Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemotherapy-induced peripheral neurotoxicity

Abstract

Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common, potentially severe and dose-limiting adverse effect of cancer treatment; however, the effects of CIPN on the daily life of individuals are not completely understood. CIPN can be induced by several types of drugs that are widely used in the treatment of solid and hematological malignancies. Our knowledge of the mechanisms underlying CIPN is incomplete, but structural properties of the various neurotoxic compounds might contribute to variations in the pathogenetic mechanisms of damage, in addition to the type of neurotoxicity, severity of the clinical condition, and incidence of CIPN. No drugs capable of preventing the occurrence of CIPN or ameliorating its long-term course are available, and chemotherapy schedule modification is often required to limit its severity, which could potentially prevent patients from receiving the most effective treatment for cancer. Moreover, symptomatic therapy is often largely ineffective in reducing CIPN symptoms. In this Review, the mechanistic and clinical aspects of this unpredictable condition are considered, along with the controversial aspects of CIPN, including the onset mechanisms associated with the different drug types, assessment of the patient's condition, and the current status of neuroprotection and treatment options.

Key Points

  • Chemotherapy-induced peripheral neurotoxicity (CIPN) frequently occurs during cancer treatment, and can necessitate chemotherapy schedule modification

  • CIPN can be long-lasting, or even permanent in the worst cases

  • Reliable assessment of CIPN is still a matter of debate

  • No drugs are available to prevent CIPN or reduce its long-term effects, and symptomatic treatment is frequently ineffective

  • Collaboration among oncologists, neurologists and patients is essential to establish a 'virtuous alliance' against CIPN

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Windebank, A. J. & Grisold, W. Chemotherapy-induced neuropathy. J. Peripher. Nerv. Syst. 13, 27–46 (2008).

    CAS  PubMed  Google Scholar 

  2. Thompson, S. W., Davis, L. E., Kornfeld, M., Hilgers, R. D. & Standefer, J. C. Cisplatin neuropathy. Clinical, electrophysiologic, morphologic, and toxicologic studies. Cancer 54, 1269–1275 (1984).

    CAS  PubMed  Google Scholar 

  3. Krarup-Hansen, A. et al. Histology and platinum content of sensory ganglia and sural nerves in patients treated with cisplatin and carboplatin: an autopsy study. Neuropathol. Appl. Neurobiol. 25, 29–40 (1999).

    CAS  PubMed  Google Scholar 

  4. Gregg, R. W. et al. Cisplatin neurotoxicity: the relationship between dosage, time, and platinum concentration in neurologic tissues, and morphologic evidence of toxicity. J. Clin. Oncol. 10, 795–803 (1992).

    CAS  PubMed  Google Scholar 

  5. Meijer, C. et al. Cisplatin-induced DNA-platination in experimental dorsal root ganglia neuronopathy. Neurotoxicology 20, 883–887 (1999).

    CAS  PubMed  Google Scholar 

  6. Cavaletti, G. et al. Morphometric study of the sensory neuron and peripheral nerve changes induced by chronic cisplatin (DDP) administration in rats. Acta Neuropathol. (Berl.) 84, 364–371 (1992).

    CAS  Google Scholar 

  7. Dzagnidze, A. et al. Repair capacity for platinum–DNA adducts determines the severity of cisplatin-induced peripheral neuropathy. J. Neurosci. 27, 9451–9457 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cavaletti, G., Nicolini, G. & Marmiroli, P. Neurotoxic effects of antineoplastic drugs: the lesson of pre-clinical studies. Front. Biosci. 13, 3506–3524 (2008).

    CAS  PubMed  Google Scholar 

  9. Ta, L. E., Espeset, L., Podratz, J. & Windebank, A. J. Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum–DNA binding. Neurotoxicology 27, 992–1002 (2006).

    CAS  PubMed  Google Scholar 

  10. McDonald, E. S., Randon, K. R., Knight, A. & Windebank, A. J. Cisplatin preferentially binds to DNA in dorsal root ganglion neurons in vitro and in vivo: a potential mechanism for neurotoxicity. Neurobiol. Dis. 18, 305–313 (2005).

    CAS  PubMed  Google Scholar 

  11. Gill, J. S. & Windebank, A. J. Cisplatin-induced apoptosis in rat dorsal root ganglion neurons is associated with attempted entry into the cell cycle. J. Clin. Invest. 101, 2842–2850 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoon, M. S. et al. Erythropoietin overrides the triggering effect of DNA platination products in a mouse model of cisplatin-induced neuropathy. BMC Neurosci. 10, 77 (2009).

    PubMed  PubMed Central  Google Scholar 

  13. McDonald, E. S. & Windebank, A. J. Cisplatin-induced apoptosis of DRG neurons involves bax redistribution and cytochrome c release but not fas receptor signaling. Neurobiol. Dis. 9, 220–233 (2002).

    CAS  PubMed  Google Scholar 

  14. Scuteri, A. et al. Role of MAPKs in platinum-induced neuronal apoptosis. Neurotoxicology 30, 312–319 (2009).

    CAS  PubMed  Google Scholar 

  15. Jiang, M. & Dong, Z. Regulation and pathological role of p53 in cisplatin nephrotoxicity. J. Pharmacol. Exp. Ther. 327, 300–307 (2008).

    CAS  PubMed  Google Scholar 

  16. Krishnan, A. V., Goldstein, D., Friedlander, M. & Kiernan, M. C. Oxaliplatin-induced neurotoxicity and the development of neuropathy. Muscle Nerve 32, 51–60 (2005).

    CAS  PubMed  Google Scholar 

  17. Kiernan, M. C. & Krishnan, A. V. The pathophysiology of oxaliplatin-induced neurotoxicity. Curr. Med. Chem. 13, 2901–2907 (2006).

    CAS  PubMed  Google Scholar 

  18. Adelsberger, H. et al. The chemotherapeutic oxaliplatin alters voltage-gated Na+ channel kinetics on rat sensory neurons. Eur. J. Pharmacol. 406, 25–32 (2000).

    CAS  PubMed  Google Scholar 

  19. Grolleau, F. et al. A possible explanation for a neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltage-gated sodium channels. J. Neurophysiol. 85, 2293–2297 (2001).

    CAS  PubMed  Google Scholar 

  20. Park, S. B. et al. Oxaliplatin-induced Lhermitte's phenomenon as a manifestation of severe generalized neurotoxicity. Oncology 77, 342–348 (2009).

    CAS  PubMed  Google Scholar 

  21. Umapathi, T. & Chaudhry, V. Toxic neuropathy. Curr. Opin. Neurol. 18, 574–580 (2005).

    CAS  PubMed  Google Scholar 

  22. Quasthoff, S. & Hartung, H. P. Chemotherapy-induced peripheral neuropathy. J. Neurol. 249, 9–17 (2002).

    CAS  PubMed  Google Scholar 

  23. Cavaletti, G. & Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity. Expert Opin. Drug Saf. 3, 535–546 (2004).

    CAS  PubMed  Google Scholar 

  24. Fossa, S. D. Long-term sequelae after cancer therapy—survivorship after treatment for testicular cancer. Acta Oncol. 43, 134–141 (2004).

    PubMed  Google Scholar 

  25. Wilson, R. H. et al. Acute oxaliplatin-induced peripheral nerve hyperexcitability. J. Clin. Oncol. 20, 1767–1774 (2002).

    CAS  PubMed  Google Scholar 

  26. Park, S. B. et al. Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain 132, 2712–2723 (2009).

    PubMed  Google Scholar 

  27. Persohn, E. et al. Morphological and morphometric analysis of paclitaxel and docetaxel-induced peripheral neuropathy in rats. Eur. J. Cancer 41, 1460–1466 (2005).

    CAS  PubMed  Google Scholar 

  28. Cavaletti, G. et al. Effect on the peripheral nervous system of the short-term intravenous administration of paclitaxel in the rat. Neurotoxicology 18, 137–145 (1997).

    CAS  PubMed  Google Scholar 

  29. Cavaletti, G., Tredici, G., Braga, M. & Tazzari, S. Experimental peripheral neuropathy induced in adult rats by repeated intraperitoneal administration of taxol. Exp. Neurol. 133, 64–72 (1995).

    CAS  PubMed  Google Scholar 

  30. Cavaletti, G. et al. Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology 21, 389–393 (2000).

    CAS  PubMed  Google Scholar 

  31. Peters, C. M., Jimenez-Andrade, J. M., Kuskowski, M. A., Ghilardi, J. R. & Mantyh, P. W. An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res. 1168, 46–59 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shemesh, O. A. & Spira, M. E. Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy. Acta Neuropathol. 119, 235–248 (2010).

    CAS  PubMed  Google Scholar 

  33. Bollag, D. M. et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55, 2325–2333 (1995).

    CAS  PubMed  Google Scholar 

  34. Kowalski, R. J., Giannakakou, P. & Hamel, E. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol®). J. Biol. Chem. 272, 2534–2541 (1997).

    CAS  PubMed  Google Scholar 

  35. Altmann, K. H., Wartmann, M. & O'Reilly, T. Epothilones and related structures—a new class of microtubule inhibitors with potent in vivo antitumor activity. Biochim. Biophys. Acta 1470, M79–M91 (2000).

    CAS  PubMed  Google Scholar 

  36. Lobert, S., Vulevic, B. & Correia, J.-J. Interaction of vinca alkaloids with tubulin: a comparison of vinblastine, vincristine, and vinorelbine. Biochemistry 35, 6806–6814 (1996).

    CAS  PubMed  Google Scholar 

  37. Sahenk, Z., Brady, S. T. & Mendell, J. R. Studies on the pathogenesis of vincristine-induced neuropathy. Muscle Nerve 10, 80–84 (1987).

    CAS  PubMed  Google Scholar 

  38. Tanner, K. D., Levine, J. D. & Topp, K. S. Microtubule disorientation and axonal swelling in unmyelinated sensory axons during vincristine-induced painful neuropathy in rat. J. Comp. Neurol. 395, 481–492 (1998).

    CAS  PubMed  Google Scholar 

  39. Topp, K. S., Tanner, K. D. & Levine, J. D. Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat. J. Comp. Neurol. 424, 563–576 (2000).

    CAS  PubMed  Google Scholar 

  40. Argyriou, A. A., Koltzenburg, M., Polychronopoulos, P., Papapetropoulos, S. & Kalofonos, H. P. Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit. Rev. Oncol. Hematol. 66, 218–228 (2008).

    PubMed  Google Scholar 

  41. Postma, T. J., Benard, B. A., Huijgens, P. C., Ossenkoppele, G. J. & Heimans, J. J. Long-term effects of vincristine on the peripheral nervous system. J. Neurooncol. 15, 23–27 (1993).

    CAS  PubMed  Google Scholar 

  42. Verstappen, C. C. et al. Dose-related vincristine-induced peripheral neuropathy with unexpected off-therapy worsening. Neurology 64, 1076–1077 (2005).

    CAS  PubMed  Google Scholar 

  43. DeAngelis, L. M., Gnecco, C., Taylor, L. & Warrell, R. P. Jr. Evolution of neuropathy and myopathy during intensive vincristine/corticosteroid chemotherapy for non-Hodgkin's lymphoma. Cancer 67, 2241–2246 (1991).

    CAS  PubMed  Google Scholar 

  44. Dougherty, P. M., Cata, J. P., Cordella, J. V., Burton, A. & Weng, H. R. Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain 109, 132–142 (2004).

    CAS  PubMed  Google Scholar 

  45. Yardley, D. A. Proactive management of adverse events maintains the clinical benefit of ixabepilone. Oncologist 14, 448–455 (2009).

    CAS  PubMed  Google Scholar 

  46. Swain, S. M. & Arezzo, J. C. Neuropathy associated with microtubule inhibitors: diagnosis, incidence, and management. Clin. Adv. Hematol. Oncol. 6, 455–467 (2008).

    PubMed  Google Scholar 

  47. Goel, S. et al. Novel neurosensory testing in cancer patients treated with the epothilone B analog, ixabepilone. Ann. Oncol. 19, 2048–2052 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pal, P. K. Clinical and electrophysiological studies in vincristine induced neuropathy. Electromyogr. Clin. Neurophysiol. 39, 323–330 (1999).

    CAS  PubMed  Google Scholar 

  49. Tarlaci, S. Vincristine-induced fatal neuropathy in non-Hodgkin's lymphoma. Neurotoxicology 29, 748–749 (2008).

    CAS  PubMed  Google Scholar 

  50. Argyriou, A. A., Iconomou, G. & Kalofonos, H. P. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 112, 1593–1599 (2008).

    CAS  PubMed  Google Scholar 

  51. Cavaletti, G. & Nobile-Orazio, E. Bortezomib-induced peripheral neurotoxicity: still far from a painless gain. Haematologica 92, 1308–1310 (2007).

    CAS  PubMed  Google Scholar 

  52. Casafont, I., Berciano, M. T. & Lafarga, M. Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox. Res. 17, 167–178 (2010).

    CAS  PubMed  Google Scholar 

  53. Bruna, J. et al. Neurophysiological, histological and immunohistochemical characterization of bortezomib-induced neuropathy in mice. Exp. Neurol. 223, 599–608 (2010).

    CAS  PubMed  Google Scholar 

  54. Meregalli, C. et al. Bortezomib-induced painful neuropathy in rats: A behavioral, neurophysiological and pathological study in rats. Eur. J. Pain 14, 343–350 (2009).

    PubMed  Google Scholar 

  55. Landowski, T. H., Megli, C. J., Nullmeyer, K. D., Lynch, R. M. & Dorr, R. T. Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res. 65, 3828–3836 (2005).

    CAS  PubMed  Google Scholar 

  56. Montagut, C., Rovira, A. & Albanell, J. The proteasome: a novel target for anticancer therapy. Clin. Transl. Oncol. 8, 313–317 (2006).

    CAS  PubMed  Google Scholar 

  57. Cata, J. P. et al. Quantitative sensory findings in patients with bortezomib-induced pain. J. Pain 8, 296–306 (2007).

    CAS  PubMed  Google Scholar 

  58. Badros, A. et al. Neurotoxicity of bortezomib therapy in multiple myeloma: a single-center experience and review of the literature. Cancer 110, 1042–1049 (2007).

    CAS  PubMed  Google Scholar 

  59. Lepper, E. R., Smith, N. F., Cox, M. C., Scripture, C. D. & Figg, W. D. Thalidomide metabolism and hydrolysis: mechanisms and implications. Curr. Drug Metab. 7, 677–685 (2006).

    CAS  PubMed  Google Scholar 

  60. Cundari, S. & Cavaletti, G. Thalidomide chemotherapy-induced peripheral neuropathy: actual status and new perspectives with thalidomide analogues derivatives. Mini Rev. Med. Chem. 9, 760–768 (2009).

    CAS  PubMed  Google Scholar 

  61. Cavaletti, G. et al. Thalidomide sensory neurotoxicity: a clinical and neurophysiologic study. Neurology 62, 2291–2293 (2004).

    CAS  PubMed  Google Scholar 

  62. Briani, C. et al. Thalidomide neurotoxicity: prospective study in patients with lupus erythematosus. Neurology 62, 2288–2290 (2004).

    CAS  PubMed  Google Scholar 

  63. Cavaletti, G. et al. Early predictors of peripheral neurotoxicity in cisplatin and paclitaxel combination chemotherapy. Ann. Oncol. 15, 1439–1442 (2004).

    CAS  PubMed  Google Scholar 

  64. Argyriou, A. A., Polychronopoulos, P., Iconomou, G., Chroni, E. & Kalofonos, H. P. A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat. Rev. 34, 368–377 (2008).

    CAS  PubMed  Google Scholar 

  65. Lanzani, F. et al. Role of a pre-existing neuropathy on the course of bortezomib-induced peripheral neurotoxicity. J. Peripher. Nerv. Syst. 13, 267–274 (2008).

    PubMed  Google Scholar 

  66. Wilkes, G. Peripheral neuropathy related to chemotherapy. Semin. Oncol. Nurs. 23, 162–173 (2007).

    PubMed  Google Scholar 

  67. Bhagra, A. & Rao, R. D. Chemotherapy-induced neuropathy. Curr. Oncol. Rep. 9, 290–299 (2007).

    CAS  PubMed  Google Scholar 

  68. Harland, C. C., Steventon, G. B. & Marsden, J. R. Thalidomide-induced neuropathy and genetic differences in drug metabolism. Eur. J. Clin. Pharmacol. 49, 1–6 (1995).

    CAS  PubMed  Google Scholar 

  69. Sissung, T. M. et al. Association of ABCB1 genotypes with paclitaxel-mediated peripheral neuropathy and neutropenia. Eur. J. Cancer 42, 2893–2896 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. McWhinney, S. R., Goldberg, R. M. & McLeod, H. L. Platinum neurotoxicity pharmacogenetics. Mol. Cancer Ther. 8, 10–16 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mielke, S. Individualized pharmacotherapy with paclitaxel. Curr. Opin. Oncol. 19, 586–589 (2007).

    CAS  PubMed  Google Scholar 

  72. Richardson, P. G. et al. Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J. Clin. Oncol. 27, 3518–3525 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Argyriou, A. A. et al. Liability of the voltage-gated sodium channel gene SCN2A R19K polymorphism to oxaliplatin-induced peripheral neuropathy. Oncology 77, 254–256 (2009).

    CAS  PubMed  Google Scholar 

  74. Antonacopoulou, A. G. et al. Integrin beta-3 L33P: a new insight into the pathogenesis of chronic oxaliplatin-induced peripheral neuropathy? Eur. J. Neurol. 17, 963–968 (2010).

    CAS  PubMed  Google Scholar 

  75. Khrunin, A. V., Moisseev, A., Gorbunova, V. & Limborska, S. Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J. 10, 54–61 (2010).

    CAS  PubMed  Google Scholar 

  76. Cavaletti, G. et al. Chemotherapy-induced peripheral neurotoxicity assessment: a critical revision of the currently available tools. Eur. J. Cancer 46, 479–494 (2010).

    CAS  PubMed  Google Scholar 

  77. Postma, T. J. et al. Pitfalls in grading severity of chemotherapy-induced peripheral neuropathy. Ann. Oncol. 9, 739–744 (1998).

    CAS  PubMed  Google Scholar 

  78. Postma, T. J. & Heimans, J. J. Grading of chemotherapy-induced peripheral neuropathy. Ann. Oncol. 11, 509–513 (2000).

    CAS  PubMed  Google Scholar 

  79. Cavaletti, G. et al. Multi-center assessment of the Total Neuropathy Score for chemotherapy-induced peripheral neurotoxicity. J. Peripher. Nerv. Syst. 11, 135–141 (2006).

    CAS  PubMed  Google Scholar 

  80. Cella, D., Chang, C. H., Lai, J. S. & Webster, K. Advances in quality of life measurements in oncology patients. Semin. Oncol. 29, 60–68 (2002).

    PubMed  Google Scholar 

  81. EORTC QOL module for chemotherapy-induced peripheral neuropathy: EORTC QLQ-CIPN20. European Organization for Research and Treatment of Cancer [online], (2005).

  82. Guidance for industry. Patient-reported outcome measures: use in medical product development to support labeling claims. U. S. Food and Drug Administration [online], (2009).

  83. Shy, M. E. et al. Quantitative sensory testing: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 60, 898–904 (2003).

    CAS  PubMed  Google Scholar 

  84. Hausheer, F. H., Schilsky, R. L., Bain, S., Berghorn, E. J. & Lieberman, F. Diagnosis, management, and evaluation of chemotherapy-induced peripheral neuropathy. Semin. Oncol. 33, 15–49 (2006).

    CAS  PubMed  Google Scholar 

  85. Forsyth, P. A. et al. Prospective study of paclitaxel-induced peripheral neuropathy with quantitative sensory testing. J. Neurooncol. 35, 47–53 (1997).

    CAS  PubMed  Google Scholar 

  86. Zaslansky, R. & Yarnitsky, D. Clinical applications of quantitative sensory testing (QST). J. Neurol. Sci. 153, 215–238 (1998).

    CAS  PubMed  Google Scholar 

  87. Bird, S. J., Brown, M. J., Spino, C., Watling, S. & Foyt, H. L. Value of repeated measures of nerve conduction and quantitative sensory testing in a diabetic neuropathy trial. Muscle Nerve 34, 214–224 (2006).

    PubMed  Google Scholar 

  88. Argyriou, A. A. et al. Peripheral neuropathy induced by administration of cisplatin- and paclitaxel-based chemotherapy. Could it be predicted? Support Care Cancer 13, 647–651 (2005).

    PubMed  Google Scholar 

  89. Krarup, C. Pitfalls in electrodiagnosis. J. Neurol. 246, 1115–1126 (1999).

    CAS  PubMed  Google Scholar 

  90. Bogliun, G., Marzorati, L., Cavaletti, G. & Frattola, L. Evaluation by somatosensory evoked potentials of the neurotoxicity of cisplatin alone or in combination with glutathione. Ital. J. Neurol. Sci. 13, 643–647 (1992).

    CAS  PubMed  Google Scholar 

  91. Sghirlanzoni, A., Pareyson, D. & Lauria, G. Sensory neuron diseases. Lancet Neurol. 4, 349–361 (2005).

    CAS  PubMed  Google Scholar 

  92. Giannini, F. et al. Thalidomide-induced neuropathy: a ganglionopathy? Neurology 60, 877–878 (2003).

    CAS  PubMed  Google Scholar 

  93. Polydefkis, M., Hauer, P., Griffin, J. W. & McArthur, J. C. Skin biopsy as a tool to assess distal small fiber innervation in diabetic neuropathy. Diabetes Technol. Ther. 3, 23–28 (2001).

    CAS  PubMed  Google Scholar 

  94. Smith, A. G., Ramachandran, P., Tripp, S. & Singleton, J. R. Epidermal nerve innervation in impaired glucose tolerance and diabetes-associated neuropathy. Neurology 57, 1701–1704 (2001).

    CAS  PubMed  Google Scholar 

  95. Lauria, G., Sghirlanzoni, A., Lombardi, R. & Pareyson, D. Epidermal nerve fiber density in sensory ganglionopathies: clinical and neurophysiologic correlations. Muscle Nerve 24, 1034–1039 (2001).

    CAS  PubMed  Google Scholar 

  96. Polydefkis, M. Skin biopsy findings predict development of symptomatic neuropathy in patients with HIV. Nat. Clin. Pract. Neurol. 2, 650–651 (2006).

    PubMed  Google Scholar 

  97. Lauria, G. et al. Intraepidermal nerve fiber density in rat foot pad: neuropathologic-neurophysiologic correlation. J. Peripher. Nerv. Syst. 10, 202–208 (2005).

    PubMed  Google Scholar 

  98. Lauria, G. Small fibre neuropathies. Curr. Opin. Neurol. 18, 591–597 (2005).

    PubMed  Google Scholar 

  99. Dyck, P. J., Davies, J. L., Litchy, W. J. & O'Brien, P. C. Longitudinal assessment of diabetic polyneuropathy using a composite score in the Rochester Diabetic Neuropathy Study cohort. Neurology 49, 229–239 (1997).

    CAS  PubMed  Google Scholar 

  100. Cornblath, D. R. et al. Total neuropathy score: validation and reliability study. Neurology 53, 1660–1664 (1999).

    CAS  PubMed  Google Scholar 

  101. Chaudhry, V., Rowinsky, E. K., Sartorius, S. E., Donehower, R. C. & Cornblath, D. R. Peripheral neuropathy from taxol and cisplatin combination chemotherapy: clinical and electrophysiological studies. Ann. Neurol. 35, 304–311 (1994).

    CAS  PubMed  Google Scholar 

  102. Davis, I. D. et al. A randomized, double-blinded, placebo-controlled phase II trial of recombinant human leukemia inhibitory factor (rhuLIF, emfilermin, AM424) to prevent chemotherapy-induced peripheral neuropathy. Clin. Cancer Res. 11, 1890–1898 (2005).

    CAS  PubMed  Google Scholar 

  103. Openshaw, H. et al. Neurophysiological study of peripheral neuropathy after high-dose paclitaxel: lack of neuroprotective effect of amifostine. Clin. Cancer Res. 10, 461–467 (2004).

    CAS  PubMed  Google Scholar 

  104. Hughes, R. NCI-CTC vs TNS: which tool is better for grading the severity of chemotherapy-induced peripheral neuropathy? Nat. Clin. Pract. Neurol. 4, 68–69 (2008).

    PubMed  Google Scholar 

  105. CI-PERINOMS: chemotherapy-induced peripheral neuropathy outcome measures study. J. Peripher. Nerv. Syst. 14, 69–71 (2009).

  106. Cavaletti, G. et al. Grading of chemotherapy-induced peripheral neurotoxicity using the Total Neuropathy Scale. Neurology 61, 1297–1300 (2003).

    CAS  PubMed  Google Scholar 

  107. Cavaletti, G. & Marmiroli, P. The role of growth factors in the prevention and treatment of chemotherapy-induced peripheral neurotoxicity. Curr. Drug Saf. 1, 35–42 (2006).

    CAS  PubMed  Google Scholar 

  108. Albers, J., Chaudhry, V., Cavaletti, G. & Donehower, R. Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD005228. doi:10.1002/14651858.CD005228.pub2 (2007).

  109. Toyooka, K. & Fujimura, H. Iatrogenic neuropathies. Curr. Opin. Neurol. 22, 475–479 (2009).

    PubMed  Google Scholar 

  110. Wolf, S., Barton, D., Kottschade, L., Grothey, A. & Loprinzi, C. Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies. Eur. J. Cancer 44, 1507–1515 (2008).

    CAS  PubMed  Google Scholar 

  111. Kannarkat, G., Lasher, E. E. & Schiff, D. Neurologic complications of chemotherapy agents. Curr. Opin. Neurol. 20, 719–725 (2007).

    CAS  PubMed  Google Scholar 

  112. Moore, D. H. et al. Limited access trial using amifostine for protection against cisplatin- and three-hour paclitaxel-induced neurotoxicity: a phase II study of the Gynecologic Oncology Group. J. Clin. Oncol. 21, 4207–4213 (2003).

    CAS  PubMed  Google Scholar 

  113. Masuda, N. et al. Phase I and pharmacologic study of BNP7787, a novel chemoprotector in patients with advanced non-small cell lung cancer. Cancer Chemother. Pharmacol. doi: 10.1007/s00280-010-1340-y.

    PubMed  PubMed Central  Google Scholar 

  114. Gandara, D. R., Wiebe, V. J., Perez, E. A., Makuch, R. W. & DeGregorio, M. W. Cisplatin rescue therapy: experience with sodium thiosulfate, WR2721, and diethyldithiocarbamate. Crit. Rev. Oncol. Hematol. 10, 353–365 (1990).

    CAS  PubMed  Google Scholar 

  115. Tredici, G. et al. Effect of recombinant human nerve growth factor on cisplatin neurotoxicity in rats. Exp. Neurol. 159, 551–558 (1999).

    CAS  PubMed  Google Scholar 

  116. Aloe, L., Manni, L., Properzi, F., De Santis, S. & Fiore, M. Evidence that nerve growth factor promotes the recovery of peripheral neuropathy induced in mice by cisplatin: behavioral, structural and biochemical analysis. Auton. Neurosci. 86, 84–93 (2000).

    CAS  PubMed  Google Scholar 

  117. Gao, W. Q. et al. Neurotrophin-3 reverses experimental cisplatin-induced peripheral sensory neuropathy. Ann. Neurol. 38, 30–37 (1995).

    CAS  PubMed  Google Scholar 

  118. Cervellini, I. et al. The neuroprotective effect of erythropoietin in docetaxel-induced peripheral neuropathy causes no reduction of antitumor activity in 13,762 adenocarcinoma-bearing rats. Neurotox. Res. 18, 151–160 (2010).

    CAS  PubMed  Google Scholar 

  119. Bianchi, R. et al. Cisplatin-induced peripheral neuropathy: neuroprotection by erythropoietin without affecting tumour growth. Eur. J. Cancer 43, 710–717 (2007).

    CAS  PubMed  Google Scholar 

  120. Dicato, M. & Plawny, L. Erythropoietin in cancer patients: pros and cons. Curr. Opin. Oncol. 22, 307–311 (2010).

    CAS  PubMed  Google Scholar 

  121. Carozzi, V. A., Marmiroli, P. & Cavaletti, G. The role of oxidative stress and anti-oxidant treatment in platinum-induced peripheral neurotoxicity. Curr. Cancer Drug Targets 10, 670–682 (2010).

    CAS  PubMed  Google Scholar 

  122. Cascinu, S., Cordella, L., Del Ferro, E., Fronzoni, M. & Catalano, G. Neuroprotective effect of reduced glutathione on cisplatin-based chemotherapy in advanced gastric cancer: a randomized double-blind placebo-controlled trial. J. Clin. Oncol. 13, 26–32 (1995).

    CAS  PubMed  Google Scholar 

  123. Cascinu, S. et al. Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial. J. Clin. Oncol. 20, 3478–3483 (2002).

    CAS  PubMed  Google Scholar 

  124. Bove, L., Picardo, M., Maresca, V., Jandolo, B. & Pace, A. A pilot study on the relation between cisplatin neuropathy and vitamin E. J. Exp. Clin. Cancer Res. 20, 277–280 (2001).

    CAS  PubMed  Google Scholar 

  125. Argyriou, A. A. et al. Vitamin E for prophylaxis against chemotherapy-induced neuropathy: a randomized controlled trial. Neurology 64, 26–31 (2005).

    CAS  PubMed  Google Scholar 

  126. Argyriou, A. A. et al. Preventing paclitaxel-induced peripheral neuropathy: a phase II trial of vitamin E supplementation. J. Pain Symptom Manage. 32, 237–244 (2006).

    CAS  PubMed  Google Scholar 

  127. Pace, A. et al. Vitamin E neuroprotection for cisplatin neuropathy: a randomized, placebo-controlled trial. Neurology 74, 762–766 (2010).

    CAS  PubMed  Google Scholar 

  128. Pisano, C. et al. Paclitaxel and cisplatin-induced neurotoxicity: a protective role of acetyl-L-carnitine. Clin. Cancer Res. 9, 5756–5767 (2003).

    CAS  PubMed  Google Scholar 

  129. Boehmerle, W. et al. Chronic exposure to paclitaxel diminishes phosphoinositide signaling by calpain-mediated neuronal calcium sensor-1 degradation. Proc. Natl Acad. Sci. USA 104, 11103–11108 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Carozzi, V. A. et al. Glutamate carboxypeptidase inhibition reduces the severity of chemotherapy-induced peripheral neurotoxicity in rat. Neurotox. Res. 17, 380–391 (2010).

    CAS  PubMed  Google Scholar 

  131. Kurniali, P. C. Luo, L. G. & Weitberg, A. B. Role of calcium/magnesium infusion in oxaliplatin-based chemotherapy for colorectal cancer patients. Oncology (Williston Park) 24, 289–292 (2010).

    Google Scholar 

  132. Velasco, R. et al. Neurological monitoring reduces the incidence of bortezomib-induced peripheral neuropathy in multiple myeloma patients. J. Peripher. Nerv. Syst. 15, 17–25 (2010).

    CAS  PubMed  Google Scholar 

  133. Cavaletti, G. Chemotherapy-induced peripheral neurotoxicity: how can we improve knowledge? Lancet Oncol. 10, 539–540 (2009).

    PubMed  Google Scholar 

  134. Common Terminology Criteria for Adverse Events v3.0 (CTCAE). Cancer Therapy Evaluation Program [online], (2006).

  135. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. US Department of Health and Human Services [online], (2009).

  136. Chaudhry, V., Chaudhry, M., Crawford, T. O., Simmons-O'Brien, E. & Griffin, J. W. Toxic neuropathy in patients with pre-existing neuropathy. Neurology 60, 337–340 (2003).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors equally contributed to the research data, content evaluation, writing and editing of the manuscript before submission.

Corresponding author

Correspondence to Guido Cavaletti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

CIPN-related terms as reported in the National Cancer Institute—Common Terminology Criteria version 3.0 (NCI-CTCAE v3.0)* (DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavaletti, G., Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity. Nat Rev Neurol 6, 657–666 (2010). https://doi.org/10.1038/nrneurol.2010.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing