asthma a nervous disease? Chest 3, 119S–125S (1995).

    Article  Google Scholar 

  14. Hammond, C., Amir, R., Bioulac, B., & Garcia, L. Latest view on the mechanism of action of deep brain stimulation. Mov. Disord. 23, 2111–2121 (2008).

    Article  PubMed  Google Scholar 

  15. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 17, 354–359 (2009).

    Article  CAS  Google Scholar 

  16. McIntyre, C. C. & Hahn, P. J. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol. Dis. 38, 329–337 (2010).

    Article  PubMed  Google Scholar 

  17. Kringelbach, M. L., Green, A. L. & Aziz, T. Z. Balancing the brain: resting state networks and deep brain stimulation. Front. Integr. Neurosci. 5, 1–5 (2011).

    Article  Google Scholar 

  18. Hamani, C., Saint-Cyr, J. A., Fraser, J., Kaplitt, M. & Lozano, A. M. The subthalamic nucleus in the context of movement disorders. Brain 127, 4–20 (2004).

    Article  PubMed  Google Scholar 

  19. Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K. & Vitek, J. L. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J. Neurosci. 23, 1916–1923 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carter, H. H. et al. Deep brain stimulation of the periaqueductal grey induces vasodilation in humans. Hypertension 57, e24–e25 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Cortelli, P. et al. Effect of deep brain stimulation of the posterior hypothalamic area on the cardiovascular system in chronic cluster headache patients. Eur. J. Neurol. 14, 1008–1015 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Green, A. L. et al. Deep brain stimulation can regulate arterial blood pressure in awake humans. Neuroreport 16, 1741–1745 (2005).

    Article  PubMed  Google Scholar 

  23. Kabat, H., Magoun, H. W. & Ranson, S. W. Electrical stimulation of points in the forebrain and midbrain. The resultant alteration in blood pressure. Arch. Neurol. Psychiatry 34, 931–955 (1935).

    Article  Google Scholar 

  24. Hyam, J. A. et al. Controlling the lungs via the brain: a novel neurosurgical method to improve lung function in humans. Neurosurgery 70, 469–477 (2012).

    Article  PubMed  Google Scholar 

  25. Pereira, E. A., Wang, S., Paterson, D. J., Stein, J. F. & Aziz, T. Z. Sustained reduction of hypertension by deep brain stimulation. J. Clin. Neurosci. 1, 124–127 (2010).

    Article  Google Scholar 

  26. Thornton, J. M. et al. Identification of higher brain centres that may encode the cardiorespiratory response to exercise in humans. J. Physiol. 3, 823–836 (2001).

    Article  Google Scholar 

  27. Thornton, J. M., Aziz, T. Z., Schlugman, D. & Paterson, D. J. Electrical stimulation of the midbrain increases heart rate and arterial blood pressure in awake humans. J. Physiol. 539, 615–621 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Green, A. L. et al. Identifying cardiorespiratory neurocircuitry involved in central command during exercise in humans. J. Physiol. 2, 605–612 (2007).

    Article  CAS  Google Scholar 

  29. Green, A. L. & Paterson, D. J. Identification of neurocircuitry controlling cardiovascular function in humans using functional neurosurgery: implications for exercise control. Exp. Physiol. 9, 1022–1028 (2008).

    Article  Google Scholar 

  30. Williamson, J. W., Fadel, P. J. & Mitchell, J. H. New insights into central cardiovascular control during exercise in humans: a central command update. Exp. Physiol. 1, 51–58 (2006).

    Article  Google Scholar 

  31. Benarroch, E. E. Central Autonomic Network: Functional Organization and Clinical Correlations 29–60 (Futura Publishing Company Inc, Armonk, New York, 1997)

    Google Scholar 

  32. Loewy, A. D. Forebrain nuclei involved in autonomic control. Prog. Brain Res. 87, 253–268 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Janig, W. & Habler, J. H. Neurophysiological analysis of target-related sympathetic pathways—from animal to human: similarities and differences. Acta Physiol. Scand. 524, 279–292 (2000).

    Google Scholar 

  34. Lovick, T. A. Integrated activity of cardiovascular and pain regulatory systems: role in adaptive behavioural responses. Prog. Neurobiol. 5, 631–644 (1993).

    Article  Google Scholar 

  35. Dampney, R. A. Functional organization of central pathways regulating the cardiovascular system. Physiol. Rev. 74, 323–364 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Dampney, R. A. et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin. Exp. Pharmacol. Physiol. 29, 261–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Ross, C. A. et al. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J. Neurosci. 4, 474–494 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wieling, W. & Karemaker, J. M. Measurement of heart rate and blood pressure to evaluate disturbances in neurocardiovascular control. In Autonomic Failure: a Textbook of Clinical Disorders of the Autonomic Nervous System 4th edn Ch. 21 (eds Mathias, C. & Bannister, R.) 196–210 (Oxford University Press, Oxford, 2001).

    Google Scholar 

  39. Goodwin, G. M., McCloskey, D. I. & Mitchell, J. H. Cardiovascular and respiratory responses to changes in central command during isometric exercise at a constant muscle tension. J. Physiol. 226, 173–190 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krogh, A. & Lindhard, J. The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. 47, 112–136 (2008).

    Article  Google Scholar 

  41. Critchley, H. D., Corfield, D. R., Chandler, P., Mathias, C. J. & Dolan, R. J. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J. Physiol. 1, 259–270 (2000).

    Article  Google Scholar 

  42. Williamson, J. W. et al. Hypnotic manipulation of effort sense during dynamic exercise: cardiovascular responses and brain activation. J. Appl. Physiol. 90, 1392–1399 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Williamson, J. W. et al. Brain activation by central command during actual and imagined handgrip under hypnosis. J. Appl. Physiol. 92, 1317–1324 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Williamson, J. W., McColl, R. & Mathews, D. Evidence for central command activation of the human insular cortex during exercise. J. Appl. Physiol. 94, 1726–1734 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Hamani, C., Saint-Cyr, J. A., Fraser, J., Kaplitt, M. & Lozano, A. M. The subthalamic nucleus in the context of movement disorders. Brain 127, 4–20 (2004).

    Article  PubMed  Google Scholar 

  46. Joel, D. & Weiner, I. The connections of the primate subthalamic nucleus: indirect pathways and the open–interconnected scheme of basal ganglia–thalamocortical circuitry. Brain Res. Brain Res. Rev. 23, 62–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Parent, A. & Hazrati, L. N. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res. Brain Res. Rev. 20, 128–154 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Shink, E., Bevan, M. D., Bolam, J. P. & Smith, Y. The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73, 335–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Sauleau, P. et al. Motor and non motor effects during intraoperative subthalamic nucleus stimulation for Parkinson's disease. J. Neurol. 252, 457–464 (2005).

    Article  PubMed  Google Scholar 

  50. Spencer, W. G. The effect produced upon respiration by faradic excitation of the cerebrum in the monkey, dog, cat and rabbit. Philos. Trans. B185, 609–657 (1894).

    Google Scholar 

  51. Chapman, W. P., Livingston, K. E. & Poppen, J. L. Effect upon blood pressure of electrical stimulation of the tips of the temporal lobes in man. J. Neurophysiol. 1, 65–71 (1950).

    Article  Google Scholar 

  52. Pool, J. L. & Ransohoff, J. Autonomic effects on stimulating rostral portion of cingulate gyri in man. J. Neurophysiol. 12, 385–392 (1949).

    Article  CAS  PubMed  Google Scholar 

  53. Loewy, A. D. Forebrain nuclei involved in autonomic control. Prog. Brain Res. 87, 253–268 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Hess, W. R. In Hypothalamus und Thalamus: Experimental-Dokumente (ed. Hind, R. A) 22–23 (Thieme, Stuttgart, 1956).

    Google Scholar 

  55. Lipp, A. et al. Sympathetic activation due to deep brain stimulation in the region of the STN. Neurology 65, 774–775 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. van Viljet, J. A., Vein, A. A., Ferrari, M. D. & van Dijk, J. G. Cardiovascular autonomic function tests in cluster headache. Cephalalgia 26 329–331 (2006).

    Article  Google Scholar 

  57. May, A. et al. Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nat. Med. 5, 836–838 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Leone, M., Franzini, A. & Bussone, G. Stereotactic stimulation of posterior hypothalamic gray matter in a patient with intractable cluster headache. N. Engl. J. Med. 345, 1428–1429 (2001).

    CAS  PubMed  Google Scholar 

  59. Leone, M. Deep brain stimulation in headache. Lancet Neurol. 5, 873–877 (2006).

    Article  PubMed  Google Scholar 

  60. [No authors listed] Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 17, 354–381 (1996).

  61. Tubani, L. et al. Heart rate variability in cluster headache. Ann. Ital. Med. Int. 18, 42–46 (2003).

    PubMed  Google Scholar 

  62. Russel, D. & Storstein, L. Cluster headache: a computerized analysis of 24 h Holter ECG recording and description of ECG rhythm disturbances. Cephalalgia 3, 83–107 (1983).

    Article  Google Scholar 

  63. Pollak, P. et al. Intraoperative micro- and macrostimulation of the subthalamic nucleus in Parkinson's disease. Mov. Disord. 3, S155–S161 (2002).

    Article  Google Scholar 

  64. Mian, M. K., Campos, M., Sheth, S. A. & Eskandar, E. N. Deep brain stimulation for obsessive–compulsive disorder: past, present, and future. Neurosurg. Focus 2, E10 (2010).

    Article  Google Scholar 

  65. Okun, M. S. et al. Deep brain stimulation in the internal capsule and nucleus accumbens region: responses observed during active and sham programming. J. Neurol. Neurosurg. Psychiatry 78, 310–314 (2007).

    Article  PubMed  Google Scholar 

  66. Shapira, N. A. et al. Panic and fear induced by deep brain stimulation. J. Neurol. Neurosurg. Psychiatry 77, 410–412 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stemper, B. et al. Deep brain stimulation improves orthostatic regulation of patients with Parkinson disease. Neurology 67, 1781–1785 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Ludwig, J. et al. Effects of subthalamic nucleus stimulation and levodopa on the autonomic nervous system in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 78, 742–745 (2006).

    Article  Google Scholar 

  69. Holmberg, B., Corneliusson O & Elam, M. Bilateral stimulation of nucleus subthalamicus in advanced Parkinson's disease: no effects on, and of, autonomic dysfunction. Mov. Disord. 8, 976–981 (2005).

    Article  Google Scholar 

  70. Trachani, E. et al. Effects of subthalamic nucleus deep brain stimulation on sweating function in Parkinson's disease. Clin. Neurol. Neurosurg. 3, 213–217 (2010).

    Article  Google Scholar 

  71. Ghione, S. Hypertension-associated hypalgesia. Evidence in experimental animals and humans, pathophysiological mechanisms, and potential clinical consequences. Hypertension 28, 494–504 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Carrive, P. & Bandler, R. Control of extracranial and hindlimb blood flow by the midbrain periaqueductal grey of the cat. Exp. Brain Res. 84, 599–606 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Carrive, P. & Bandler, R. Viscerotopic organization of neurones subserving hypotensive reactions within the midbrain periaqueductal grey: a correlative functional and anatomical study. Brain Res. 541, 206–215 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Lovick, T. Pain relief from deep brain stimulation at midbrain sites—a contribution from vagal processes? Exp. Neurol. 2, 240–242 (2010).

    Article  Google Scholar 

  75. Viltart, O., Sartor D. M. & Verberne, A. J. Chemical stimulation of visceral afferents activates medullary neurones projecting to the central amygdala and periaqueductal grey. Brain Res. Bull. 71, 51–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Reis, D. J., Miura, M., Weinbren, M. & Gunne, L. M. Brain catecholamines: relation to defense reaction evoked by acute brainstem transaction in cat. Science 156, 1768–1770 (2006).

    Article  Google Scholar 

  77. McGaraughty, S., Farr, D. & Heinricher, M. M. Lesions of the periaqueductal gray disrupt input to the rostral ventromedial medulla following microinjections of morphine into the medial or basolateral nuclei of the amygdala. Brain Res. 1009, 223–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Bittencourt, A. S., Carobrez, A. P., Zamprogno, L. P., Tufik S. & Schenberg, L. C. Organization of single components of defensive behaviors within distinct columns of periaqueductal gray matter of the rat: role of N-methyl-D-aspartic acid glutamate receptors. Neuroscience 125, 71–89 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Finnegan, T. F., Chen, S. R. & Pan, H. L. Effect of the μ opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurones in the amygdala. J. Pharmacol. Exp. Ther. 312, 441–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Johnson, P. L., Lightman. S. L. & Lowry, C. A. A functional subset of serotonergic neurones in the rat ventrolateral periaqueductal gray implicated in the inhibition of sympathoexcitation and panic. Ann. NY Acad. Sci. 1018, 58–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Abrahams, V. C., Hilton, S. M. & Zbrozyna, A. W. Active muscle vasodilation produced by stimulation of the brain stem: its significance in the defense reaction. J. Physiol. 154, 491–513 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Duggan, A. W. & Morton, C. R. Periaqueductal grey stimulation: an association between selective inhibition of dorsal horn neurones and changes in peripheral circulation. Pain 15, 237–248 (1983).

    Article  CAS  PubMed  Google Scholar 

  83. Lovick, T. A. Ventrolateral medullary lesions block the antinociceptive and cardiovascular responses elicited by stimulating the dorsal periaqueductal grey matter in rats. Pain 21, 241–252 (1985).

    Article  CAS  PubMed  Google Scholar 

  84. Lovick, T. A. Inhibitory modulation of the cardiovascular defence response by the ventrolateral periaqueductal grey matter in rats. Exp. Brain Res. 89. 133–139 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Green, A. L. et al. Intra-operative deep brain stimulation of the periaqueductal grey matter modulates blood pressure and heart rate variability in humans. Neuromodulation 3, 174–181 (2010).

    Article  Google Scholar 

  86. Green, A. L. et al. Controlling the heart via the brain: a potential new therapy for orthostatic hypotension. Neurosurgery 58, 1176–1183 (2006).

    Article  PubMed  Google Scholar 

  87. Patel, N. K. et al. Deep brain stimulation relieves refractory hypertension. Neurology 76, 405–407 (2010).

    Article  Google Scholar 

  88. Green, A. L. et al. Stimulating the human midbrain to reveal the link between pain and blood pressure. Pain 3, 349–359 (2006).

    Article  Google Scholar 

  89. Haldane, J. S. Organism and Environment as Illustrated by the Physiology of Breathing (Yale University Press, New Haven, 1917).

    Book  Google Scholar 

  90. Fink, G. R. et al. Human cerebral activity with increasing inspiratory force: a study using positron emission tomography. J. Appl. Physiol. 3, 1295–1305 (1996).

    Article  Google Scholar 

  91. McKay, L. C., Adams, L., Frackowiak R. S. & Corfield, D. R. A bilateral cortico-bulbar network associated with breath holding in humans, determined by functional magnetic resonance imaging. Neuroimage 40, 1824–1832 (2008).

    Article  PubMed  Google Scholar 

  92. Pattinson, K. T. et al. Determination of the human brainstem respiratory control network and its cortical connections in vivo using functional and structural imaging. Neuroimage 44, 295–305 (2009).

    Article  PubMed  Google Scholar 

  93. Barnes, P. J. Neural control of airway function: new perspectives. Mol. Aspects Med. 11, 351–423 (1990).

    Article  CAS  PubMed  Google Scholar 

  94. Hadziefendic, S. and Haxhiu, M. A. CNS innervation of vagal preganglionic neurons controlling peripheral airways: a transneuronal labelling study using pseudorabies virus. J. Auton Nerv. Sys. 76, 135–145 (1999).

    Article  CAS  Google Scholar 

  95. Haxhiu, M. A., Jansen, A. S., Cherniack, N. S. & Loewy, A. D. CNS innervation of airway-related parasympathetic preganglionic neurons: a transneuronal labelling study using pseudorabies virus. Brain Res. Bull. 618, 115–134 (1993).

    Article  CAS  Google Scholar 

  96. Haxhiu, M. A., Kc, P., Moore, C. T., Acquah, S. S., Wilson, C. G. et al. Brain stem excitatory and inhibitory signalling pathways regulating bronchoconstrictive responses. J. Appl. Physiol. 98, 1961–1982 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Herzog, J. et al. Subthalamic stimulation modulates cortical control of urinary bladder in Parkinson's disease. Brain 129, 3366–3375 (2006).

    Article  PubMed  Google Scholar 

  98. Dalmose, A. L., Bjarkam, C. R., Sorenson, J. C., Djurhuus, J. C. & Jorgensen, T. M. Effects of high frequency deep brain stimulation on urine storage and voiding function in conscious minipigs. Neurourol. Urodyn. 23, 265–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Finazzi-Agro, E. et al. Effects of subthalamic nucleus stimulation on urodynamic findings in patients with Parkinson's disease. J. Urol. 169, 1388–1391 (2003).

    Article  PubMed  Google Scholar 

  100. Seif, C. et al. Effect of subthalamic nucleus stimulation on the function of the urinary bladder. Ann. Neurol. 55, 118–120 (2004).

    Article  PubMed  Google Scholar 

  101. Aviles-Olmos, I. et al. Urinary incontinence following deep brain stimulation of the pedunculopontine nucleus. Acta Neurochir. (Wien) 12, 2357–2360 (2011).

    Article  Google Scholar 

  102. Jensen, K. N., Deding, D., Sørensen, J. C. & Bjarkam, C. R. Long-term implantation of deep brain stimulation electrodes in the pontine micturition centre of the Göttingen mini-pig. Acta Neurochir. (Wien) 7, 785–794 (2009).

    Article  Google Scholar 

  103. Halim, A., Baumgartner. L. & Binder, D. K. Effect of deep brain stimulation on autonomic dysfunction in patients with Parkinson's disease. J. Clin. Neurosci. 6 804–806 (2011).

    Article  Google Scholar 

  104. Ciucci, M. R., Barkmeier-Kramer, J. M. & Sherman, S. J. Subthalamic nucleus deep brain stimulation improves deglutition in Parkinson's disease. Mov. Disord. 23, 676–683 (2008).

    Article  PubMed  Google Scholar 

  105. Cechetto, D. F. & Chen, S. J. Subcortical sites mediating sympathetic responses from insular cortex in rats. Am. J. Physiol. 258, R245–R255 (1990).

    CAS  PubMed  Google Scholar 

  106. Craig, A. D. Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn. Sci. 19, 566–571 (2005).

    Article  Google Scholar 

  107. Napadow, V. et al. Brain correlates of autonomic modulation: combining heart rate variability with fMRI. Neuroimage 42, 169–177 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK, receives grants from the Oxford Biomedical Research Centre of the UK National Institute for Health & Research, Charles Wolfson Charitable Trust and Norman Collisson Foundation. P. S. Silburn's research is funded by the National Health and Medical Research Council (Australia) and Australia Research Council.

Author information

Authors and Affiliations

Authors

Contributions

J. A. Hyam researched the data for the article. J. A. Hyam, M. L. Kringelbach, P. S. Silburn, T. Z. Aziz and A. L. Green provided substantial contribution to and discussion of the content, and to review and editing of the manuscript before submission. J. A. Hyam and M. L. Kringelbach contributed equally to writing the article.

Corresponding author

Correspondence to Jonathan A. Hyam.

Ethics declarations

Competing interests

T. Z. Aziz and A. L. Green declare that they are founder members of Oxford Functional Neurosurgery at the John Radcliffe Hospital, Oxford, UK, which is supported by grants (UK) from Medtronic and St Jude Medical. J. A. Hyam, T. Z. Aziz and A. L. Green are named inventors on patent application number WO/2012/046074 A1 for the control of respiration and dyspnoea by central neuromodulation. T. Z. Aziz and A. L. Green have received honoraria from Medtronic. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyam, J., Kringelbach, M., Silburn, P. et al. The autonomic effects of deep brain stimulation—a therapeutic opportunity. Nat Rev Neurol 8, 391–400 (2012). https://doi.org/10.1038/nrneurol.2012.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing