Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TAR DNA-binding protein 43 in neurodegenerative disease

Abstract

In 2006, TAR DNA-binding protein 43 (TDP-43), a highly conserved nuclear protein, was identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and in the most common variant of frontotemporal lobar degeneration (FTLD), FTLD-U, which is characterized by cytoplasmic inclusions that stain positive for ubiquitin but negative for tau and α-synuclein. Since then, rapid advances have been made in our understanding of the physiological function of TDP-43 and the role of this protein in neurodegeneration. These advances link ALS and FTLD-U (now designated FTLD-TDP) to a shared mechanism of disease. In this Review, we summarize the current evidence regarding the normal function of TDP-43 and the TDP-43 pathology observed in FTLD-TDP, ALS, and other neurodegenerative diseases wherein TDP-43 pathology co-occurs with other disease-specific lesions (for example, with amyloid plaques and neurofibrillary tangles in Alzheimer disease). Moreover, we discuss the accumulating data that support our view that FTLD-TDP and ALS represent two ends of a spectrum of primary TDP-43 proteinopathies. Finally, we comment on the importance of recent advances in TDP-43-related research to neurological practice, including the new opportunities to develop better diagnostics and disease-modifying therapies for ALS, FTLD-TDP, and related disorders exhibiting TDP-43 pathology.

Key Points

  • Genetic and neuropathological evidence indicate that TAR DNA-binding protein 43 (TDP-43) is the main disease-associated protein in amyotrophic lateral sclerosis (ALS) and in many cases of frontotemporal lobar degeneration (FTLD)

  • FTLD with TDP-43 positive inclusions (FTLD-TDP) and ALS might represent two ends of a disease spectrum of primary TDP-43 proteinopathies

  • TDP-43 pathology seems to be a secondary feature of several neurodegenerative diseases, including Alzheimer disease, Parkinson disease and Huntington disease

  • Under physiological conditions, TDP-43 resides in the nuclear compartment and is involved in the regulation of gene expression

  • In neurodegenerative diseases, TDP-43 is primarily found in cytoplasmic inclusions, where the protein is poorly soluble, hyperphosphorylated, ubiquitinated, and cleaved into small fragments

  • Progress in TDP-43-related research has been rapid, with TDP-43 biomarkers and transgenic mouse models emerging within 3 years of the initial reports linking this protein to FTLD-TDP and ALS

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiological and pathophysiological TDP-43.
Figure 2: Domain structure and disease-associated mutations of TDP-43.
Figure 3: TDP-43 histopathology.
Figure 4: TDP-43 in FTLD and ALS.

Similar content being viewed by others

References

  1. Pick, A. On the relationship of senile brain atrophy to aphasia [German]. Prag. Med. Wochenschr. 17, 165–167 (1892).

    Google Scholar 

  2. Todman, D. Arnold Pick (1851–1924). J. Neurol. 256, 504–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Pearce, J. M. Pick's disease. J. Neurol. Neurosurg. Psychiatry 74, 169 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alzheimer, A. Unusual illnesses of late life [German]. Z. Ges. Neurol. Psychiatr. 4, 356–385 (1911).

    Article  Google Scholar 

  5. Kertesz, A., Hillis, A. & Munoz, D. G. Frontotemporal degeneration, Pick's disease, Pick complex, and Ravel. Ann. Neurol. 54 (Suppl. 5), S1–S2 (2003).

    Article  PubMed  Google Scholar 

  6. Brun, A. Identification and characterization of frontal lobe degeneration: historical perspective on the development of FTD. Alzheimer Dis. Assoc. Disord. 21, S3–S4 (2007).

    Article  PubMed  Google Scholar 

  7. Neary, D. et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51, 1546–1554 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. [No authors listed] Clinical and neuropathological criteria for frontotemporal dementia. The Lund and Manchester Groups. J. Neurol. Neurosurg. Psychiatry 57, 416–418 (1994).

  9. Forman, M. S. et al. Frontotemporal dementia: clinicopathological correlations. Ann. Neurol. 59, 952–962 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  10. McKhann, G. M. et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the work group on frontotemporal dementia and Pick's disease. Arch. Neurol. 58, 1803–1809 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Poorkaj, P. et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann. Neurol. 43, 815–825 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Mackenzie, I. R. et al. Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol. 117, 15–18 (2009).

    Article  PubMed  Google Scholar 

  17. Cairns, N. J. et al. TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am. J. Pathol. 171, 227–240 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hodges, J. R. et al. Clinicopathological correlates in frontotemporal dementia. Ann. Neurol. 56, 399–406 (2004).

    Article  PubMed  Google Scholar 

  19. Lomen-Hoerth, C. et al. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 60, 1094–1097 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Talbot, K. & Ansorge, O. Recent advances in the genetics of amyotrophic lateral sclerosis and frontotemporal dementia: common pathways in neurodegenerative disease. Hum. Mol. Genet. 15, R182–R187 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, I. F., Reddy, N. M. & Shen, C. K. Higher order arrangement of the eukaryotic nuclear bodies. Proc. Natl Acad. Sci. USA 99, 13583–13588 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Winton, M. J. et al. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J. Biol. Chem. 283, 13302–13309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ayala, Y. M. et al. Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci. 121, 3778–3785 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Ou, S. H., Wu, F., Harrich, D., Garcia-Martinez, L. F. & Gaynor, R. B. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol. 69, 3584–3596 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Buratti, E. et al. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 20, 1774–1784 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buratti, E. & Baralle, F. E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Acharya, K. K., Govind, C. K., Shore, A. N., Stoler, M. H. & Reddi, P. P. cis-Requirement for the maintenance of round spermatid-specific transcription. Dev. Biol. 295, 781–790 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Abhyankar, M. M., Urekar, C. & Reddi, P. P. A novel CpG-free vertebrate insulator silences the testis-specific SP-10 gene in somatic tissues: role for TDP-43 in insulator function. J. Biol. Chem. 282, 36143–36154 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Ayala, Y. M., Pagani, F. & Baralle, F. E. TDP43 depletion rescues aberrant CFTR exon 9 skipping. FEBS Lett. 580, 1339–1344 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Buratti, E., Brindisi, A., Pagani, F. & Baralle, F. E. Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. Am. J. Hum. Genet. 74, 1322–1325 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mercado, P. A., Ayala, Y. M., Romano, M., Buratti, E. & Baralle, F. E. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res. 33, 6000–6010 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, H. Y., Wang, I. F., Bose, J. & Shen, C. K. Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83, 130–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Strong, M. J. et al. TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol. Cell. Neurosci. 35, 320–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Ayala, Y. M., Misteli, T. & Baralle, F. E. TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc. Natl Acad. Sci. USA 105, 3785–3789 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dreyfuss, G., Matunis, M. J., Piñol-Roma, S. & Burd, C. G. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289–321 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. He, Y. & Smith, R. Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell. Mol. Life Sci. 66, 1239–1256 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Ayala, Y. M. et al. Human, Drosophila, and C. elegans TDP43: nucleic acid binding properties and splicing regulatory function. J. Mol. Biol. 348, 575–588 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Buratti, E. et al. TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J. Biol. Chem. 280, 37572–37584 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Brandmeir, N. J. et al. Severe subcortical TDP-43 pathology in sporadic frontotemporal lobar degeneration with motor neuron disease. Acta Neuropathol. 115, 123–131 (2008).

    Article  PubMed  Google Scholar 

  41. Davidson, Y. et al. Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol. 113, 521–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Geser, F. et al. Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch. Neurol. 66, 180–189 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sampathu, D. M. et al. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am. J. Pathol. 169, 1343–1352 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mackenzie, I. R. et al. The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129, 3081–3090 (2006).

    Article  PubMed  Google Scholar 

  45. Josephs, K. A. et al. Neuropathologic features of frontotemporal lobar degeneration with ubiquitin-positive inclusions with progranulin gene (PGRN) mutations. J. Neuropathol. Exp. Neurol. 66, 142–151 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Neumann, M. et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132, 2922–2931 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kwiatkowski, T. J. Jr et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Corrado, L. et al. Mutations of FUS gene in sporadic amyotrophic lateral sclerosis. J. Med. Genet. doi:10.1136/jmg.2009.071027.

  50. Belzil, V. V. et al. Mutations in FUS cause FALS and SALS in French and French Canadian populations. Neurology 73, 1176–1179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dickson, D. W., Josephs, K. A. & Amador-Ortiz, C. TDP-43 in differential diagnosis of motor neuron disorders. Acta Neuropathol. 114, 71–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Geser, F. et al. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol. 65, 636–641 (2008).

    Article  PubMed  Google Scholar 

  53. McCluskey, L. F. et al. Amyotrophic lateral sclerosis-plus syndrome with TAR DNA-binding protein-43 pathology. Arch. Neurol. 66, 121–124 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mackenzie, I. R. et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol. 61, 427–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 36, 377–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Guinto, J. B., Ritson, G. P., Taylor, J. P. & Forman, M. S. Valosin-containing protein and the pathogenesis of frontotemporal dementia associated with inclusion body myopathy. Acta Neuropathol. 114, 55–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Weihl, C. C. et al. TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 79, 1186–1189 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Greenberg, S. A., Watts, G. D., Kimonis, V. E., Amato, A. A. & Pinkus, J. L. Nuclear localization of valosin-containing protein in normal muscle and muscle affected by inclusion-body myositis. Muscle Nerve 36, 447–454 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Wider, C. et al. Pallidonigral TDP-43 pathology in Perry syndrome. Parkinsonism Relat. Disord. 15, 281–286 (2009).

    Article  PubMed  Google Scholar 

  60. Farrer, M. J. et al. DCTN1 mutations in Perry syndrome. Nat. Genet. 41, 163–165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Puls, I. et al. Mutant dynactin in motor neuron disease. Nat. Genet. 33, 455–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Munch, C. et al. Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD. Ann. Neurol. 58, 777–780 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Geser, F., Martinez-Lage, M., Kwong, L. K., Lee, V. M. & Trojanowski, J. Q. Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J. Neurol. 256, 1205–1214 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hasegawa, M. et al. TDP-43 is deposited in the Guam parkinsonism–dementia complex brains. Brain 130, 1386–1394 (2007).

    Article  PubMed  Google Scholar 

  65. Geser, F. et al. Pathological TDP-43 in parkinsonism–dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol. 115, 133–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Amador-Ortiz, C. et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Ann. Neurol. 61, 435–445 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arai, T. et al. Phosphorylated TDP-43 in Alzheimer's disease and dementia with Lewy bodies. Acta Neuropathol. 117, 125–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Higashi, S. et al. Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer's disease and dementia with Lewy bodies. Brain Res. 1184, 284–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Hu, W. T. et al. Temporal lobar predominance of TDP-43 neuronal cytoplasmic inclusions in Alzheimer disease. Acta Neuropathol. 116, 215–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Uryu, K. et al. Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J. Neuropathol. Exp. Neurol. 67, 555–564 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Nakashima-Yasuda, H. et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 114, 221–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Schwab, C., Arai, T., Hasegawa, M., Yu, S. & McGeer, P. L. Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J. Neuropathol. Exp. Neurol. 67, 1159–1165 (2008).

    Article  PubMed  Google Scholar 

  73. Rothstein, J. D. TDP-43 in amyotrophic lateral sclerosis: pathophysiology or patho-babel? Ann. Neurol. 61, 382–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Kwong, L. K., Neumann, M., Sampathu, D. M., Lee, V. M. & Trojanowski, J. Q. TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathol. 114, 63–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Buratti, E. & Baralle, F. E. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front. Biosci. 13, 867–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Neumann, M., Tolnay, M. & Mackenzie, I. R. The molecular basis of frontotemporal dementia. Expert Rev. Mol. Med. 11, e23 (2009).

    Article  PubMed  Google Scholar 

  77. Hasegawa, M. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann. Neurol. 64, 60–70 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Inukai, Y. et al. Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. FEBS Lett. 582, 2899–2904 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Neumann, M. et al. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol. 117, 137–149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ballatore, C., Lee, V. M. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat. Rev. Neurosci. 8, 663–672 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Igaz, L. M. et al. Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J. Biol. Chem. 284, 8516–8524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Johnson, B. S., McCaffery, J. M., Lindquist, S. & Gitler, A. D. A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc. Natl Acad. Sci. USA 105, 6439–6444 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhang, Y. J. et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc. Natl Acad. Sci. USA 106, 7607–7612 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Nonaka, T., Kametani, F., Arai, T., Akiyama, H. & Hasegawa, M. Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum. Mol. Genet. 18, 3353–3364 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Igaz, L. M. et al. Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am. J. Pathol. 173, 182–194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen-Plotkin, A. S. et al. Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Hum. Mol. Genet. 17, 1349–1362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Battle, D. J. et al. The SMN complex: an assembly machine for RNPs. Cold Spring Harb. Symp. Quant. Biol. 71, 313–320 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Lagier-Tourenne, C. & Cleveland, D. W. Rethinking ALS: the FUS about TDP-43. Cell 136, 1001–1004 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Janknecht, R. EWS–ETS oncoproteins: the linchpins of Ewing tumors. Gene 363, 1–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Gitcho, M. A. et al. TDP-43 A315T mutation in familial motor neuron disease. Ann. Neurol. 63, 535–538 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kabashi, E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 40, 572–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Van Deerlin, V. M. et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol. 7, 409–416 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kamada, M. et al. Screening for TARDBP mutations in Japanese familial amyotrophic lateral sclerosis. J. Neurol. Sci. 284, 69–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Kuhnlein, P. et al. Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Arch. Neurol. 65, 1185–1189 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Daoud, H. et al. Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J. Med. Genet. 46, 112–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Yokoseki, A. et al. TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann. Neurol. 63, 538–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Rutherford, N. J. et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet. 4, e1000193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Corrado, L. et al. High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Hum. Mutat. 30, 688–694 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Del Bo, R. et al. TARDBP (TDP-43) sequence analysis in patients with familial and sporadic ALS: identification of two novel mutations. Eur. J. Neurol. 16, 727–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Baumer, D., Parkinson, N. & Talbot, K. TARDBP in amyotrophic lateral sclerosis: identification of a novel variant but absence of copy number variation. J. Neurol. Neurosurg. Psychiatry 80, 1283–1285 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Pesiridis, G. S., Lee, V. M. & Trojanowski, J. Q. Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum. Mol. Genet. 18, R156–R162 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Benajiba, L. et al. TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann. Neurol. 65, 470–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Kovacs, G. G. et al. TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov. Disord. 24, 1843–1847 (2009).

    Article  PubMed  Google Scholar 

  106. D'Ambrogio, A. et al. Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res. 37, 4116–4126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brooks, B. R., Miller, R. G., Swash, M. & Munsat, T. L. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1, 293–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Strong, M. J. et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 10, 131–146 (2009).

    Article  PubMed  Google Scholar 

  109. Murphy, J. M. et al. Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch. Neurol. 64, 530–534 (2007).

    Article  PubMed  Google Scholar 

  110. Forman, M. S., Trojanowski, J. Q. & Lee, V. M. TDP-43: a novel neurodegenerative proteinopathy. Curr. Opin. Neurobiol. 17, 548–555 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mackenzie, I. R. et al. Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol. 117, 15–18 (2009).

    Article  PubMed  Google Scholar 

  112. Foulds, P. et al. TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer's disease and frontotemporal lobar degeneration. Acta Neuropathol. 116, 141–146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Steinacker, P. et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch. Neurol. 65, 1481–1487 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kasai, T. et al. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol. 117, 55–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Lee, V. M. & Trojanowski, J. Q. Progress from Alzheimer's tangles to pathological tau points towards more effective therapies now. J. Alzheimers Dis. 9, 257–262 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Brion, J. P., H. Nunez, J. & Flament-Durand, J. Immunological evidence that tau protein forms the degenerative neurofibrillary lesions in Alzheimer's disease [French]. Arch. Biol. 95, 229–235 (1985).

    Google Scholar 

  117. Lee, V. M., Balin, B. J., Otvos, L. Jr & Trojanowski, J. Q. A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251, 675–678 (1991).

    Article  CAS  PubMed  Google Scholar 

  118. Nitsch, R. M. et al. Cerebrospinal fluid levels of amyloid β-protein in Alzheimer's disease: inverse correlation with severity of dementia and effect of apolipoprotein E genotype. Ann. Neurol. 37, 512–518 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Vigo-Pelfrey, C. et al. Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer's disease. Neurology 45, 788–793 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Ishihara, T. et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24, 751–762 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, B. et al. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl Acad. Sci. USA 102, 227–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Wegorzewska, I., Bell, S., Cairns, N. J., Miller, T. M. & Baloh, R. H. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA 106, 18809–18814 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Q. Trojanowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen-Plotkin, A., Lee, VY. & Trojanowski, J. TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6, 211–220 (2010). https://doi.org/10.1038/nrneurol.2010.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing