Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MGMT promoter methylation in malignant gliomas: ready for personalized medicine?

Abstract

The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) antagonizes the genotoxic effects of alkylating agents. MGMT promoter methylation is the key mechanism of MGMT gene silencing and predicts a favorable outcome in patients with glioblastoma who are exposed to alkylating agent chemotherapy. This biomarker is on the verge of entering clinical decision-making and is currently used to stratify or even select glioblastoma patients for clinical trials. In other subtypes of glioma, such as anaplastic gliomas, the relevance of MGMT promoter methylation might extend beyond the prediction of chemosensitivity, and could reflect a distinct molecular profile. Here, we review the most commonly used assays for evaluation of MGMT status, outline the prerequisites for standardized tests, and evaluate reasons for difficulties in reproducibility. We critically discuss the prognostic and predictive value of MGMT silencing, reviewing trials in which patients with different types of glioma were treated with various chemotherapy schedules, either upfront or at recurrence. Standardization of MGMT testing requires comparison of different technologies across laboratories and prospectively validated cut-off values for prognostic or predictive effects. Moreover, future clinical trials will need to determine, for each subtype of glioma, the degree to which MGMT promoter methylation is predictive or prognostic, and whether testing should become routine clinical practice.

Key Points

  • MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation has become the most powerful molecular prognosticator in malignant gliomas

  • MGMT promoter methylation is predictive for response to alkylating agent chemotherapy in glioblastoma

  • Methylation-specific PCR is the only validated technique to derive prognostic information from determination of the MGMT status

  • The MGMT status has become a parameter for stratification of patients with glioma within clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the CpG island region of the MGMT promoter.
Figure 2: Methylation of the CpG island region of the MGMT promoter.
Figure 3: Immunochemical staining for MGMT protein expression in glioblastomas.
Figure 4: Bisulfite conversion of tumor DNA.
Figure 5: Frequency of MGMT promoter methylation in glioma subtypes.

Similar content being viewed by others

References

  1. Gerson, S. L. MGMT: its role in cancer aetiology and cancer therapeutics. Nature Rev. Cancer 4, 296–307 (2004).

    Article  CAS  Google Scholar 

  2. Kaina, B., Christmann, M., Naumann, S. & Roos, W. P. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst.) 6, 1079–1099 (2007).

    Article  CAS  Google Scholar 

  3. Pegg, A. E. Repair of O6-alkylguanine by alkyltransferases. Mutat. Res. 462, 83–100 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Ochs, K. & Kaina, B. Apoptosis induced by DNA damage O6-methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Res. 60, 5815–5824 (2000).

    CAS  PubMed  Google Scholar 

  5. Stojic, L. et al. Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase. Genes Dev. 18, 1331–1344 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakagawachi, T. et al. Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene 22, 8835–8844 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Everhard, S. et al. Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas. Neuro Oncol. 11, 348–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Belanich, M. et al. Retrospective study of the correlation between the DNA repair protein alkyltransferase and survival of brain tumor patients treated with carmustine. Cancer Res. 56, 783–788 (1996).

    CAS  PubMed  Google Scholar 

  9. Jaeckle, K. A. et al. Correlation of tumor O6 methylguanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bis-chloroethylnitrosourea: a Southwest Oncology Group study. J. Clin. Oncol. 16, 3310–3315 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Friedman, H. S. et al. DNA mismatch repair and O6-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. J. Clin. Oncol. 16, 3851–3857 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Chinot, O. L. et al. Correlation between O6-methylguanine-DNA methyltransferase and survival in inoperable newly diagnosed glioblastoma patients treated with neoadjuvant temozolomide. J. Clin. Oncol. 25, 1470–1475 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Esteller, M. et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350–1354 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Hegi, M. E. et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res. 10, 1871–1874 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Wick, W. et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J. Clin. Oncol. doi:10.1200/JCO.2009.23.6497.

  17. van den Bent, M. J. et al. MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors: a report from EORTC Brain Tumor Group study 26951. J. Clin. Oncol. doi:10.1200/JCO.2009.24.1034.

  18. Preusser, M. et al. Anti-O6-methylguanine-methyltransferase (MGMT) immunohistochemistry in glioblastoma multiforme: observer variability and lack of association with patient survival impede its use as clinical biomarker. Brain Pathol. 18, 520–532 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hegi, M. E. et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J. Clin. Oncol. 26, 4189–4199 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Voelter, V. et al. Infrequent promoter methylation of the MGMT gene in liver metastases from uveal melanoma. Int. J. Cancer 123, 1215–1218 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Silber, J. R. et al. O6-methylguanine-DNA methyltransferase-deficient phenotype in human gliomas: frequency and time to tumor progression after alkylating agent-based chemotherapy. Clin. Cancer Res. 5, 807–814 (1999).

    CAS  PubMed  Google Scholar 

  22. Wiewrodt, D. et al. MGMT in primary and recurrent human glioblastomas after radiation and chemotherapy and comparison with p53 status and clinical outcome. Int. J. Cancer 122, 1391–1399 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Levin, N. et al. Progressive low-grade oligodendrogliomas: response to temozolomide and correlation between genetic profile and O6-methylguanine DNA methyltransferase protein expression. Cancer 106, 1759–1765 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez, F. J. et al. MGMT immunohistochemical expression and promoter methylation in human glioblastoma. Appl. Immunohistochem. Mol. Morphol. 16, 59–65 (2008).

    CAS  PubMed  Google Scholar 

  25. Grasbon-Frodl, E. M. et al. Intratumoral homogeneity of MGMT promoter hypermethylation as demonstrated in serial stereotactic specimens from anaplastic astrocytomas and glioblastomas. Int. J. Cancer 121, 2458–2464 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Lavon, I. et al. Longitudinal assessment of genetic and epigenetic markers in oligodendrogliomas. Clin. Cancer Res. 13, 1429–1437 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Herman, J. G., Graff, J. R., Myöhänen, S., Nelkin, B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Esteller, M., Hamilton, S. R., Burger, P. C., Baylin, S. B. & Herman, J. G. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 59, 793–797 (1999).

    CAS  PubMed  Google Scholar 

  29. Ogino, S. et al. Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J. Mol. Diagn. 8, 209–217 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eads, C. A. et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 28, E32 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vlassenbroeck, I. et al. Validation of real-time methylation-specific PCR to determine O6-methylguanine-DNA methyltransferase gene promoter methylation in glioma. J. Mol. Diagn. 10, 332–337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mikeska, T. et al. Optimization of quantitative MGMT promoter methylation analysis using pyrosequencing and combined bisulfite restriction analysis. J. Mol. Diagn. 9, 368–381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeuken, J. W. et al. MS-MLPA: an attractive alternative laboratory assay for robust, reliable, and semiquantitative detection of MGMT promoter hypermethylation in gliomas. Lab. Invest. 87, 1055–1065 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Wojdacz, T. K. & Dobrovic, A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 35, e41 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martinez, R. et al. A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics 4, 255–264 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Coolen, M. W., Statham, A. L., Gardiner-Garden, M. & Clark, S. J. Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res. 35, e119 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ezzeldin, H. H., Lee, A. M., Mattison, L. K. & Diasio, R. B. Methylation of the DPYD promoter: an alternative mechanism for dihydropyrimidine dehydrogenase deficiency in cancer patients. Clin. Cancer Res. 11, 8699–8705 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Herrlinger, U. et al. Phase II trial of lomustine plus temozolomide chemotherapy in addition to radiotherapy in newly diagnosed glioblastoma: UKT-03. J. Clin. Oncol. 24, 4412–4417 (2006).

    Article  PubMed  Google Scholar 

  39. Clinicaltrials.gov [online], (2009).

  40. Tabatabai, G. et al. Synergistic antiglioma activity of radiotherapy and enzastaurin. Ann. Neurol. 61, 153–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Weller, M. et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J. Clin. Oncol. doi:10.1200/JCO.2009.23.0805.

  42. Gorlia, T. et al. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981–22981/CE.3. Lancet Oncol. 9, 29–38 (2008).

    Article  PubMed  Google Scholar 

  43. Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Brandes, A. A. et al. Temozolomide concomitant and adjuvant to radiotherapy in elderly patients with glioblastoma: correlation with MGMT promoter methylation status. Cancer 115, 3512–3518 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Krex, D. et al. Long-term survival with glioblastoma multiforme. Brain 130, 2596–2606 (2007).

    Article  PubMed  Google Scholar 

  46. Murat, A. et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J. Clin. Oncol. 26, 3015–3024 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Dunn, J. et al. Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy. Br. J. Cancer 101, 124–131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brandes, A. A. et al. Temozolomide 3 weeks on and 1 week off as first-line therapy for recurrent glioblastoma: phase II study from Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br. J. Cancer 95, 1155–1160 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wick, A. et al. Efficacy and tolerability of temozolomide in an alternating weekly regimen in patients with recurrent glioma. J. Clin. Oncol. 25, 3357–3361 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Brandes, A. A. et al. MGMT methylation status can change between first surgery for newly diagnosed glioblastoma and second surgery for recurrence: clinical implications. Neuro Oncol. (in press).

  51. Sadones, J. et al. MGMT promoter hypermethylation correlates with a survival benefit from temozolomide in patients with recurrent anaplastic astrocytoma but not glioblastoma. Eur. J. Cancer 45, 146–153 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Cahill, D. P. et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin. Cancer Res. 13, 2038–2045 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maxwell, J. A. et al. Mismatch repair deficiency does not mediate clinical resistance to temozolomide in malignant glioma. Clin. Cancer Res. 14, 4859–4868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yip, S. et al. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin. Cancer Res. 15, 4622–4629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. The Cancer Genome Atlas Consortium. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  56. Perry, J. R., Rizek, P., Cashman, R., Morrison, M. & Morrison, T. Temozolomide rechallenge in recurrent malignant glioma by using a continuous temozolomide schedule: the “rescue” approach. Cancer 113, 2152–2157 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Wick, A. et al. Rechallenge with temozolomide in patients with recurrent gliomas. J. Neurol. 256, 734–741 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Möllemann, M., Wolter, M., Felsberg, J., Collins, V. P. & Reifenberger, G. Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int. J. Cancer 113, 379–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Brandes, A. A. et al. Survival following adjuvant PCV or temozolomide for anaplastic astrocytoma. Neuro Oncol. 8, 253–260 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sanson, M. et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J. Clin. Oncol. 27, 4150–4154 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. van den Bent, M. J. et al. Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J. Clin. Oncol. 24, 2715–2722 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Cairncross, G. et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: intergroup Radiation Therapy Oncology Group Trial 9402. J. Clin. Oncol. 24, 2707–2714 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Komine, C. et al. Promoter hypermethylation of the DNA repair gene O6-methylguanine-DNA methyltransferase is an independent predictor of shortened progression free survival in patients with low-grade diffuse astrocytomas. Brain Pathol. 13, 176–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Kesari, S. et al. Phase II study of protracted daily temozolomide for low-grade gliomas in adults. Clin. Cancer Res. 15, 330–337 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Everhard, S. et al. MGMT methylation: a marker of response to temozolomide in low-grade gliomas. Ann. Neurol. 60, 740–743 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Brandes, A. A. et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J. Clin. Oncol. 26, 2192–2197 (2008).

    Article  PubMed  Google Scholar 

  67. Wick, W. et al. A novel tool to analyze MRI recurrence patterns in glioblastoma. Neuro Oncol. 10, 1019–1024 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Brandes, A. A. et al. Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: correlation with MGMT promoter methylation status. J. Clin. Oncol. 27, 1275–1279 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Hermisson, M. et al. O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. J. Neurochem. 96, 766–776 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Kitange, G. J. et al. Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol. 11, 281–291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cankovic, M., Mikkelsen, T., Rosenblum, M. L. & Zarbo, R. J. A simplified laboratory validated assay for MGMT promoter hypermethylation analysis of glioma specimens from formalin-fixed paraffin-embedded tissue. Lab. Invest. 87, 392–397 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Schold, S. C. Jr et al. O6-benzylguanine suppression of O6-alkylguanine-DNA alkyltransferase in anaplastic gliomas. Neuro Oncol. 6, 28–32 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Quinn, J. A. et al. Phase II trial of temozolomide plus O6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J. Clin. Oncol. 27, 1262–1267 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Koch, D., Hundsberger, T., Boor, S. & Kaina, B. Local intracerebral administration of O6-benzylguanine combined with systemic chemotherapy with temozolomide of a patient suffering from a recurrent glioblastoma. J. Neurooncol. 82, 85–89 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Larochelle, A. et al. In vivo selection of hematopoietic progenitor cells and temozolomide dose intensification in rhesus macaques through lentiviral transduction with a drug resistance gene. J. Clin. Invest. 119, 1952–1963 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Glas, M. et al. Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. J. Clin. Oncol. 27, 1257–1261 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Weiler, M. et al. Chemoradiotherapy of newly diagnosed glioblastoma with intensified temozolomide. Int. J. Radiat. Oncol. Biol. Phys. doi:10.1016/j.ijrobp.2009.05.031.

  78. Yung, W. K. et al. Multicenter phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. Temodal Brain Tumor Group. J. Clin. Oncol. 17, 2762–2771 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Crinière, E. et al. MGMT prognostic impact on glioblastoma is dependent on therapeutic modalities. J. Neurooncol. 83, 173–179 (2007).

    Article  PubMed  Google Scholar 

  80. Zawlik, I. et al. Promoter methylation and polymorphisms of the MGMT gene in glioblastomas: a population-based study. Neuroepidemiology 32, 21–29 (2009).

    Article  PubMed  Google Scholar 

  81. Prados, M. D. et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J. Clin. Oncol. 27, 579–584 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Clarke, J. L. et al. Randomized phase II trial of chemoradiotherapy followed by either dose-dense or metronomic temozolomide for newly diagnosed glioblastoma. J. Clin. Oncol. 27, 3861–3867 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brandes, A. A. et al. Correlations between O6-methylguanine DNA methyltransferase promoter methylation status, 1p and 19q deletions, and response to temozolomide in anaplastic and recurrent oligodendroglioma: a prospective GICNO study. J. Clin. Oncol. 24, 4746–4753 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Yu, J. et al. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer 4, 65 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bello, M. J. et al. Hypermethylation of the DNA repair gene MGMT: association with TP53 G:C to A:T transitions in a series of 469 nervous system tumors. Mutat. Res. 554, 23–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Nakamura, M., Watanabe, T., Yonekawa, Y., Kleihues, P. & Ohgaki, H. Promoter methylation of the DNA repair gene MGMT in astrocytomas is frequently associated with G:C --> A:T mutations of the TP53 tumor suppressor gene. Carcinogenesis 22, 1715–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Watanabe, T. et al. Phenotype versus genotype correlation in oligodendrogliomas and low-grade diffuse astrocytomas. Acta Neuropathol. (Berl.) 103, 267–275 (2002).

    Article  CAS  Google Scholar 

  88. Brell, M. et al. Prognostic significance of O6-methylguanine-DNA methyltransferase determined by promoter hypermethylation and immunohistochemical expression in anaplastic gliomas. Clin. Cancer Res. 11, 5167–5174 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Kamiryo, T. et al. Correlation between promoter hypermethylation of the O6-methylguanine-deoxyribonucleic acid methyltransferase gene and prognosis in patients with high-grade astrocytic tumors treated with surgery, radiotherapy, and 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea-based chemotherapy. Neurosurgery 54, 349–357 (2004).

    Article  PubMed  Google Scholar 

  90. Dong, S. M. et al. Concurrent hypermethylation of multiple genes is associated with grade of oligodendroglial tumors. J. Neuropathol. Exp. Neurol. 60, 808–816 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Blanc, J. L. et al. Correlation of clinical features and methylation status of MGMT gene promoter in glioblastomas. J. Neurooncol. 68, 275–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Balaña, C. et al. O6-methyl-guanine-DNA methyltransferase methylation in serum and tumor DNA predicts response to 1, 3-bis(2-chloroethyl)-1-nitrosourea but not to temozolamide plus cisplatin in glioblastoma multiforme. Clin. Cancer Res. 9, 1461–1468 (2003).

    PubMed  Google Scholar 

  93. Watanabe, T. et al. O6-methylguanine-DNA methyltransferase methylation and TP53 mutation in malignant astrocytomas and their relationships with clinical course. Int. J. Cancer 113, 581–587 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Weller.

Ethics declarations

Competing interests

M. Weller has acted as a consultant for Merck Serono, OncoMethylome Sciences and Schering-Plough, has received honoraria from Merck Serono and Schering-Plough, and has received research support from Merck Serono. R. Stupp has acted as a consultant for and received honoraria from Merck Serono and Schering-Plough, and has acted as a consultant for Oncomethylome Sciences. G. Reifenberger has received honoraria from Essex Pharma, and has acted as a consultant for Miltenyi Biotec and OncoMethylome Sciences. A. A. Brandes has acted as a consultant for OncoMethylome Sciences and Schering-Plough, and has received honoraria from Schering-Plough. M. J. van den Bent has acted as a consultant for Merck AG, OncoMethylome Sciences and Schering-Plough, has received honoraria from Schering-Plough, and has received research support from OncoMethylome Sciences and Schering-Plough. W. Wick has acted as a consultant for and received honoraria from Merck Serono and Schering-Plough. M. Hegi has acted as a consultant for and received research support from OncoMethylome Sciences and Merck Serono, and has received honoraria from OncoMethylome Sciences and Schering-Plough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weller, M., Stupp, R., Reifenberger, G. et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine?. Nat Rev Neurol 6, 39–51 (2010). https://doi.org/10.1038/nrneurol.2009.197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing